Spaces:
Runtime error
Runtime error
File size: 5,916 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#include <unittest/testframework.h>
#include <unittest/cuda/testframework.h>
#include <thrust/system/cuda/memory.h>
#include <cuda_runtime.h>
#include <numeric>
__global__ void dummy_kernel() {}
bool binary_exists_for_current_device()
{
// check against the dummy_kernel
// if we're unable to get the attributes, then
// we didn't compile a binary compatible with the current device
cudaFuncAttributes attr;
cudaError_t error = cudaFuncGetAttributes(&attr, dummy_kernel);
// clear the CUDA global error state if we just set it, so that
// check_cuda_error doesn't complain
if (cudaSuccess != error) (void)cudaGetLastError();
return cudaSuccess == error;
}
void list_devices(void)
{
int deviceCount;
cudaGetDeviceCount(&deviceCount);
if(deviceCount == 0)
{
std::cout << "There is no device supporting CUDA" << std::endl;
}
int selected_device;
cudaGetDevice(&selected_device);
for (int dev = 0; dev < deviceCount; ++dev)
{
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
if(dev == 0)
{
if(deviceProp.major == 9999 && deviceProp.minor == 9999)
std::cout << "There is no device supporting CUDA." << std::endl;
else if(deviceCount == 1)
std::cout << "There is 1 device supporting CUDA" << std:: endl;
else
std::cout << "There are " << deviceCount << " devices supporting CUDA" << std:: endl;
}
std::cout << "\nDevice " << dev << ": \"" << deviceProp.name << "\"";
if(dev == selected_device)
std::cout << " [SELECTED]";
std::cout << std::endl;
std::cout << " Major revision number: " << deviceProp.major << std::endl;
std::cout << " Minor revision number: " << deviceProp.minor << std::endl;
std::cout << " Total amount of global memory: " << deviceProp.totalGlobalMem << " bytes" << std::endl;
}
std::cout << std::endl;
}
// provide next, which c++03 doesn't have
template<typename Iterator> Iterator my_next(Iterator iter)
{
return ++iter;
}
std::vector<int> CUDATestDriver::target_devices(const ArgumentMap &kwargs)
{
std::vector<int> result;
// by default, test all devices in the system (device id -1)
int device_id = kwargs.count("device") ? atoi(kwargs.find("device")->second.c_str()) : -1;
if(device_id < 0)
{
// target all devices in the system
int count = 0;
cudaGetDeviceCount(&count);
result.resize(count);
std::iota(result.begin(), result.end(), 0);
}
else
{
// target the specified device
result = std::vector<int>(1,device_id);
}
return result;
}
bool CUDATestDriver::check_cuda_error(bool concise)
{
cudaError_t const error = cudaGetLastError();
if(cudaSuccess != error)
{
if(!concise)
{
std::cout << "[ERROR] CUDA error detected before running tests: ["
<< std::string(cudaGetErrorName(error))
<< ": "
<< std::string(cudaGetErrorString(error))
<< "]" << std::endl;
}
}
return cudaSuccess != error;
}
bool CUDATestDriver::post_test_sanity_check(const UnitTest &test, bool concise)
{
cudaError_t const error = cudaDeviceSynchronize();
if(cudaSuccess != error)
{
if(!concise)
{
std::cout << "\t[ERROR] CUDA error detected after running " << test.name << ": ["
<< std::string(cudaGetErrorName(error))
<< ": "
<< std::string(cudaGetErrorString(error))
<< "]" << std::endl;
}
}
return cudaSuccess == error;
}
bool CUDATestDriver::run_tests(const ArgumentSet &args, const ArgumentMap &kwargs)
{
bool verbose = kwargs.count("verbose");
bool concise = kwargs.count("concise");
if(verbose && concise)
{
std::cout << "--verbose and --concise cannot be used together" << std::endl;
exit(EXIT_FAILURE);
return false;
}
// check error status before doing anything
if(check_cuda_error(concise)) return false;
bool result = true;
if(kwargs.count("verbose"))
{
list_devices();
}
// figure out which devices to target
std::vector<int> devices = target_devices(kwargs);
// target each device
for(std::vector<int>::iterator device = devices.begin();
device != devices.end();
++device)
{
cudaDeviceSynchronize();
// set the device
cudaSetDevice(*device);
// check if a binary exists for this device
// if none exists, skip the device silently unless this is the only one we're targeting
if(devices.size() > 1 && !binary_exists_for_current_device())
{
// note which device we're skipping
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, *device);
std::cout << "Skipping Device " << *device << ": \"" << deviceProp.name << "\"" << std::endl;
continue;
}
if(!concise)
{
// note which device we're testing
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, *device);
std::cout << "Testing Device " << *device << ": \"" << deviceProp.name << "\"" << std::endl;
}
// check error status before running any tests
if(check_cuda_error(concise)) return false;
// run tests
result &= UnitTestDriver::run_tests(args, kwargs);
if(!concise && my_next(device) != devices.end())
{
// provide some separation between the output of separate tests
std::cout << std::endl;
}
}
return result;
}
int CUDATestDriver::current_device_architecture() const
{
int current = -1;
cudaGetDevice(¤t);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, current);
return 100 * deviceProp.major + 10 * deviceProp.minor;
}
UnitTestDriver &driver_instance(thrust::system::cuda::tag)
{
static CUDATestDriver s_instance;
return s_instance;
}
|