AnwenHu commited on
Commit
d39ff0f
·
verified ·
1 Parent(s): 334e61c

Delete mplug_docowl/train

Browse files
mplug_docowl/train/llama_flash_attn_monkey_patch.py DELETED
@@ -1,117 +0,0 @@
1
- from typing import Optional, Tuple
2
- import warnings
3
-
4
- import torch
5
-
6
- import transformers
7
- from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
8
-
9
- try:
10
- from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
11
- except ImportError:
12
- from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
13
- from flash_attn.bert_padding import unpad_input, pad_input
14
-
15
-
16
- def forward(
17
- self,
18
- hidden_states: torch.Tensor,
19
- modality_indicators: torch.Tensor,
20
- attention_mask: Optional[torch.Tensor] = None,
21
- position_ids: Optional[torch.Tensor] = None,
22
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
23
- output_attentions: bool = False,
24
- use_cache: bool = False,
25
- padding_mask: bool = None,
26
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
27
- if output_attentions:
28
- warnings.warn(
29
- "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
30
- )
31
-
32
- bsz, q_len, _ = hidden_states.size()
33
-
34
- query_states = (
35
- self.q_proj(hidden_states)
36
- .view(bsz, q_len, self.num_heads, self.head_dim)
37
- .transpose(1, 2)
38
- )
39
- key_states = (
40
- self.k_proj(hidden_states, modality_indicators)
41
- .view(bsz, q_len, self.num_key_value_heads, self.head_dim)
42
- .transpose(1, 2)
43
- )
44
- value_states = (
45
- self.v_proj(hidden_states, modality_indicators)
46
- .view(bsz, q_len, self.num_key_value_heads, self.head_dim)
47
- .transpose(1, 2)
48
- ) # shape: (b, num_heads, s, head_dim)
49
-
50
- kv_seq_len = key_states.shape[-2]
51
- if past_key_value is not None:
52
- kv_seq_len += past_key_value[0].shape[-2]
53
-
54
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
55
- query_states, key_states = apply_rotary_pos_emb(
56
- query_states, key_states, cos, sin, position_ids
57
- )
58
-
59
- if past_key_value is not None:
60
- # reuse k, v
61
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
62
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
63
-
64
- past_key_value = (key_states, value_states) if use_cache else None
65
-
66
- # repeat k/v heads if n_kv_heads < n_heads
67
- key_states = repeat_kv(key_states, self.num_key_value_groups)
68
- value_states = repeat_kv(value_states, self.num_key_value_groups)
69
-
70
- # Transform the data into the format required by flash attention
71
- qkv = torch.stack([query_states, key_states, value_states], dim=2)
72
- qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim]
73
- key_padding_mask = attention_mask
74
-
75
- if key_padding_mask is None:
76
- qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
77
- cu_q_lens = torch.arange(
78
- 0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
79
- )
80
- max_s = q_len
81
- output = flash_attn_unpadded_qkvpacked_func(
82
- qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
83
- )
84
- output = output.view(bsz, q_len, -1)
85
- else:
86
- qkv = qkv.reshape(bsz, q_len, -1)
87
- qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
88
- qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
89
- output_unpad = flash_attn_unpadded_qkvpacked_func(
90
- qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
91
- )
92
- output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
93
- output = pad_input(output_unpad, indices, bsz, q_len)
94
-
95
- return self.o_proj(output), None, past_key_value
96
-
97
-
98
- # Disable the transformation of the attention mask in LlamaModel as the flash attention
99
- # requires the attention mask to be the same as the key_padding_mask
100
- def _prepare_decoder_attention_mask(
101
- self, attention_mask, input_shape, inputs_embeds, past_key_values_length
102
- ):
103
- # [bsz, seq_len]
104
- return attention_mask
105
-
106
-
107
- def replace_llama_attn_with_flash_attn():
108
- cuda_major, cuda_minor = torch.cuda.get_device_capability()
109
- if cuda_major < 8:
110
- warnings.warn(
111
- "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
112
- "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
113
- )
114
- transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
115
- _prepare_decoder_attention_mask
116
- )
117
- transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mplug_docowl/train/mplug_owl2_trainer.py DELETED
@@ -1,243 +0,0 @@
1
- import os
2
- import torch
3
-
4
- from torch.utils.data import Sampler
5
-
6
- from transformers import Trainer
7
- from transformers.trainer import (
8
- is_sagemaker_mp_enabled,
9
- get_parameter_names,
10
- has_length,
11
- ALL_LAYERNORM_LAYERS,
12
- ShardedDDPOption,
13
- logger,
14
- )
15
- from typing import List, Optional
16
- from icecream import ic
17
-
18
- def maybe_zero_3(param, ignore_status=False, name=None):
19
- from deepspeed import zero
20
- from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
21
- if hasattr(param, "ds_id"):
22
- if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
23
- if not ignore_status:
24
- print(name, 'no ignore status')
25
- with zero.GatheredParameters([param]):
26
- param = param.data.detach().cpu().clone()
27
- else:
28
- param = param.detach().cpu().clone()
29
- return param
30
-
31
-
32
- def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
33
- to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
34
- to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
35
- return to_return
36
-
37
-
38
- def split_to_even_chunks(indices, lengths, num_chunks):
39
- """
40
- Split a list of indices into `chunks` chunks of roughly equal lengths.
41
- """
42
-
43
- if len(indices) % num_chunks != 0:
44
- return [indices[i::num_chunks] for i in range(num_chunks)]
45
-
46
- num_indices_per_chunk = len(indices) // num_chunks
47
-
48
- chunks = [[] for _ in range(num_chunks)]
49
- chunks_lengths = [0 for _ in range(num_chunks)]
50
- for index in indices:
51
- shortest_chunk = chunks_lengths.index(min(chunks_lengths))
52
- chunks[shortest_chunk].append(index)
53
- chunks_lengths[shortest_chunk] += lengths[index]
54
- if len(chunks[shortest_chunk]) == num_indices_per_chunk:
55
- chunks_lengths[shortest_chunk] = float("inf")
56
-
57
- return chunks
58
-
59
-
60
- def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
61
- # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
62
- assert all(l != 0 for l in lengths), "Should not have zero length."
63
- if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
64
- # all samples are in the same modality
65
- return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
66
- mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
67
- lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
68
-
69
- mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
70
- lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
71
- megabatch_size = world_size * batch_size
72
- mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
73
- lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
74
-
75
- last_mm = mm_megabatches[-1]
76
- last_lang = lang_megabatches[-1]
77
- additional_batch = last_mm + last_lang
78
- megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
79
- megabatch_indices = torch.randperm(len(megabatches), generator=generator)
80
- megabatches = [megabatches[i] for i in megabatch_indices]
81
-
82
- if len(additional_batch) > 0:
83
- megabatches.append(sorted(additional_batch))
84
-
85
- return [i for megabatch in megabatches for i in megabatch]
86
-
87
-
88
- def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
89
- # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
90
- indices = torch.randperm(len(lengths), generator=generator)
91
- megabatch_size = world_size * batch_size
92
- megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
93
- megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
94
- megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
95
-
96
- return [i for megabatch in megabatches for batch in megabatch for i in batch]
97
-
98
-
99
- class LengthGroupedSampler(Sampler):
100
- r"""
101
- Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
102
- keeping a bit of randomness.
103
- """
104
-
105
- def __init__(
106
- self,
107
- batch_size: int,
108
- world_size: int,
109
- lengths: Optional[List[int]] = None,
110
- generator=None,
111
- group_by_modality: bool = False,
112
- ):
113
- if lengths is None:
114
- raise ValueError("Lengths must be provided.")
115
-
116
- self.batch_size = batch_size
117
- self.world_size = world_size
118
- self.lengths = lengths
119
- self.generator = generator
120
- self.group_by_modality = group_by_modality
121
-
122
- def __len__(self):
123
- return len(self.lengths)
124
-
125
- def __iter__(self):
126
- if self.group_by_modality:
127
- indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
128
- else:
129
- indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
130
- return iter(indices)
131
-
132
-
133
- class MPLUGOwl2Trainer(Trainer):
134
-
135
- def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
136
- if self.train_dataset is None or not has_length(self.train_dataset):
137
- return None
138
-
139
- if self.args.group_by_modality_length:
140
- lengths = self.train_dataset.modality_lengths
141
- return LengthGroupedSampler(
142
- self.args.train_batch_size,
143
- world_size=self.args.world_size * self.args.gradient_accumulation_steps,
144
- lengths=lengths,
145
- group_by_modality=True,
146
- )
147
- else:
148
- return super()._get_train_sampler()
149
-
150
- def create_optimizer(self):
151
- """
152
- Setup the optimizer.
153
-
154
- We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
155
- Trainer's init through `optimizers`, or subclass and override this method in a subclass.
156
- """
157
- if is_sagemaker_mp_enabled():
158
- return super().create_optimizer()
159
- if self.sharded_ddp == ShardedDDPOption.SIMPLE:
160
- return super().create_optimizer()
161
-
162
- opt_model = self.model
163
-
164
- if self.optimizer is None:
165
- decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
166
- decay_parameters = [name for name in decay_parameters if "bias" not in name]
167
- if self.args.visual_abstractor_lr is not None:
168
- projector_parameters = [name for name, _ in opt_model.named_parameters() if "visual_abstractor_lr" in name]
169
- optimizer_grouped_parameters = [
170
- {
171
- "params": [
172
- p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
173
- ],
174
- "weight_decay": self.args.weight_decay,
175
- },
176
- {
177
- "params": [
178
- p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
179
- ],
180
- "weight_decay": 0.0,
181
- },
182
- {
183
- "params": [
184
- p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad)
185
- ],
186
- "weight_decay": self.args.weight_decay,
187
- "lr": self.args.visual_abstractor_lr,
188
- },
189
- {
190
- "params": [
191
- p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
192
- ],
193
- "weight_decay": 0.0,
194
- "lr": self.args.visual_abstractor_lr,
195
- },
196
- ]
197
- else:
198
- optimizer_grouped_parameters = [
199
- {
200
- "params": [
201
- p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
202
- ],
203
- "weight_decay": self.args.weight_decay,
204
- },
205
- {
206
- "params": [
207
- p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
208
- ],
209
- "weight_decay": 0.0,
210
- },
211
- ]
212
- ic(len(optimizer_grouped_parameters[0]['params']),len(optimizer_grouped_parameters[1]['params']))
213
- optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
214
-
215
- if self.sharded_ddp == ShardedDDPOption.SIMPLE:
216
- self.optimizer = OSS(
217
- params=optimizer_grouped_parameters,
218
- optim=optimizer_cls,
219
- **optimizer_kwargs,
220
- )
221
- else:
222
- self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
223
- if optimizer_cls.__name__ == "Adam8bit":
224
- import bitsandbytes
225
-
226
- manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
227
-
228
- skipped = 0
229
- for module in opt_model.modules():
230
- if isinstance(module, nn.Embedding):
231
- skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
232
- logger.info(f"skipped {module}: {skipped/2**20}M params")
233
- manager.register_module_override(module, "weight", {"optim_bits": 32})
234
- logger.debug(f"bitsandbytes: will optimize {module} in fp32")
235
- logger.info(f"skipped: {skipped/2**20}M params")
236
-
237
- return self.optimizer
238
-
239
- def _save_checkpoint(self, model, trial, metrics=None):
240
- super(MPLUGOwl2Trainer, self)._save_checkpoint(model, trial, metrics)
241
-
242
- def _save(self, output_dir: Optional[str] = None, state_dict=None):
243
- super(MPLUGOwl2Trainer, self)._save(output_dir, state_dict)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mplug_docowl/train/train.py DELETED
@@ -1,801 +0,0 @@
1
- # Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
2
- # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
3
- # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
-
17
- import os
18
- import copy
19
- from dataclasses import dataclass, field
20
- import json
21
- import logging
22
- import pathlib
23
- from typing import Dict, Optional, Sequence, List
24
-
25
- import torch
26
-
27
- import transformers
28
- from transformers.models.clip.image_processing_clip import CLIPImageProcessor
29
-
30
- from torch.utils.data import Dataset
31
- from mplug_owl2.train.mplug_owl2_trainer import MPLUGOwl2Trainer
32
- from mplug_owl2.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
33
-
34
- from mplug_owl2 import conversation as conversation_lib
35
- from mplug_owl2.model import *
36
- from mplug_owl2.mm_utils import tokenizer_image_token
37
-
38
- from PIL import Image
39
- from icecream import ic
40
-
41
- local_rank = None
42
-
43
-
44
- def rank0_print(*args):
45
- if local_rank == 0:
46
- print(*args)
47
-
48
-
49
- @dataclass
50
- class ModelArguments:
51
- model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
52
- version: Optional[str] = field(default="v0")
53
- freeze_backbone: bool = field(default=False)
54
-
55
- @dataclass
56
- class DataArguments:
57
- data_path: str = field(default=None,
58
- metadata={"help": "Path to the training data."})
59
- lazy_preprocess: bool = False
60
- is_multimodal: bool = False
61
- image_folder: Optional[str] = field(default=None)
62
- image_aspect_ratio: str = 'square'
63
- image_grid_pinpoints: Optional[str] = field(default=None)
64
-
65
-
66
- @dataclass
67
- class TrainingArguments(transformers.TrainingArguments):
68
- cache_dir: Optional[str] = field(default=None)
69
- optim: str = field(default="adamw_torch")
70
- remove_unused_columns: bool = field(default=False)
71
-
72
- tune_visual_abstractor: bool = field(default=True)
73
- freeze_vision_model: bool = field(default=True)
74
-
75
- model_max_length: int = field(
76
- default=512,
77
- metadata={
78
- "help":
79
- "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
80
- },
81
- )
82
- double_quant: bool = field(
83
- default=True,
84
- metadata={"help": "Compress the quantization statistics through double quantization."}
85
- )
86
- quant_type: str = field(
87
- default="nf4",
88
- metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
89
- )
90
- bits: int = field(
91
- default=16,
92
- metadata={"help": "How many bits to use."}
93
- )
94
- lora_enable: bool = False
95
- lora_r: int = 64
96
- lora_alpha: int = 16
97
- lora_dropout: float = 0.05
98
- lora_weight_path: str = ""
99
- lora_bias: str = "none"
100
- visual_abstractor_lr: Optional[float] = None
101
- group_by_modality_length: bool = field(default=False)
102
-
103
-
104
- def maybe_zero_3(param, ignore_status=False, name=None):
105
- from deepspeed import zero
106
- from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
107
- if hasattr(param, "ds_id"):
108
- if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
109
- if not ignore_status:
110
- logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
111
- with zero.GatheredParameters([param]):
112
- param = param.data.detach().cpu().clone()
113
- else:
114
- param = param.detach().cpu().clone()
115
- return param
116
-
117
-
118
- # Borrowed from peft.utils.get_peft_model_state_dict
119
- def get_peft_state_maybe_zero_3(named_params, bias):
120
- if bias == "none":
121
- to_return = {k: t for k, t in named_params if "lora_" in k}
122
- elif bias == "all":
123
- to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
124
- elif bias == "lora_only":
125
- to_return = {}
126
- maybe_lora_bias = {}
127
- lora_bias_names = set()
128
- for k, t in named_params:
129
- if "lora_" in k:
130
- to_return[k] = t
131
- bias_name = k.split("lora_")[0] + "bias"
132
- lora_bias_names.add(bias_name)
133
- elif "bias" in k:
134
- maybe_lora_bias[k] = t
135
- for k, t in maybe_lora_bias:
136
- if bias_name in lora_bias_names:
137
- to_return[bias_name] = t
138
- else:
139
- raise NotImplementedError
140
- to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
141
- return to_return
142
-
143
-
144
- def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
145
- to_return = {k: t for k, t in named_params if "lora_" not in k}
146
- if require_grad_only:
147
- to_return = {k: t for k, t in to_return.items() if t.requires_grad}
148
- to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
149
- return to_return
150
-
151
-
152
- def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
153
- to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
154
- to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
155
- return to_return
156
-
157
-
158
- def find_all_linear_names(model):
159
- cls = torch.nn.Linear
160
- lora_module_names = set()
161
- multimodal_keywords = ['vision_model', 'visual_abstractor']
162
- for name, module in model.named_modules():
163
- if any(mm_keyword in name for mm_keyword in multimodal_keywords):
164
- continue
165
- if isinstance(module, cls):
166
- lora_module_names.add(name)
167
-
168
- if 'lm_head' in lora_module_names: # needed for 16-bit
169
- lora_module_names.remove('lm_head')
170
- return list(lora_module_names)
171
-
172
-
173
- def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
174
- output_dir: str):
175
- """Collects the state dict and dump to disk."""
176
-
177
- if trainer.deepspeed:
178
- torch.cuda.synchronize()
179
- trainer.save_model(output_dir)
180
- return
181
-
182
- state_dict = trainer.model.state_dict()
183
- if trainer.args.should_save:
184
- cpu_state_dict = {
185
- key: value.cpu()
186
- for key, value in state_dict.items()
187
- }
188
- del state_dict
189
- trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
190
-
191
-
192
- def smart_tokenizer_and_embedding_resize(
193
- special_tokens_dict: Dict,
194
- tokenizer: transformers.PreTrainedTokenizer,
195
- model: transformers.PreTrainedModel,
196
- ):
197
- """Resize tokenizer and embedding.
198
-
199
- Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
200
- """
201
- num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
202
- model.resize_token_embeddings(len(tokenizer))
203
-
204
- if num_new_tokens > 0:
205
- input_embeddings = model.get_input_embeddings().weight.data
206
- output_embeddings = model.get_output_embeddings().weight.data
207
-
208
- input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
209
- dim=0, keepdim=True)
210
- output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
211
- dim=0, keepdim=True)
212
-
213
- input_embeddings[-num_new_tokens:] = input_embeddings_avg
214
- output_embeddings[-num_new_tokens:] = output_embeddings_avg
215
-
216
-
217
- def _tokenize_fn(strings: Sequence[str],
218
- tokenizer: transformers.PreTrainedTokenizer) -> Dict:
219
- """Tokenize a list of strings."""
220
- tokenized_list = [
221
- tokenizer(
222
- text,
223
- return_tensors="pt",
224
- padding="longest",
225
- max_length=tokenizer.model_max_length,
226
- truncation=True,
227
- ) for text in strings
228
- ]
229
- input_ids = labels = [
230
- tokenized.input_ids[0] for tokenized in tokenized_list
231
- ]
232
- input_ids_lens = labels_lens = [
233
- tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
234
- for tokenized in tokenized_list
235
- ]
236
- return dict(
237
- input_ids=input_ids,
238
- labels=labels,
239
- input_ids_lens=input_ids_lens,
240
- labels_lens=labels_lens,
241
- )
242
-
243
-
244
- def _mask_targets(target, tokenized_lens, speakers):
245
- # cur_idx = 0
246
- cur_idx = tokenized_lens[0]
247
- tokenized_lens = tokenized_lens[1:]
248
- target[:cur_idx] = IGNORE_INDEX
249
- for tokenized_len, speaker in zip(tokenized_lens, speakers):
250
- if speaker == "human":
251
- target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
252
- cur_idx += tokenized_len
253
-
254
-
255
- def _add_speaker_and_signal(header, source, get_conversation=True):
256
- """Add speaker and start/end signal on each round."""
257
- BEGIN_SIGNAL = "### "
258
- END_SIGNAL = "\n"
259
- conversation = header
260
- for sentence in source:
261
- from_str = sentence["from"]
262
- if from_str.lower() == "human":
263
- from_str = conversation_lib.default_conversation.roles[0]
264
- elif from_str.lower() == "gpt":
265
- from_str = conversation_lib.default_conversation.roles[1]
266
- else:
267
- from_str = 'unknown'
268
- sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
269
- sentence["value"] + END_SIGNAL)
270
- if get_conversation:
271
- conversation += sentence["value"]
272
- conversation += BEGIN_SIGNAL
273
- return conversation
274
-
275
-
276
- def preprocess_multimodal(
277
- sources: Sequence[str],
278
- data_args: DataArguments
279
- ) -> Dict:
280
- is_multimodal = data_args.is_multimodal
281
- if not is_multimodal:
282
- return sources
283
-
284
- for source in sources:
285
- for sentence in source:
286
- if DEFAULT_IMAGE_TOKEN in sentence['value']:
287
- sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
288
- sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
289
- sentence['value'] = sentence['value'].strip()
290
-
291
- replace_token = DEFAULT_IMAGE_TOKEN
292
- sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
293
-
294
- return sources
295
-
296
-
297
- def preprocess_v1(
298
- sources,
299
- tokenizer: transformers.PreTrainedTokenizer,
300
- has_image: bool = False
301
- ) -> Dict:
302
- conv = conversation_lib.default_conversation.copy()
303
- roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
304
-
305
- # Apply prompt templates
306
- conversations = []
307
- for i, source in enumerate(sources):
308
- if roles[source[0]["from"]] != conv.roles[0]:
309
- # Skip the first one if it is not from human
310
- source = source[1:]
311
-
312
- conv.messages = []
313
- for j, sentence in enumerate(source):
314
- role = roles[sentence["from"]]
315
- assert role == conv.roles[j % 2], f"{i}"
316
- conv.append_message(role, sentence["value"])
317
- conversations.append(conv.get_prompt())
318
-
319
- # Tokenize conversations
320
-
321
- if has_image:
322
- input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
323
- else:
324
- input_ids = tokenizer(
325
- conversations,
326
- return_tensors="pt",
327
- padding="longest",
328
- max_length=tokenizer.model_max_length,
329
- truncation=True,
330
- ).input_ids
331
-
332
- targets = input_ids.clone()
333
-
334
- assert conv.sep_style == conversation_lib.SeparatorStyle.TWO or conv.sep_style == conversation_lib.SeparatorStyle.TWO_NO_SYS
335
-
336
- # Mask targets
337
- sep = conv.sep + conv.roles[1] + ": "
338
- for conversation, target in zip(conversations, targets):
339
- total_len = int(target.ne(tokenizer.pad_token_id).sum())
340
-
341
- rounds = conversation.split(conv.sep2)
342
- cur_len = 1
343
- target[:cur_len] = IGNORE_INDEX
344
- for i, rou in enumerate(rounds):
345
- if rou == "":
346
- break
347
-
348
- parts = rou.split(sep)
349
- if len(parts) != 2:
350
- break
351
- parts[0] += sep
352
-
353
- if has_image:
354
- round_len = len(tokenizer_image_token(rou, tokenizer))
355
- instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
356
- else:
357
- round_len = len(tokenizer(rou).input_ids)
358
- instruction_len = len(tokenizer(parts[0]).input_ids) - 2
359
-
360
- target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
361
-
362
- cur_len += round_len
363
- target[cur_len:] = IGNORE_INDEX
364
-
365
- if cur_len < tokenizer.model_max_length:
366
- if cur_len != total_len:
367
- target[:] = IGNORE_INDEX
368
- print(
369
- f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
370
- f" (ignored)"
371
- )
372
-
373
- return dict(
374
- input_ids=input_ids,
375
- labels=targets,
376
- )
377
-
378
-
379
- def preprocess_plain(
380
- sources: Sequence[str],
381
- tokenizer: transformers.PreTrainedTokenizer,
382
- ) -> Dict:
383
- # add end signal and concatenate together
384
- conversations = []
385
- for source in sources:
386
- assert len(source) == 2
387
- assert DEFAULT_IMAGE_TOKEN in source[0]['value']
388
- source[0]['value'] = DEFAULT_IMAGE_TOKEN
389
- conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep
390
- conversations.append(conversation)
391
- # tokenize conversations
392
- input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
393
- targets = copy.deepcopy(input_ids)
394
- for target, source in zip(targets, sources):
395
- tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer))
396
- target[:tokenized_len] = IGNORE_INDEX
397
-
398
- return dict(input_ids=input_ids, labels=targets)
399
-
400
-
401
- def preprocess(
402
- sources: Sequence[str],
403
- tokenizer: transformers.PreTrainedTokenizer,
404
- has_image: bool = False
405
- ) -> Dict:
406
- """
407
- Given a list of sources, each is a conversation list. This transform:
408
- 1. Add signal '### ' at the beginning each sentence, with end signal '\n';
409
- 2. Concatenate conversations together;
410
- 3. Tokenize the concatenated conversation;
411
- 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
412
- """
413
- if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
414
- return preprocess_plain(sources, tokenizer)
415
- if conversation_lib.default_conversation.version.startswith("v1"):
416
- return preprocess_v1(sources, tokenizer, has_image=has_image)
417
- # add end signal and concatenate together
418
- conversations = []
419
- for source in sources:
420
- header = f"{conversation_lib.default_conversation.system}\n\n"
421
- conversation = _add_speaker_and_signal(header, source)
422
- conversations.append(conversation)
423
- # tokenize conversations
424
- def get_tokenize_len(prompts):
425
- return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]
426
- if has_image:
427
- input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
428
- else:
429
- conversations_tokenized = _tokenize_fn(conversations, tokenizer)
430
- input_ids = conversations_tokenized["input_ids"]
431
-
432
- targets = copy.deepcopy(input_ids)
433
- for target, source in zip(targets, sources):
434
- if has_image:
435
- tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
436
- else:
437
- tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
438
- speakers = [sentence["from"] for sentence in source]
439
- _mask_targets(target, tokenized_lens, speakers)
440
-
441
- return dict(input_ids=input_ids, labels=targets)
442
-
443
-
444
- class LazySupervisedDataset(Dataset):
445
- """Dataset for supervised fine-tuning."""
446
-
447
- def __init__(self, data_path: str,
448
- tokenizer: transformers.PreTrainedTokenizer,
449
- data_args: DataArguments):
450
- super(LazySupervisedDataset, self).__init__()
451
- list_data_dict = json.load(open(data_path, "r"))
452
-
453
- rank0_print("Formatting inputs...Skip in lazy mode")
454
- self.tokenizer = tokenizer
455
- self.list_data_dict = list_data_dict
456
- self.data_args = data_args
457
-
458
- def __len__(self):
459
- return len(self.list_data_dict)
460
-
461
- @property
462
- def lengths(self):
463
- length_list = []
464
- for sample in self.list_data_dict:
465
- img_tokens = 128 if 'image' in sample else 0
466
- length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
467
- return length_list
468
-
469
-
470
- @property
471
- def modality_lengths(self):
472
- length_list = []
473
- for sample in self.list_data_dict:
474
- cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
475
- cur_len = cur_len if 'image' in sample else -cur_len
476
- length_list.append(cur_len)
477
- return length_list
478
-
479
- # def __getitem__(self, i) -> Dict[str, torch.Tensor]:
480
- # sources = self.list_data_dict[i]
481
- # if isinstance(i, int):
482
- # sources = [sources]
483
- # assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
484
- # if 'image' in sources[0]:
485
- # image_file = self.list_data_dict[i]['image']
486
- # image_folder = self.data_args.image_folder
487
- # processor = self.data_args.image_processor
488
- # image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
489
- # if self.data_args.image_aspect_ratio == 'pad':
490
- # def expand2square(pil_img, background_color):
491
- # width, height = pil_img.size
492
- # if width == height:
493
- # return pil_img
494
- # elif width > height:
495
- # result = Image.new(pil_img.mode, (width, width), background_color)
496
- # result.paste(pil_img, (0, (width - height) // 2))
497
- # return result
498
- # else:
499
- # result = Image.new(pil_img.mode, (height, height), background_color)
500
- # result.paste(pil_img, ((height - width) // 2, 0))
501
- # return result
502
- # image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
503
- # image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
504
- # else:
505
- # image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
506
- # sources = preprocess_multimodal(
507
- # copy.deepcopy([e["conversations"] for e in sources]),
508
- # self.data_args)
509
- # else:
510
- # sources = copy.deepcopy([e["conversations"] for e in sources])
511
- # data_dict = preprocess(
512
- # sources,
513
- # self.tokenizer,
514
- # has_image=('image' in self.list_data_dict[i]))
515
- # if isinstance(i, int):
516
- # data_dict = dict(input_ids=data_dict["input_ids"][0],
517
- # labels=data_dict["labels"][0])
518
-
519
- # # image exist in the data
520
- # if 'image' in self.list_data_dict[i]:
521
- # data_dict['image'] = image
522
- # elif self.data_args.is_multimodal:
523
- # # image does not exist in the data, but the model is multimodal
524
- # crop_size = self.data_args.image_processor.crop_size
525
- # data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
526
- # return data_dict
527
-
528
- def next_rand(self):
529
- import random
530
- return random.randint(0,len(self)-1)
531
-
532
- def __getitem__(self, i) -> Dict[str, torch.Tensor]:
533
- while True:
534
- sources = self.list_data_dict[i]
535
- if isinstance(i, int):
536
- sources = [sources]
537
- assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
538
- if 'image' in sources[0]:
539
-
540
- image_file = self.list_data_dict[i]['image']
541
- image_folder = self.data_args.image_folder
542
- processor = self.data_args.image_processor
543
- from pathlib import Path
544
- if not Path(os.path.join(image_folder, image_file)).exists():
545
- i = self.next_rand()
546
- continue
547
- image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
548
- if self.data_args.image_aspect_ratio == 'pad':
549
- def expand2square(pil_img, background_color):
550
- width, height = pil_img.size
551
- if width == height:
552
- return pil_img
553
- elif width > height:
554
- result = Image.new(pil_img.mode, (width, width), background_color)
555
- result.paste(pil_img, (0, (width - height) // 2))
556
- return result
557
- else:
558
- result = Image.new(pil_img.mode, (height, height), background_color)
559
- result.paste(pil_img, ((height - width) // 2, 0))
560
- return result
561
- image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
562
- image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
563
- else:
564
- image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
565
- sources = preprocess_multimodal(
566
- copy.deepcopy([e["conversations"] for e in sources]),
567
- self.data_args)
568
- else:
569
-
570
- sources = copy.deepcopy([e["conversations"] for e in sources])
571
- data_dict = preprocess(
572
- sources,
573
- self.tokenizer,
574
- has_image=('image' in self.list_data_dict[i]))
575
- if isinstance(i, int):
576
- data_dict = dict(input_ids=data_dict["input_ids"][0],
577
- labels=data_dict["labels"][0])
578
-
579
- # image exist in the data
580
- if 'image' in self.list_data_dict[i]:
581
- data_dict['image'] = image
582
- elif self.data_args.is_multimodal:
583
- # image does not exist in the data, but the model is multimodal
584
- crop_size = self.data_args.image_processor.crop_size
585
- data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
586
- return data_dict
587
-
588
-
589
- @dataclass
590
- class DataCollatorForSupervisedDataset(object):
591
- """Collate examples for supervised fine-tuning."""
592
-
593
- tokenizer: transformers.PreTrainedTokenizer
594
-
595
- def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
596
- input_ids, labels = tuple([instance[key] for instance in instances]
597
- for key in ("input_ids", "labels"))
598
- input_ids = torch.nn.utils.rnn.pad_sequence(
599
- input_ids,
600
- batch_first=True,
601
- padding_value=self.tokenizer.pad_token_id)
602
- labels = torch.nn.utils.rnn.pad_sequence(labels,
603
- batch_first=True,
604
- padding_value=IGNORE_INDEX)
605
- input_ids = input_ids[:, :self.tokenizer.model_max_length]
606
- labels = labels[:, :self.tokenizer.model_max_length]
607
- batch = dict(
608
- input_ids=input_ids,
609
- labels=labels,
610
- attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
611
- )
612
-
613
- if 'image' in instances[0]:
614
- images = [instance['image'] for instance in instances]
615
- if all(x is not None and x.shape == images[0].shape for x in images):
616
- batch['images'] = torch.stack(images)
617
- else:
618
- batch['images'] = images
619
-
620
- return batch
621
-
622
-
623
- def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
624
- data_args) -> Dict:
625
- """Make dataset and collator for supervised fine-tuning."""
626
- train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
627
- data_path=data_args.data_path,
628
- data_args=data_args)
629
- data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
630
- return dict(train_dataset=train_dataset,
631
- eval_dataset=None,
632
- data_collator=data_collator)
633
-
634
-
635
- def train():
636
- global local_rank
637
-
638
- parser = transformers.HfArgumentParser(
639
- (ModelArguments, DataArguments, TrainingArguments))
640
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
641
- local_rank = training_args.local_rank
642
- compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
643
-
644
- bnb_model_from_pretrained_args = {}
645
- if training_args.bits in [4, 8]:
646
- from transformers import BitsAndBytesConfig
647
- bnb_model_from_pretrained_args.update(dict(
648
- device_map={"": training_args.device},
649
- load_in_4bit=training_args.bits == 4,
650
- load_in_8bit=training_args.bits == 8,
651
- quantization_config=BitsAndBytesConfig(
652
- load_in_4bit=training_args.bits == 4,
653
- load_in_8bit=training_args.bits == 8,
654
- llm_int8_threshold=6.0,
655
- llm_int8_has_fp16_weight=False,
656
- bnb_4bit_compute_dtype=compute_dtype,
657
- bnb_4bit_use_double_quant=training_args.double_quant,
658
- bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
659
- )
660
- ))
661
-
662
- model = MPLUGOwl2LlamaForCausalLM.from_pretrained(
663
- model_args.model_name_or_path,
664
- cache_dir=training_args.cache_dir,
665
- **bnb_model_from_pretrained_args
666
- )
667
- model.config.use_cache = False
668
-
669
- if model_args.freeze_backbone:
670
- model.model.requires_grad_(False)
671
-
672
- if training_args.bits in [4, 8]:
673
- from peft import prepare_model_for_kbit_training
674
- model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
675
- model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
676
-
677
- if training_args.gradient_checkpointing:
678
- if hasattr(model, "enable_input_require_grads"):
679
- model.enable_input_require_grads()
680
- else:
681
- def make_inputs_require_grad(module, input, output):
682
- output.requires_grad_(True)
683
- model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
684
-
685
- if training_args.lora_enable:
686
- from peft import LoraConfig, get_peft_model
687
- lora_config = LoraConfig(
688
- r=training_args.lora_r,
689
- lora_alpha=training_args.lora_alpha,
690
- target_modules=find_all_linear_names(model),
691
- lora_dropout=training_args.lora_dropout,
692
- bias=training_args.lora_bias,
693
- task_type="CAUSAL_LM",
694
- )
695
- if training_args.bits == 16:
696
- if training_args.bf16:
697
- model.to(torch.bfloat16)
698
- if training_args.fp16:
699
- model.to(torch.float16)
700
- rank0_print("Adding LoRA adapters...")
701
- model = get_peft_model(model, lora_config)
702
-
703
- tokenizer = transformers.AutoTokenizer.from_pretrained(
704
- model_args.model_name_or_path,
705
- cache_dir=training_args.cache_dir,
706
- model_max_length=training_args.model_max_length,
707
- padding_side="right",
708
- use_fast=False,
709
- )
710
-
711
-
712
- tokenizer.pad_token = tokenizer.unk_token
713
- if model_args.version in conversation_lib.conv_templates:
714
- conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
715
- else:
716
- conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
717
-
718
- if not training_args.freeze_vision_model and training_args.bits in [4, 8]:
719
- model.get_model().vision_model.to(dtype=compute_dtype, device=training_args.device)
720
- else:
721
- vision_tower = model.get_model().vision_model
722
- vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
723
-
724
- if training_args.tune_visual_abstractor and training_args.bits in [4, 8]:
725
- model.get_model().visual_abstractor.to(dtype=compute_dtype, device=training_args.device)
726
- else:
727
- visual_abstractor = model.get_model().visual_abstractor
728
- visual_abstractor.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
729
-
730
- data_args.image_processor = CLIPImageProcessor.from_pretrained(model_args.model_name_or_path)
731
- data_args.is_multimodal = True
732
-
733
- model.config.image_aspect_ratio = data_args.image_aspect_ratio
734
- model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
735
- model.config.tune_visual_abstractor = model_args.tune_visual_abstractor = training_args.tune_visual_abstractor
736
- ic(training_args.tune_visual_abstractor)
737
- model.requires_grad_(True)
738
- if training_args.tune_visual_abstractor:
739
- # model.requires_grad_(False)
740
- for p in model.get_model().visual_abstractor.parameters():
741
- p.requires_grad = True
742
-
743
- model.config.freeze_vision_model = training_args.freeze_vision_model
744
- ic(training_args.freeze_vision_model)
745
- if training_args.freeze_vision_model:
746
- for p in model.get_model().vision_model.parameters():
747
- p.requires_grad = False
748
-
749
- model.config.visual_abstractor_lr = training_args.visual_abstractor_lr
750
-
751
-
752
- if training_args.bits in [4, 8]:
753
- from peft.tuners.lora import LoraLayer
754
- for name, module in model.named_modules():
755
- if isinstance(module, LoraLayer):
756
- if training_args.bf16:
757
- module = module.to(torch.bfloat16)
758
- if 'norm' in name:
759
- module = module.to(torch.float32)
760
- if 'lm_head' in name or 'embed_tokens' in name:
761
- if hasattr(module, 'weight'):
762
- if training_args.bf16 and module.weight.dtype == torch.float32:
763
- module = module.to(torch.bfloat16)
764
-
765
- data_module = make_supervised_data_module(tokenizer=tokenizer,
766
- data_args=data_args)
767
- trainer = MPLUGOwl2Trainer(model=model,
768
- tokenizer=tokenizer,
769
- args=training_args,
770
- **data_module)
771
-
772
- # if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
773
- # trainer.train(resume_from_checkpoint=True)
774
- # else:
775
- # trainer.train()
776
-
777
- # TODO I dont like auto resume << REMOVE IT AND UNCOMMENT THE ABOVE CODE
778
- trainer.train()
779
-
780
- trainer.save_state()
781
-
782
- model.config.use_cache = True
783
-
784
- if training_args.lora_enable:
785
- state_dict = get_peft_state_maybe_zero_3(
786
- model.named_parameters(), training_args.lora_bias
787
- )
788
- non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
789
- model.named_parameters()
790
- )
791
- if training_args.local_rank == 0 or training_args.local_rank == -1:
792
- model.config.save_pretrained(training_args.output_dir)
793
- model.save_pretrained(training_args.output_dir, state_dict=state_dict)
794
- torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
795
- else:
796
- safe_save_model_for_hf_trainer(trainer=trainer,
797
- output_dir=training_args.output_dir)
798
-
799
-
800
- if __name__ == "__main__":
801
- train()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mplug_docowl/train/train_mem.py DELETED
@@ -1,13 +0,0 @@
1
- # Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
2
- # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
3
- # Make it more memory efficient by monkey patching the LLaMA model with FlashAttn.
4
-
5
- # Need to call this before importing transformers.
6
- from mplug_owl2.train.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
7
-
8
- replace_llama_attn_with_flash_attn()
9
-
10
- from mplug_owl2.train.train import train
11
-
12
- if __name__ == "__main__":
13
- train()