Spaces:
Runtime error
Runtime error
/* | |
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array | |
arguments | |
Copyright (c) 2016 Wenzel Jakob <[email protected]> | |
All rights reserved. Use of this source code is governed by a | |
BSD-style license that can be found in the LICENSE file. | |
*/ | |
double my_func(int x, float y, double z) { | |
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); | |
return (float) x*y*z; | |
} | |
TEST_SUBMODULE(numpy_vectorize, m) { | |
try { py::module::import("numpy"); } | |
catch (...) { return; } | |
// test_vectorize, test_docs, test_array_collapse | |
// Vectorize all arguments of a function (though non-vector arguments are also allowed) | |
m.def("vectorized_func", py::vectorize(my_func)); | |
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) | |
m.def("vectorized_func2", | |
[](py::array_t<int> x, py::array_t<float> y, float z) { | |
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); | |
} | |
); | |
// Vectorize a complex-valued function | |
m.def("vectorized_func3", py::vectorize( | |
[](std::complex<double> c) { return c * std::complex<double>(2.f); } | |
)); | |
// test_type_selection | |
// Numpy function which only accepts specific data types | |
m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); | |
m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); | |
m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); | |
// test_passthrough_arguments | |
// Passthrough test: references and non-pod types should be automatically passed through (in the | |
// function definition below, only `b`, `d`, and `g` are vectorized): | |
struct NonPODClass { | |
NonPODClass(int v) : value{v} {} | |
int value; | |
}; | |
py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); | |
m.def("vec_passthrough", py::vectorize( | |
[](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { | |
return *a + b + c.at(0) + d + e + f.value + g; | |
} | |
)); | |
// test_method_vectorization | |
struct VectorizeTestClass { | |
VectorizeTestClass(int v) : value{v} {}; | |
float method(int x, float y) { return y + (float) (x + value); } | |
int value = 0; | |
}; | |
py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); | |
vtc .def(py::init<int>()) | |
.def_readwrite("value", &VectorizeTestClass::value); | |
// Automatic vectorizing of methods | |
vtc.def("method", py::vectorize(&VectorizeTestClass::method)); | |
// test_trivial_broadcasting | |
// Internal optimization test for whether the input is trivially broadcastable: | |
py::enum_<py::detail::broadcast_trivial>(m, "trivial") | |
.value("f_trivial", py::detail::broadcast_trivial::f_trivial) | |
.value("c_trivial", py::detail::broadcast_trivial::c_trivial) | |
.value("non_trivial", py::detail::broadcast_trivial::non_trivial); | |
m.def("vectorized_is_trivial", []( | |
py::array_t<int, py::array::forcecast> arg1, | |
py::array_t<float, py::array::forcecast> arg2, | |
py::array_t<double, py::array::forcecast> arg3 | |
) { | |
ssize_t ndim; | |
std::vector<ssize_t> shape; | |
std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; | |
return py::detail::broadcast(buffers, ndim, shape); | |
}); | |
} | |