Spaces:
Runtime error
Runtime error
File size: 44,998 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
Classes
#######
This section presents advanced binding code for classes and it is assumed
that you are already familiar with the basics from :doc:`/classes`.
.. _overriding_virtuals:
Overriding virtual functions in Python
======================================
Suppose that a C++ class or interface has a virtual function that we'd like to
to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
given as a specific example of how one would do this with traditional C++
code).
.. code-block:: cpp
class Animal {
public:
virtual ~Animal() { }
virtual std::string go(int n_times) = 0;
};
class Dog : public Animal {
public:
std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)
result += "woof! ";
return result;
}
};
Let's also suppose that we are given a plain function which calls the
function ``go()`` on an arbitrary ``Animal`` instance.
.. code-block:: cpp
std::string call_go(Animal *animal) {
return animal->go(3);
}
Normally, the binding code for these classes would look as follows:
.. code-block:: cpp
PYBIND11_MODULE(example, m) {
py::class_<Animal>(m, "Animal")
.def("go", &Animal::go);
py::class_<Dog, Animal>(m, "Dog")
.def(py::init<>());
m.def("call_go", &call_go);
}
However, these bindings are impossible to extend: ``Animal`` is not
constructible, and we clearly require some kind of "trampoline" that
redirects virtual calls back to Python.
Defining a new type of ``Animal`` from within Python is possible but requires a
helper class that is defined as follows:
.. code-block:: cpp
class PyAnimal : public Animal {
public:
/* Inherit the constructors */
using Animal::Animal;
/* Trampoline (need one for each virtual function) */
std::string go(int n_times) override {
PYBIND11_OVERLOAD_PURE(
std::string, /* Return type */
Animal, /* Parent class */
go, /* Name of function in C++ (must match Python name) */
n_times /* Argument(s) */
);
}
};
The macro :c:macro:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
functions, and :c:macro:`PYBIND11_OVERLOAD` should be used for functions which have
a default implementation. There are also two alternate macros
:c:macro:`PYBIND11_OVERLOAD_PURE_NAME` and :c:macro:`PYBIND11_OVERLOAD_NAME` which
take a string-valued name argument between the *Parent class* and *Name of the
function* slots, which defines the name of function in Python. This is required
when the C++ and Python versions of the
function have different names, e.g. ``operator()`` vs ``__call__``.
The binding code also needs a few minor adaptations (highlighted):
.. code-block:: cpp
:emphasize-lines: 2,3
PYBIND11_MODULE(example, m) {
py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
.def(py::init<>())
.def("go", &Animal::go);
py::class_<Dog, Animal>(m, "Dog")
.def(py::init<>());
m.def("call_go", &call_go);
}
Importantly, pybind11 is made aware of the trampoline helper class by
specifying it as an extra template argument to :class:`class_`. (This can also
be combined with other template arguments such as a custom holder type; the
order of template types does not matter). Following this, we are able to
define a constructor as usual.
Bindings should be made against the actual class, not the trampoline helper class.
.. code-block:: cpp
:emphasize-lines: 3
py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
.def(py::init<>())
.def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
Note, however, that the above is sufficient for allowing python classes to
extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
necessary steps required to providing proper overload support for inherited
classes.
The Python session below shows how to override ``Animal::go`` and invoke it via
a virtual method call.
.. code-block:: pycon
>>> from example import *
>>> d = Dog()
>>> call_go(d)
u'woof! woof! woof! '
>>> class Cat(Animal):
... def go(self, n_times):
... return "meow! " * n_times
...
>>> c = Cat()
>>> call_go(c)
u'meow! meow! meow! '
If you are defining a custom constructor in a derived Python class, you *must*
ensure that you explicitly call the bound C++ constructor using ``__init__``,
*regardless* of whether it is a default constructor or not. Otherwise, the
memory for the C++ portion of the instance will be left uninitialized, which
will generally leave the C++ instance in an invalid state and cause undefined
behavior if the C++ instance is subsequently used.
.. versionchanged:: 2.6
The default pybind11 metaclass will throw a ``TypeError`` when it detects
that ``__init__`` was not called by a derived class.
Here is an example:
.. code-block:: python
class Dachshund(Dog):
def __init__(self, name):
Dog.__init__(self) # Without this, a TypeError is raised.
self.name = name
def bark(self):
return "yap!"
Note that a direct ``__init__`` constructor *should be called*, and ``super()``
should not be used. For simple cases of linear inheritance, ``super()``
may work, but once you begin mixing Python and C++ multiple inheritance,
things will fall apart due to differences between Python's MRO and C++'s
mechanisms.
Please take a look at the :ref:`macro_notes` before using this feature.
.. note::
When the overridden type returns a reference or pointer to a type that
pybind11 converts from Python (for example, numeric values, std::string,
and other built-in value-converting types), there are some limitations to
be aware of:
- because in these cases there is no C++ variable to reference (the value
is stored in the referenced Python variable), pybind11 provides one in
the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
Note that this means that invoking the overloaded method on *any*
instance will change the referenced value stored in *all* instances of
that type.
- Attempts to modify a non-const reference will not have the desired
effect: it will change only the static cache variable, but this change
will not propagate to underlying Python instance, and the change will be
replaced the next time the overload is invoked.
.. seealso::
The file :file:`tests/test_virtual_functions.cpp` contains a complete
example that demonstrates how to override virtual functions using pybind11
in more detail.
.. _virtual_and_inheritance:
Combining virtual functions and inheritance
===========================================
When combining virtual methods with inheritance, you need to be sure to provide
an override for each method for which you want to allow overrides from derived
python classes. For example, suppose we extend the above ``Animal``/``Dog``
example as follows:
.. code-block:: cpp
class Animal {
public:
virtual std::string go(int n_times) = 0;
virtual std::string name() { return "unknown"; }
};
class Dog : public Animal {
public:
std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)
result += bark() + " ";
return result;
}
virtual std::string bark() { return "woof!"; }
};
then the trampoline class for ``Animal`` must, as described in the previous
section, override ``go()`` and ``name()``, but in order to allow python code to
inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
override the ``name()`` method):
.. code-block:: cpp
class PyAnimal : public Animal {
public:
using Animal::Animal; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
};
class PyDog : public Dog {
public:
using Dog::Dog; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, Dog, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
};
.. note::
Note the trailing commas in the ``PYBIND11_OVERLOAD`` calls to ``name()``
and ``bark()``. These are needed to portably implement a trampoline for a
function that does not take any arguments. For functions that take
a nonzero number of arguments, the trailing comma must be omitted.
A registered class derived from a pybind11-registered class with virtual
methods requires a similar trampoline class, *even if* it doesn't explicitly
declare or override any virtual methods itself:
.. code-block:: cpp
class Husky : public Dog {};
class PyHusky : public Husky {
public:
using Husky::Husky; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
};
There is, however, a technique that can be used to avoid this duplication
(which can be especially helpful for a base class with several virtual
methods). The technique involves using template trampoline classes, as
follows:
.. code-block:: cpp
template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
public:
using AnimalBase::AnimalBase; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
};
template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
public:
using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
// Override PyAnimal's pure virtual go() with a non-pure one:
std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
};
This technique has the advantage of requiring just one trampoline method to be
declared per virtual method and pure virtual method override. It does,
however, require the compiler to generate at least as many methods (and
possibly more, if both pure virtual and overridden pure virtual methods are
exposed, as above).
The classes are then registered with pybind11 using:
.. code-block:: cpp
py::class_<Animal, PyAnimal<>> animal(m, "Animal");
py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
// ... add animal, dog, husky definitions
Note that ``Husky`` did not require a dedicated trampoline template class at
all, since it neither declares any new virtual methods nor provides any pure
virtual method implementations.
With either the repeated-virtuals or templated trampoline methods in place, you
can now create a python class that inherits from ``Dog``:
.. code-block:: python
class ShihTzu(Dog):
def bark(self):
return "yip!"
.. seealso::
See the file :file:`tests/test_virtual_functions.cpp` for complete examples
using both the duplication and templated trampoline approaches.
.. _extended_aliases:
Extended trampoline class functionality
=======================================
.. _extended_class_functionality_forced_trampoline:
Forced trampoline class initialisation
--------------------------------------
The trampoline classes described in the previous sections are, by default, only
initialized when needed. More specifically, they are initialized when a python
class actually inherits from a registered type (instead of merely creating an
instance of the registered type), or when a registered constructor is only
valid for the trampoline class but not the registered class. This is primarily
for performance reasons: when the trampoline class is not needed for anything
except virtual method dispatching, not initializing the trampoline class
improves performance by avoiding needing to do a run-time check to see if the
inheriting python instance has an overloaded method.
Sometimes, however, it is useful to always initialize a trampoline class as an
intermediate class that does more than just handle virtual method dispatching.
For example, such a class might perform extra class initialization, extra
destruction operations, and might define new members and methods to enable a
more python-like interface to a class.
In order to tell pybind11 that it should *always* initialize the trampoline
class when creating new instances of a type, the class constructors should be
declared using ``py::init_alias<Args, ...>()`` instead of the usual
``py::init<Args, ...>()``. This forces construction via the trampoline class,
ensuring member initialization and (eventual) destruction.
.. seealso::
See the file :file:`tests/test_virtual_functions.cpp` for complete examples
showing both normal and forced trampoline instantiation.
Different method signatures
---------------------------
The macro's introduced in :ref:`overriding_virtuals` cover most of the standard
use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy
to create a direct one-on-one mapping between the arguments and method return
type.
An example would be when the C++ signature contains output arguments using
references (See also :ref:`faq_reference_arguments`). Another way of solving
this is to use the method body of the trampoline class to do conversions to the
input and return of the Python method.
The main building block to do so is the :func:`get_overload`, this function
allows retrieving a method implemented in Python from within the trampoline's
methods. Consider for example a C++ method which has the signature
``bool myMethod(int32_t& value)``, where the return indicates whether
something should be done with the ``value``. This can be made convenient on the
Python side by allowing the Python function to return ``None`` or an ``int``:
.. code-block:: cpp
bool MyClass::myMethod(int32_t& value)
{
pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope.
// Try to look up the overloaded method on the Python side.
pybind11::function overload = pybind11::get_overload(this, "myMethod");
if (overload) { // method is found
auto obj = overload(value); // Call the Python function.
if (py::isinstance<py::int_>(obj)) { // check if it returned a Python integer type
value = obj.cast<int32_t>(); // Cast it and assign it to the value.
return true; // Return true; value should be used.
} else {
return false; // Python returned none, return false.
}
}
return false; // Alternatively return MyClass::myMethod(value);
}
.. _custom_constructors:
Custom constructors
===================
The syntax for binding constructors was previously introduced, but it only
works when a constructor of the appropriate arguments actually exists on the
C++ side. To extend this to more general cases, pybind11 makes it possible
to bind factory functions as constructors. For example, suppose you have a
class like this:
.. code-block:: cpp
class Example {
private:
Example(int); // private constructor
public:
// Factory function:
static Example create(int a) { return Example(a); }
};
py::class_<Example>(m, "Example")
.def(py::init(&Example::create));
While it is possible to create a straightforward binding of the static
``create`` method, it may sometimes be preferable to expose it as a constructor
on the Python side. This can be accomplished by calling ``.def(py::init(...))``
with the function reference returning the new instance passed as an argument.
It is also possible to use this approach to bind a function returning a new
instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
The following example shows the different approaches:
.. code-block:: cpp
class Example {
private:
Example(int); // private constructor
public:
// Factory function - returned by value:
static Example create(int a) { return Example(a); }
// These constructors are publicly callable:
Example(double);
Example(int, int);
Example(std::string);
};
py::class_<Example>(m, "Example")
// Bind the factory function as a constructor:
.def(py::init(&Example::create))
// Bind a lambda function returning a pointer wrapped in a holder:
.def(py::init([](std::string arg) {
return std::unique_ptr<Example>(new Example(arg));
}))
// Return a raw pointer:
.def(py::init([](int a, int b) { return new Example(a, b); }))
// You can mix the above with regular C++ constructor bindings as well:
.def(py::init<double>())
;
When the constructor is invoked from Python, pybind11 will call the factory
function and store the resulting C++ instance in the Python instance.
When combining factory functions constructors with :ref:`virtual function
trampolines <overriding_virtuals>` there are two approaches. The first is to
add a constructor to the alias class that takes a base value by
rvalue-reference. If such a constructor is available, it will be used to
construct an alias instance from the value returned by the factory function.
The second option is to provide two factory functions to ``py::init()``: the
first will be invoked when no alias class is required (i.e. when the class is
being used but not inherited from in Python), and the second will be invoked
when an alias is required.
You can also specify a single factory function that always returns an alias
instance: this will result in behaviour similar to ``py::init_alias<...>()``,
as described in the :ref:`extended trampoline class documentation
<extended_aliases>`.
The following example shows the different factory approaches for a class with
an alias:
.. code-block:: cpp
#include <pybind11/factory.h>
class Example {
public:
// ...
virtual ~Example() = default;
};
class PyExample : public Example {
public:
using Example::Example;
PyExample(Example &&base) : Example(std::move(base)) {}
};
py::class_<Example, PyExample>(m, "Example")
// Returns an Example pointer. If a PyExample is needed, the Example
// instance will be moved via the extra constructor in PyExample, above.
.def(py::init([]() { return new Example(); }))
// Two callbacks:
.def(py::init([]() { return new Example(); } /* no alias needed */,
[]() { return new PyExample(); } /* alias needed */))
// *Always* returns an alias instance (like py::init_alias<>())
.def(py::init([]() { return new PyExample(); }))
;
Brace initialization
--------------------
``pybind11::init<>`` internally uses C++11 brace initialization to call the
constructor of the target class. This means that it can be used to bind
*implicit* constructors as well:
.. code-block:: cpp
struct Aggregate {
int a;
std::string b;
};
py::class_<Aggregate>(m, "Aggregate")
.def(py::init<int, const std::string &>());
.. note::
Note that brace initialization preferentially invokes constructor overloads
taking a ``std::initializer_list``. In the rare event that this causes an
issue, you can work around it by using ``py::init(...)`` with a lambda
function that constructs the new object as desired.
.. _classes_with_non_public_destructors:
Non-public destructors
======================
If a class has a private or protected destructor (as might e.g. be the case in
a singleton pattern), a compile error will occur when creating bindings via
pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
is responsible for managing the lifetime of instances will reference the
destructor even if no deallocations ever take place. In order to expose classes
with private or protected destructors, it is possible to override the holder
type via a holder type argument to ``class_``. Pybind11 provides a helper class
``py::nodelete`` that disables any destructor invocations. In this case, it is
crucial that instances are deallocated on the C++ side to avoid memory leaks.
.. code-block:: cpp
/* ... definition ... */
class MyClass {
private:
~MyClass() { }
};
/* ... binding code ... */
py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
.def(py::init<>())
.. _destructors_that_call_python:
Destructors that call Python
============================
If a Python function is invoked from a C++ destructor, an exception may be thrown
of type :class:`error_already_set`. If this error is thrown out of a class destructor,
``std::terminate()`` will be called, terminating the process. Class destructors
must catch all exceptions of type :class:`error_already_set` to discard the Python
exception using :func:`error_already_set::discard_as_unraisable`.
Every Python function should be treated as *possibly throwing*. When a Python generator
stops yielding items, Python will throw a ``StopIteration`` exception, which can pass
though C++ destructors if the generator's stack frame holds the last reference to C++
objects.
For more information, see :ref:`the documentation on exceptions <unraisable_exceptions>`.
.. code-block:: cpp
class MyClass {
public:
~MyClass() {
try {
py::print("Even printing is dangerous in a destructor");
py::exec("raise ValueError('This is an unraisable exception')");
} catch (py::error_already_set &e) {
// error_context should be information about where/why the occurred,
// e.g. use __func__ to get the name of the current function
e.discard_as_unraisable(__func__);
}
}
};
.. note::
pybind11 does not support C++ destructors marked ``noexcept(false)``.
.. versionadded:: 2.6
.. _implicit_conversions:
Implicit conversions
====================
Suppose that instances of two types ``A`` and ``B`` are used in a project, and
that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
could be a fixed and an arbitrary precision number type).
.. code-block:: cpp
py::class_<A>(m, "A")
/// ... members ...
py::class_<B>(m, "B")
.def(py::init<A>())
/// ... members ...
m.def("func",
[](const B &) { /* .... */ }
);
To invoke the function ``func`` using a variable ``a`` containing an ``A``
instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
will automatically apply an implicit type conversion, which makes it possible
to directly write ``func(a)``.
In this situation (i.e. where ``B`` has a constructor that converts from
``A``), the following statement enables similar implicit conversions on the
Python side:
.. code-block:: cpp
py::implicitly_convertible<A, B>();
.. note::
Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
data type that is exposed to Python via pybind11.
To prevent runaway recursion, implicit conversions are non-reentrant: an
implicit conversion invoked as part of another implicit conversion of the
same type (i.e. from ``A`` to ``B``) will fail.
.. _static_properties:
Static properties
=================
The section on :ref:`properties` discussed the creation of instance properties
that are implemented in terms of C++ getters and setters.
Static properties can also be created in a similar way to expose getters and
setters of static class attributes. Note that the implicit ``self`` argument
also exists in this case and is used to pass the Python ``type`` subclass
instance. This parameter will often not be needed by the C++ side, and the
following example illustrates how to instantiate a lambda getter function
that ignores it:
.. code-block:: cpp
py::class_<Foo>(m, "Foo")
.def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
Operator overloading
====================
Suppose that we're given the following ``Vector2`` class with a vector addition
and scalar multiplication operation, all implemented using overloaded operators
in C++.
.. code-block:: cpp
class Vector2 {
public:
Vector2(float x, float y) : x(x), y(y) { }
Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
friend Vector2 operator*(float f, const Vector2 &v) {
return Vector2(f * v.x, f * v.y);
}
std::string toString() const {
return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
}
private:
float x, y;
};
The following snippet shows how the above operators can be conveniently exposed
to Python.
.. code-block:: cpp
#include <pybind11/operators.h>
PYBIND11_MODULE(example, m) {
py::class_<Vector2>(m, "Vector2")
.def(py::init<float, float>())
.def(py::self + py::self)
.def(py::self += py::self)
.def(py::self *= float())
.def(float() * py::self)
.def(py::self * float())
.def(-py::self)
.def("__repr__", &Vector2::toString);
}
Note that a line like
.. code-block:: cpp
.def(py::self * float())
is really just short hand notation for
.. code-block:: cpp
.def("__mul__", [](const Vector2 &a, float b) {
return a * b;
}, py::is_operator())
This can be useful for exposing additional operators that don't exist on the
C++ side, or to perform other types of customization. The ``py::is_operator``
flag marker is needed to inform pybind11 that this is an operator, which
returns ``NotImplemented`` when invoked with incompatible arguments rather than
throwing a type error.
.. note::
To use the more convenient ``py::self`` notation, the additional
header file :file:`pybind11/operators.h` must be included.
.. seealso::
The file :file:`tests/test_operator_overloading.cpp` contains a
complete example that demonstrates how to work with overloaded operators in
more detail.
.. _pickling:
Pickling support
================
Python's ``pickle`` module provides a powerful facility to serialize and
de-serialize a Python object graph into a binary data stream. To pickle and
unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
provided. Suppose the class in question has the following signature:
.. code-block:: cpp
class Pickleable {
public:
Pickleable(const std::string &value) : m_value(value) { }
const std::string &value() const { return m_value; }
void setExtra(int extra) { m_extra = extra; }
int extra() const { return m_extra; }
private:
std::string m_value;
int m_extra = 0;
};
Pickling support in Python is enabled by defining the ``__setstate__`` and
``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
to bind these two functions:
.. code-block:: cpp
py::class_<Pickleable>(m, "Pickleable")
.def(py::init<std::string>())
.def("value", &Pickleable::value)
.def("extra", &Pickleable::extra)
.def("setExtra", &Pickleable::setExtra)
.def(py::pickle(
[](const Pickleable &p) { // __getstate__
/* Return a tuple that fully encodes the state of the object */
return py::make_tuple(p.value(), p.extra());
},
[](py::tuple t) { // __setstate__
if (t.size() != 2)
throw std::runtime_error("Invalid state!");
/* Create a new C++ instance */
Pickleable p(t[0].cast<std::string>());
/* Assign any additional state */
p.setExtra(t[1].cast<int>());
return p;
}
));
The ``__setstate__`` part of the ``py::picke()`` definition follows the same
rules as the single-argument version of ``py::init()``. The return type can be
a value, pointer or holder type. See :ref:`custom_constructors` for details.
An instance can now be pickled as follows:
.. code-block:: python
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
p = Pickleable("test_value")
p.setExtra(15)
data = pickle.dumps(p, 2)
.. note::
Note that only the cPickle module is supported on Python 2.7.
The second argument to ``dumps`` is also crucial: it selects the pickle
protocol version 2, since the older version 1 is not supported. Newer
versions are also fine—for instance, specify ``-1`` to always use the
latest available version. Beware: failure to follow these instructions
will cause important pybind11 memory allocation routines to be skipped
during unpickling, which will likely lead to memory corruption and/or
segmentation faults.
.. seealso::
The file :file:`tests/test_pickling.cpp` contains a complete example
that demonstrates how to pickle and unpickle types using pybind11 in more
detail.
.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Deepcopy support
================
Python normally uses references in assignments. Sometimes a real copy is needed
to prevent changing all copies. The ``copy`` module [#f5]_ provides these
capabilities.
On Python 3, a class with pickle support is automatically also (deep)copy
compatible. However, performance can be improved by adding custom
``__copy__`` and ``__deepcopy__`` methods. With Python 2.7, these custom methods
are mandatory for (deep)copy compatibility, because pybind11 only supports
cPickle.
For simple classes (deep)copy can be enabled by using the copy constructor,
which should look as follows:
.. code-block:: cpp
py::class_<Copyable>(m, "Copyable")
.def("__copy__", [](const Copyable &self) {
return Copyable(self);
})
.def("__deepcopy__", [](const Copyable &self, py::dict) {
return Copyable(self);
}, "memo"_a);
.. note::
Dynamic attributes will not be copied in this example.
.. [#f5] https://docs.python.org/3/library/copy.html
Multiple Inheritance
====================
pybind11 can create bindings for types that derive from multiple base types
(aka. *multiple inheritance*). To do so, specify all bases in the template
arguments of the ``class_`` declaration:
.. code-block:: cpp
py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
...
The base types can be specified in arbitrary order, and they can even be
interspersed with alias types and holder types (discussed earlier in this
document)---pybind11 will automatically find out which is which. The only
requirement is that the first template argument is the type to be declared.
It is also permitted to inherit multiply from exported C++ classes in Python,
as well as inheriting from multiple Python and/or pybind11-exported classes.
There is one caveat regarding the implementation of this feature:
When only one base type is specified for a C++ type that actually has multiple
bases, pybind11 will assume that it does not participate in multiple
inheritance, which can lead to undefined behavior. In such cases, add the tag
``multiple_inheritance`` to the class constructor:
.. code-block:: cpp
py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
The tag is redundant and does not need to be specified when multiple base types
are listed.
.. _module_local:
Module-local class bindings
===========================
When creating a binding for a class, pybind11 by default makes that binding
"global" across modules. What this means is that a type defined in one module
can be returned from any module resulting in the same Python type. For
example, this allows the following:
.. code-block:: cpp
// In the module1.cpp binding code for module1:
py::class_<Pet>(m, "Pet")
.def(py::init<std::string>())
.def_readonly("name", &Pet::name);
.. code-block:: cpp
// In the module2.cpp binding code for module2:
m.def("create_pet", [](std::string name) { return new Pet(name); });
.. code-block:: pycon
>>> from module1 import Pet
>>> from module2 import create_pet
>>> pet1 = Pet("Kitty")
>>> pet2 = create_pet("Doggy")
>>> pet2.name()
'Doggy'
When writing binding code for a library, this is usually desirable: this
allows, for example, splitting up a complex library into multiple Python
modules.
In some cases, however, this can cause conflicts. For example, suppose two
unrelated modules make use of an external C++ library and each provide custom
bindings for one of that library's classes. This will result in an error when
a Python program attempts to import both modules (directly or indirectly)
because of conflicting definitions on the external type:
.. code-block:: cpp
// dogs.cpp
// Binding for external library class:
py::class<pets::Pet>(m, "Pet")
.def("name", &pets::Pet::name);
// Binding for local extension class:
py::class<Dog, pets::Pet>(m, "Dog")
.def(py::init<std::string>());
.. code-block:: cpp
// cats.cpp, in a completely separate project from the above dogs.cpp.
// Binding for external library class:
py::class<pets::Pet>(m, "Pet")
.def("get_name", &pets::Pet::name);
// Binding for local extending class:
py::class<Cat, pets::Pet>(m, "Cat")
.def(py::init<std::string>());
.. code-block:: pycon
>>> import cats
>>> import dogs
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: generic_type: type "Pet" is already registered!
To get around this, you can tell pybind11 to keep the external class binding
localized to the module by passing the ``py::module_local()`` attribute into
the ``py::class_`` constructor:
.. code-block:: cpp
// Pet binding in dogs.cpp:
py::class<pets::Pet>(m, "Pet", py::module_local())
.def("name", &pets::Pet::name);
.. code-block:: cpp
// Pet binding in cats.cpp:
py::class<pets::Pet>(m, "Pet", py::module_local())
.def("get_name", &pets::Pet::name);
This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
avoiding the conflict and allowing both modules to be loaded. C++ code in the
``dogs`` module that casts or returns a ``Pet`` instance will result in a
``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
in a ``cats.Pet`` Python instance.
This does come with two caveats, however: First, external modules cannot return
or cast a ``Pet`` instance to Python (unless they also provide their own local
bindings). Second, from the Python point of view they are two distinct classes.
Note that the locality only applies in the C++ -> Python direction. When
passing such a ``py::module_local`` type into a C++ function, the module-local
classes are still considered. This means that if the following function is
added to any module (including but not limited to the ``cats`` and ``dogs``
modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
argument:
.. code-block:: cpp
m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
For example, suppose the above function is added to each of ``cats.cpp``,
``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
does *not* bind ``Pets`` at all).
.. code-block:: pycon
>>> import cats, dogs, frogs # No error because of the added py::module_local()
>>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
>>> (cats.pet_name(mycat), dogs.pet_name(mydog))
('Fluffy', 'Rover')
>>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
('Rover', 'Fluffy', 'Fluffy')
It is possible to use ``py::module_local()`` registrations in one module even
if another module registers the same type globally: within the module with the
module-local definition, all C++ instances will be cast to the associated bound
Python type. In other modules any such values are converted to the global
Python type created elsewhere.
.. note::
STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
header) apply ``py::module_local`` by default when the bound type might
conflict with other modules; see :ref:`stl_bind` for details.
.. note::
The localization of the bound types is actually tied to the shared object
or binary generated by the compiler/linker. For typical modules created
with ``PYBIND11_MODULE()``, this distinction is not significant. It is
possible, however, when :ref:`embedding` to embed multiple modules in the
same binary (see :ref:`embedding_modules`). In such a case, the
localization will apply across all embedded modules within the same binary.
.. seealso::
The file :file:`tests/test_local_bindings.cpp` contains additional examples
that demonstrate how ``py::module_local()`` works.
Binding protected member functions
==================================
It's normally not possible to expose ``protected`` member functions to Python:
.. code-block:: cpp
class A {
protected:
int foo() const { return 42; }
};
py::class_<A>(m, "A")
.def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
On one hand, this is good because non-``public`` members aren't meant to be
accessed from the outside. But we may want to make use of ``protected``
functions in derived Python classes.
The following pattern makes this possible:
.. code-block:: cpp
class A {
protected:
int foo() const { return 42; }
};
class Publicist : public A { // helper type for exposing protected functions
public:
using A::foo; // inherited with different access modifier
};
py::class_<A>(m, "A") // bind the primary class
.def("foo", &Publicist::foo); // expose protected methods via the publicist
This works because ``&Publicist::foo`` is exactly the same function as
``&A::foo`` (same signature and address), just with a different access
modifier. The only purpose of the ``Publicist`` helper class is to make
the function name ``public``.
If the intent is to expose ``protected`` ``virtual`` functions which can be
overridden in Python, the publicist pattern can be combined with the previously
described trampoline:
.. code-block:: cpp
class A {
public:
virtual ~A() = default;
protected:
virtual int foo() const { return 42; }
};
class Trampoline : public A {
public:
int foo() const override { PYBIND11_OVERLOAD(int, A, foo, ); }
};
class Publicist : public A {
public:
using A::foo;
};
py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
.def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
.. note::
MSVC 2015 has a compiler bug (fixed in version 2017) which
requires a more explicit function binding in the form of
``.def("foo", static_cast<int (A::*)() const>(&Publicist::foo));``
where ``int (A::*)() const`` is the type of ``A::foo``.
Binding final classes
=====================
Some classes may not be appropriate to inherit from. In C++11, classes can
use the ``final`` specifier to ensure that a class cannot be inherited from.
The ``py::is_final`` attribute can be used to ensure that Python classes
cannot inherit from a specified type. The underlying C++ type does not need
to be declared final.
.. code-block:: cpp
class IsFinal final {};
py::class_<IsFinal>(m, "IsFinal", py::is_final());
When you try to inherit from such a class in Python, you will now get this
error:
.. code-block:: pycon
>>> class PyFinalChild(IsFinal):
... pass
TypeError: type 'IsFinal' is not an acceptable base type
.. note:: This attribute is currently ignored on PyPy
.. versionadded:: 2.6
Custom automatic downcasters
============================
As explained in :ref:`inheritance`, pybind11 comes with built-in
understanding of the dynamic type of polymorphic objects in C++; that
is, returning a Pet to Python produces a Python object that knows it's
wrapping a Dog, if Pet has virtual methods and pybind11 knows about
Dog and this Pet is in fact a Dog. Sometimes, you might want to
provide this automatic downcasting behavior when creating bindings for
a class hierarchy that does not use standard C++ polymorphism, such as
LLVM [#f4]_. As long as there's some way to determine at runtime
whether a downcast is safe, you can proceed by specializing the
``pybind11::polymorphic_type_hook`` template:
.. code-block:: cpp
enum class PetKind { Cat, Dog, Zebra };
struct Pet { // Not polymorphic: has no virtual methods
const PetKind kind;
int age = 0;
protected:
Pet(PetKind _kind) : kind(_kind) {}
};
struct Dog : Pet {
Dog() : Pet(PetKind::Dog) {}
std::string sound = "woof!";
std::string bark() const { return sound; }
};
namespace pybind11 {
template<> struct polymorphic_type_hook<Pet> {
static const void *get(const Pet *src, const std::type_info*& type) {
// note that src may be nullptr
if (src && src->kind == PetKind::Dog) {
type = &typeid(Dog);
return static_cast<const Dog*>(src);
}
return src;
}
};
} // namespace pybind11
When pybind11 wants to convert a C++ pointer of type ``Base*`` to a
Python object, it calls ``polymorphic_type_hook<Base>::get()`` to
determine if a downcast is possible. The ``get()`` function should use
whatever runtime information is available to determine if its ``src``
parameter is in fact an instance of some class ``Derived`` that
inherits from ``Base``. If it finds such a ``Derived``, it sets ``type
= &typeid(Derived)`` and returns a pointer to the ``Derived`` object
that contains ``src``. Otherwise, it just returns ``src``, leaving
``type`` at its default value of nullptr. If you set ``type`` to a
type that pybind11 doesn't know about, no downcasting will occur, and
the original ``src`` pointer will be used with its static type
``Base*``.
It is critical that the returned pointer and ``type`` argument of
``get()`` agree with each other: if ``type`` is set to something
non-null, the returned pointer must point to the start of an object
whose type is ``type``. If the hierarchy being exposed uses only
single inheritance, a simple ``return src;`` will achieve this just
fine, but in the general case, you must cast ``src`` to the
appropriate derived-class pointer (e.g. using
``static_cast<Derived>(src)``) before allowing it to be returned as a
``void*``.
.. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
.. note::
pybind11's standard support for downcasting objects whose types
have virtual methods is implemented using
``polymorphic_type_hook`` too, using the standard C++ ability to
determine the most-derived type of a polymorphic object using
``typeid()`` and to cast a base pointer to that most-derived type
(even if you don't know what it is) using ``dynamic_cast<void*>``.
.. seealso::
The file :file:`tests/test_tagbased_polymorphic.cpp` contains a
more complete example, including a demonstration of how to provide
automatic downcasting for an entire class hierarchy without
writing one get() function for each class.
|