from __future__ import annotations import os import re from inspect import getmro import numba as nb import numpy as np import pandas as pd from toolz import memoize from xarray import DataArray import dask.dataframe as dd import datashader.datashape as datashape try: from datashader.datatypes import RaggedDtype except ImportError: RaggedDtype = type(None) try: import cudf except Exception: cudf = None try: from geopandas.array import GeometryDtype as gpd_GeometryDtype except ImportError: gpd_GeometryDtype = type(None) try: from spatialpandas.geometry import GeometryDtype except ImportError: GeometryDtype = type(None) class VisibleDeprecationWarning(UserWarning): """Visible deprecation warning. By default, python will not show deprecation warnings, so this class can be used when a very visible warning is helpful, for example because the usage is most likely a user bug. """ ngjit = nb.jit(nopython=True, nogil=True) ngjit_parallel = nb.jit(nopython=True, nogil=True, parallel=True) # Get and save the Numba version, will be used to limit functionality numba_version = tuple([int(x) for x in re.match( r"([0-9]+)\.([0-9]+)\.([0-9]+)", nb.__version__).groups()]) class Expr: """Base class for expression-like objects. Implements hashing and equality checks. Subclasses should implement an ``inputs`` attribute/property, containing a tuple of everything that fully defines that expression. """ def __hash__(self): return hash((type(self), self._hashable_inputs())) def __eq__(self, other): return (type(self) is type(other) and self._hashable_inputs() == other._hashable_inputs()) def __ne__(self, other): return not self == other def _hashable_inputs(self): """ Return a version of the inputs tuple that is suitable for hashing and equality comparisons """ result = [] for ip in self.inputs: if isinstance(ip, (list, set)): result.append(tuple(ip)) elif isinstance(ip, np.ndarray): result.append(ip.tobytes()) else: result.append(ip) return tuple(result) class Dispatcher: """Simple single dispatch.""" def __init__(self): self._lookup = {} def register(self, typ, func=None): """Register dispatch of `func` on arguments of type `typ`""" if func is None: return lambda f: self.register(typ, f) if isinstance(typ, tuple): for t in typ: self.register(t, func) else: self._lookup[typ] = func return func def __call__(self, head, *rest, **kwargs): # We dispatch first on type(head), and fall back to iterating through # the mro. This is significantly faster in the common case where # type(head) is in the lookup, with only a small penalty on fall back. lk = self._lookup typ = type(head) if typ in lk: return lk[typ](head, *rest, **kwargs) for cls in getmro(typ)[1:]: if cls in lk: return lk[cls](head, *rest, **kwargs) raise TypeError("No dispatch for {0} type".format(typ)) def isrealfloat(dt): """Check if a datashape is numeric and real. Example ------- >>> isrealfloat('int32') False >>> isrealfloat('float64') True >>> isrealfloat('string') False >>> isrealfloat('complex64') False """ dt = datashape.predicates.launder(dt) return isinstance(dt, datashape.Unit) and dt in datashape.typesets.floating def isreal(dt): """Check if a datashape is numeric and real. Example ------- >>> isreal('int32') True >>> isreal('float64') True >>> isreal('string') False >>> isreal('complex64') False """ dt = datashape.predicates.launder(dt) return isinstance(dt, datashape.Unit) and dt in datashape.typesets.real def nansum_missing(array, axis): """nansum where all-NaN values remain NaNs. Note: In NumPy <=1.9 NaN is returned for slices that are all NaN, while later versions return 0. This function emulates the older behavior, which allows using NaN as a missing value indicator. Parameters ---------- array: Array to sum over axis: Axis to sum over """ T = list(range(array.ndim)) T.remove(axis) T.insert(0, axis) array = array.transpose(T) missing_vals = np.isnan(array) all_empty = np.all(missing_vals, axis=0) set_to_zero = missing_vals & ~all_empty return np.where(set_to_zero, 0, array).sum(axis=0) def calc_res(raster): """Calculate the resolution of xarray.DataArray raster and return it as the two-tuple (xres, yres). yres is positive if it is decreasing. """ h, w = raster.shape[-2:] ydim, xdim = raster.dims[-2:] xcoords = raster[xdim].values ycoords = raster[ydim].values xres = (xcoords[-1] - xcoords[0]) / (w - 1) yres = (ycoords[0] - ycoords[-1]) / (h - 1) return xres, yres def calc_bbox(xs, ys, res): """Calculate the bounding box of a raster, and return it in a four-element tuple: (xmin, ymin, xmax, ymax). This calculation assumes the raster is uniformly sampled (equivalent to a flat-earth assumption, for geographic data) so that an affine transform (using the "Augmented Matrix" approach) suffices: https://en.wikipedia.org/wiki/Affine_transformation#Augmented_matrix Parameters ---------- xs : numpy.array 1D NumPy array of floats representing the x-values of a raster. This likely originated from an xarray.DataArray or xarray.Dataset object (xr.open_rasterio). ys : numpy.array 1D NumPy array of floats representing the y-values of a raster. This likely originated from an xarray.DataArray or xarray.Dataset object (xr.open_rasterio). res : tuple Two-tuple (int, int) which includes x and y resolutions (aka "grid/cell sizes"), respectively. """ xbound = xs.max() if res[0] < 0 else xs.min() ybound = ys.min() if res[1] < 0 else ys.max() xmin = ymin = np.inf xmax = ymax = -np.inf Ab = np.array([[res[0], 0., xbound], [0., -res[1], ybound], [0., 0., 1.]]) for x_, y_ in [(0, 0), (0, len(ys)), (len(xs), 0), (len(xs), len(ys))]: x, y, _ = np.dot(Ab, np.array([x_, y_, 1.])) if x < xmin: xmin = x if x > xmax: xmax = x if y < ymin: ymin = y if y > ymax: ymax = y xpad, ypad = res[0]/2., res[1]/2. return xmin-xpad, ymin+ypad, xmax-xpad, ymax+ypad def get_indices(start, end, coords, res): """ Transform continuous start and end coordinates into array indices. Parameters ---------- start : float coordinate of the lower bound. end : float coordinate of the upper bound. coords : numpy.ndarray coordinate values along the axis. res : tuple Resolution along an axis (aka "grid/cell sizes") """ size = len(coords) half = abs(res)/2. vmin, vmax = coords.min(), coords.max() span = vmax-vmin start, end = start+half-vmin, end-half-vmin sidx, eidx = int((start/span)*size), int((end/span)*size) if eidx < sidx: return sidx, sidx return sidx, eidx def _flip_array(array, xflip, yflip): # array may have 2 or 3 dimensions, last one is x-dimension, last but one is y-dimension. if yflip: array = array[..., ::-1, :] if xflip: array = array[..., :, ::-1] return array def orient_array(raster, res=None, layer=None): """ Reorients the array to a canonical orientation depending on whether the x and y-resolution values are positive or negative. Parameters ---------- raster : DataArray xarray DataArray to be reoriented res : tuple Two-tuple (int, int) which includes x and y resolutions (aka "grid/cell sizes"), respectively. layer : int Index of the raster layer to be reoriented (optional) Returns ------- array : numpy.ndarray Reoriented 2d NumPy ndarray """ if res is None: res = calc_res(raster) array = raster.data if layer is not None: array = array[layer-1] r0zero = np.timedelta64(0, 'ns') if isinstance(res[0], np.timedelta64) else 0 r1zero = np.timedelta64(0, 'ns') if isinstance(res[1], np.timedelta64) else 0 xflip = res[0] < r0zero yflip = res[1] > r1zero array = _flip_array(array, xflip, yflip) return array def downsample_aggregate(aggregate, factor, how='mean'): """Create downsampled aggregate factor in pixels units""" ys, xs = aggregate.shape[:2] crarr = aggregate[:ys-(ys % int(factor)), :xs-(xs % int(factor))] concat = np.concatenate([[crarr[i::factor, j::factor] for i in range(factor)] for j in range(factor)]) if how == 'mean': return np.nanmean(concat, axis=0) elif how == 'sum': return np.nansum(concat, axis=0) elif how == 'max': return np.nanmax(concat, axis=0) elif how == 'min': return np.nanmin(concat, axis=0) elif how == 'median': return np.nanmedian(concat, axis=0) elif how == 'std': return np.nanstd(concat, axis=0) elif how == 'var': return np.nanvar(concat, axis=0) else: raise ValueError("Invalid 'how' downsample method. Options mean, sum, max, min, median, " "std, var") def summarize_aggregate_values(aggregate, how='linear', num=180): """Helper function similar to np.linspace which return values from aggregate min value to aggregate max value in either linear or log space. """ max_val = np.nanmax(aggregate.values) min_val = np.nanmin(aggregate.values) if min_val == 0: min_val = aggregate.data[aggregate.data > 0].min() if how == 'linear': vals = np.linspace(min_val, max_val, num)[None, :] else: vals = (np.logspace(0, np.log1p(max_val - min_val), base=np.e, num=num, dtype=min_val.dtype) + min_val)[None, :] return DataArray(vals), min_val, max_val def hold(f): ''' simple arg caching decorator ''' last = [] def _(*args): if not last or last[0] != args: last[:] = args, f(*args) return last[1] return _ def export_image(img, filename, fmt=".png", _return=True, export_path=".", background=""): """Given a datashader Image object, saves it to a disk file in the requested format""" from datashader.transfer_functions import set_background if not os.path.exists(export_path): os.mkdir(export_path) if background: img = set_background(img, background) img.to_pil().save(os.path.join(export_path, filename + fmt)) return img if _return else None def lnglat_to_meters(longitude, latitude): """ Projects the given (longitude, latitude) values into Web Mercator coordinates (meters East of Greenwich and meters North of the Equator). Longitude and latitude can be provided as scalars, Pandas columns, or Numpy arrays, and will be returned in the same form. Lists or tuples will be converted to Numpy arrays. Examples: easting, northing = lnglat_to_meters(-74,40.71) easting, northing = lnglat_to_meters(np.array([-74]),np.array([40.71])) df=pandas.DataFrame(dict(longitude=np.array([-74]),latitude=np.array([40.71]))) df.loc[:, 'longitude'], df.loc[:, 'latitude'] = lnglat_to_meters(df.longitude,df.latitude) """ if isinstance(longitude, (list, tuple)): longitude = np.array(longitude) if isinstance(latitude, (list, tuple)): latitude = np.array(latitude) origin_shift = np.pi * 6378137 easting = longitude * origin_shift / 180.0 northing = np.log(np.tan((90 + latitude) * np.pi / 360.0)) * origin_shift / np.pi return (easting, northing) # Heavily inspired by odo def dshape_from_pandas_helper(col): """Return an object from datashader.datashape.coretypes given a column from a pandas dataframe. """ if (isinstance(col.dtype, type(pd.Categorical.dtype)) or isinstance(col.dtype, pd.api.types.CategoricalDtype) or cudf and isinstance(col.dtype, cudf.core.dtypes.CategoricalDtype)): # Compute category dtype pd_categories = col.cat.categories if isinstance(pd_categories, dd.Index): pd_categories = pd_categories.compute() if cudf and isinstance(pd_categories, cudf.Index): pd_categories = pd_categories.to_pandas() categories = np.array(pd_categories) if categories.dtype.kind == 'U': categories = categories.astype('object') cat_dshape = datashape.dshape('{} * {}'.format( len(col.cat.categories), categories.dtype, )) return datashape.Categorical(categories, type=cat_dshape, ordered=col.cat.ordered) elif col.dtype.kind == 'M': tz = getattr(col.dtype, 'tz', None) if tz is not None: # Pandas stores this as a pytz.tzinfo, but DataShape wants a string tz = str(tz) return datashape.Option(datashape.DateTime(tz=tz)) elif isinstance(col.dtype, (RaggedDtype, GeometryDtype)): return col.dtype elif gpd_GeometryDtype and isinstance(col.dtype, gpd_GeometryDtype): return col.dtype dshape = datashape.CType.from_numpy_dtype(col.dtype) dshape = datashape.string if dshape == datashape.object_ else dshape if dshape in (datashape.string, datashape.datetime_): return datashape.Option(dshape) return dshape def dshape_from_pandas(df): """Return a datashape.DataShape object given a pandas dataframe.""" return len(df) * datashape.Record([(k, dshape_from_pandas_helper(df[k])) for k in df.columns]) @memoize(key=lambda args, kwargs: tuple(args[0].__dask_keys__())) def dshape_from_dask(df): """Return a datashape.DataShape object given a dask dataframe.""" cat_columns = [ col for col in df.columns if (isinstance(df[col].dtype, type(pd.Categorical.dtype)) or isinstance(df[col].dtype, pd.api.types.CategoricalDtype)) and not getattr(df[col].cat, 'known', True)] df = df.categorize(cat_columns, index=False) # get_partition(0) used below because categories are sometimes repeated # for dask-cudf DataFrames with multiple partitions return datashape.var * datashape.Record([ (k, dshape_from_pandas_helper(df[k].get_partition(0))) for k in df.columns ]), df def dshape_from_xarray_dataset(xr_ds): """Return a datashape.DataShape object given a xarray Dataset.""" return datashape.var * datashape.Record([ (k, dshape_from_pandas_helper(xr_ds[k])) for k in list(xr_ds.data_vars) + list(xr_ds.coords) ]) def dataframe_from_multiple_sequences(x_values, y_values): """ Converts a set of multiple sequences (eg: time series), stored as a 2 dimensional numpy array into a pandas dataframe that can be plotted by datashader. The pandas dataframe eventually contains two columns ('x' and 'y') with the data. Each time series is separated by a row of NaNs. Discussion at: https://github.com/bokeh/datashader/issues/286#issuecomment-334619499 x_values: 1D numpy array with the values to be plotted on the x axis (eg: time) y_values: 2D numpy array with the sequences to be plotted of shape (num sequences X length of each sequence) """ # Add a NaN at the end of the array of x values x = np.zeros(x_values.shape[0] + 1) x[-1] = np.nan x[:-1] = x_values # Tile this array of x values: number of repeats = number of sequences/time series in the data x = np.tile(x, y_values.shape[0]) # Add a NaN at the end of every sequence in y_values y = np.zeros((y_values.shape[0], y_values.shape[1] + 1)) y[:, -1] = np.nan y[:, :-1] = y_values # Return a dataframe with this new set of x and y values return pd.DataFrame({'x': x, 'y': y.flatten()}) def _pd_mesh(vertices, simplices): """Helper for ``datashader.utils.mesh()``. Both arguments are assumed to be Pandas DataFrame objects. """ # Winding auto-detect winding = [0, 1, 2] first_tri = vertices.values[simplices.values[0, winding].astype(np.int64), :2] a, b, c = first_tri p1, p2 = b - a, c - a cross_product = p1[0] * p2[1] - p1[1] * p2[0] if cross_product >= 0: winding = [0, 2, 1] # Construct mesh by indexing into vertices with simplex indices vertex_idxs = simplices.values[:, winding] if not vertex_idxs.dtype == 'int64': vertex_idxs = vertex_idxs.astype(np.int64) vals = np.take(vertices.values, vertex_idxs, axis=0) vals = vals.reshape(np.prod(vals.shape[:2]), vals.shape[2]) res = pd.DataFrame(vals, columns=vertices.columns) # If vertices don't have weights, use simplex weights verts_have_weights = len(vertices.columns) > 2 if not verts_have_weights: weight_col = simplices.columns[3] res[weight_col] = simplices.values[:, 3].repeat(3) return res def _dd_mesh(vertices, simplices): """Helper for ``datashader.utils.mesh()``. Both arguments are assumed to be Dask DataFrame objects. """ # Construct mesh by indexing into vertices with simplex indices # TODO: For dask: avoid .compute() calls res = _pd_mesh(vertices.compute(), simplices.compute()) # Compute a chunksize that will not split the vertices of a single # triangle across partitions approx_npartitions = max(vertices.npartitions, simplices.npartitions) chunksize = int(np.ceil(len(res) / (3*approx_npartitions)) * 3) # Create dask dataframe res = dd.from_pandas(res, chunksize=chunksize) return res def mesh(vertices, simplices): """Merge vertices and simplices into a triangular mesh, suitable to be passed into the ``Canvas.trimesh()`` method via the ``mesh`` keyword-argument. Both arguments are assumed to be Dask DataFrame objects. """ # Verify the simplex data structure assert simplices.values.shape[1] >= 3, ('At least three vertex columns ' 'are required for the triangle ' 'definition') simplices_all_ints = simplices.dtypes.iloc[:3].map( lambda dt: np.issubdtype(dt, np.integer) ).all() assert simplices_all_ints, ('Simplices must be integral. You may ' 'consider casting simplices to integers ' 'with ".astype(int)"') assert len(vertices.columns) > 2 or simplices.values.shape[1] > 3, \ 'If no vertex weight column is provided, a triangle weight column is required.' if isinstance(vertices, dd.DataFrame) and isinstance(simplices, dd.DataFrame): return _dd_mesh(vertices, simplices) return _pd_mesh(vertices, simplices) def apply(func, args, kwargs=None): if kwargs: return func(*args, **kwargs) else: return func(*args) @ngjit def isnull(val): """ Equivalent to isnan for floats, but also numba compatible with integers """ return not (val <= 0 or val > 0) @ngjit def isminus1(val): """ Check for -1 which is equivalent to NaN for some integer aggregations """ return val == -1 @ngjit_parallel def nanfirst_in_place(ret, other): """First of 2 arrays but taking nans into account. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in nb.prange(len(ret)): if isnull(ret[i]) and not isnull(other[i]): ret[i] = other[i] @ngjit_parallel def nanlast_in_place(ret, other): """Last of 2 arrays but taking nans into account. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in nb.prange(len(ret)): if not isnull(other[i]): ret[i] = other[i] @ngjit_parallel def nanmax_in_place(ret, other): """Max of 2 arrays but taking nans into account. Could use np.nanmax but would need to replace zeros with nans where both arrays are nans. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in nb.prange(len(ret)): if isnull(ret[i]): if not isnull(other[i]): ret[i] = other[i] elif not isnull(other[i]) and other[i] > ret[i]: ret[i] = other[i] @ngjit_parallel def nanmin_in_place(ret, other): """Min of 2 arrays but taking nans into account. Could use np.nanmin but would need to replace zeros with nans where both arrays are nans. Accepts 3D (ny, nx, ncat) and 2D (ny, nx) arrays. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in nb.prange(len(ret)): if isnull(ret[i]): if not isnull(other[i]): ret[i] = other[i] elif not isnull(other[i]) and other[i] < ret[i]: ret[i] = other[i] @ngjit def shift_and_insert(target, value, index): """Insert a value into a 1D array at a particular index, but before doing that shift the previous values along one to make room. For use in ``FloatingNReduction`` classes such as ``max_n`` and ``first_n`` which store ``n`` values per pixel. Parameters ---------- target : 1d numpy array Target pixel array. value : float Value to insert into target pixel array. index : int Index to insert at. Returns ------- Index beyond insertion, i.e. where the first shifted value now sits. """ n = len(target) for i in range(n-1, index, -1): target[i] = target[i-1] target[index] = value return index + 1 @ngjit def _nanfirst_n_impl(ret_pixel, other_pixel): """Single pixel implementation of nanfirst_n_in_place. ret_pixel and other_pixel are both 1D arrays of the same length. Walk along other_pixel a value at a time, find insertion index in ret_pixel and shift values along to insert. Next other_pixel value is inserted at a higher index, so this walks the two pixel arrays just once each. """ n = len(ret_pixel) istart = 0 for other_value in other_pixel: if isnull(other_value): break else: for i in range(istart, n): if isnull(ret_pixel[i]): # Always insert after existing values, so no shifting required. ret_pixel[i] = other_value istart = i+1 break @ngjit_parallel def nanfirst_n_in_place_4d(ret, other): """3d version of nanfirst_n_in_place_4d, taking arrays of shape (ny, nx, n). """ ny, nx, ncat, _n = ret.shape for y in nb.prange(ny): for x in range(nx): for cat in range(ncat): _nanfirst_n_impl(ret[y, x, cat], other[y, x, cat]) @ngjit_parallel def nanfirst_n_in_place_3d(ret, other): """3d version of nanfirst_n_in_place_4d, taking arrays of shape (ny, nx, n). """ ny, nx, _n = ret.shape for y in nb.prange(ny): for x in range(nx): _nanfirst_n_impl(ret[y, x], other[y, x]) @ngjit def _nanlast_n_impl(ret_pixel, other_pixel): """Single pixel implementation of nanlast_n_in_place. ret_pixel and other_pixel are both 1D arrays of the same length. Walk along other_pixel a value at a time, find insertion index in ret_pixel and shift values along to insert. Next other_pixel value is inserted at a higher index, so this walks the two pixel arrays just once each. """ n = len(ret_pixel) istart = 0 for other_value in other_pixel: if isnull(other_value): break else: for i in range(istart, n): # Always insert at istart index. istart = shift_and_insert(ret_pixel, other_value, istart) break @ngjit_parallel def nanlast_n_in_place_4d(ret, other): """3d version of nanfirst_n_in_place_4d, taking arrays of shape (ny, nx, n). """ ny, nx, ncat, _n = ret.shape for y in nb.prange(ny): for x in range(nx): for cat in range(ncat): _nanlast_n_impl(ret[y, x, cat], other[y, x, cat]) @ngjit_parallel def nanlast_n_in_place_3d(ret, other): """3d version of nanlast_n_in_place_4d, taking arrays of shape (ny, nx, n). """ ny, nx, _n = ret.shape for y in nb.prange(ny): for x in range(nx): _nanlast_n_impl(ret[y, x], other[y, x]) @ngjit def _nanmax_n_impl(ret_pixel, other_pixel): """Single pixel implementation of nanmax_n_in_place. ret_pixel and other_pixel are both 1D arrays of the same length. Walk along other_pixel a value at a time, find insertion index in ret_pixel and shift values along to insert. Next other_pixel value is inserted at a higher index, so this walks the two pixel arrays just once each. """ n = len(ret_pixel) istart = 0 for other_value in other_pixel: if isnull(other_value): break else: for i in range(istart, n): if isnull(ret_pixel[i]) or other_value > ret_pixel[i]: istart = shift_and_insert(ret_pixel, other_value, i) break @ngjit_parallel def nanmax_n_in_place_4d(ret, other): """Combine two max-n arrays, taking nans into account. Max-n arrays are 4D with shape (ny, nx, ncat, n) where ny and nx are the number of pixels, ncat the number of categories (will be 1 if not using a categorical reduction) and the last axis containing n values in descending order. If there are fewer than n values it is padded with nans. Return the first array. """ ny, nx, ncat, _n = ret.shape for y in nb.prange(ny): for x in range(nx): for cat in range(ncat): _nanmax_n_impl(ret[y, x, cat], other[y, x, cat]) @ngjit_parallel def nanmax_n_in_place_3d(ret, other): """3d version of nanmax_n_in_place_4d, taking arrays of shape (ny, nx, n). """ ny, nx, _n = ret.shape for y in nb.prange(ny): for x in range(nx): _nanmax_n_impl(ret[y, x], other[y, x]) @ngjit def _nanmin_n_impl(ret_pixel, other_pixel): """Single pixel implementation of nanmin_n_in_place. ret_pixel and other_pixel are both 1D arrays of the same length. Walk along other_pixel a value at a time, find insertion index in ret_pixel and shift values along to insert. Next other_pixel value is inserted at a higher index, so this walks the two pixel arrays just once each. """ n = len(ret_pixel) istart = 0 for other_value in other_pixel: if isnull(other_value): break else: for i in range(istart, n): if isnull(ret_pixel[i]) or other_value < ret_pixel[i]: istart = shift_and_insert(ret_pixel, other_value, i) break @ngjit_parallel def nanmin_n_in_place_4d(ret, other): """Combine two min-n arrays, taking nans into account. Min-n arrays are 4D with shape (ny, nx, ncat, n) where ny and nx are the number of pixels, ncat the number of categories (will be 1 if not using a categorical reduction) and the last axis containing n values in ascending order. If there are fewer than n values it is padded with nans. Return the first array. """ ny, nx, ncat, _n = ret.shape for y in nb.prange(ny): for x in range(nx): for cat in range(ncat): _nanmin_n_impl(ret[y, x, cat], other[y, x, cat]) @ngjit_parallel def nanmin_n_in_place_3d(ret, other): """3d version of nanmin_n_in_place_4d, taking arrays of shape (ny, nx, n). """ ny, nx, _n = ret.shape for y in nb.prange(ny): for x in range(nx): _nanmin_n_impl(ret[y, x], other[y, x]) @ngjit_parallel def nansum_in_place(ret, other): """Sum of 2 arrays but taking nans into account. Could use np.nansum but would need to replace zeros with nans where both arrays are nans. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in nb.prange(len(ret)): if isnull(ret[i]): if not isnull(other[i]): ret[i] = other[i] elif not isnull(other[i]): ret[i] += other[i] @ngjit def row_max_in_place(ret, other): """Maximum of 2 arrays of row indexes. Row indexes are integers from 0 upwards, missing data is -1. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in range(len(ret)): if other[i] > -1 and (ret[i] == -1 or other[i] > ret[i]): ret[i] = other[i] @ngjit def row_min_in_place(ret, other): """Minimum of 2 arrays of row indexes. Row indexes are integers from 0 upwards, missing data is -1. Return the first array. """ ret = ret.ravel() other = other.ravel() for i in range(len(ret)): if other[i] > -1 and (ret[i] == -1 or other[i] < ret[i]): ret[i] = other[i] @ngjit def _row_max_n_impl(ret_pixel, other_pixel): """Single pixel implementation of row_max_n_in_place. ret_pixel and other_pixel are both 1D arrays of the same length. Walk along other_pixel a value at a time, find insertion index in ret_pixel and shift values along to insert. Next other_pixel value is inserted at a higher index, so this walks the two pixel arrays just once each. """ n = len(ret_pixel) istart = 0 for other_value in other_pixel: if other_value == -1: break else: for i in range(istart, n): if ret_pixel[i] == -1 or other_value > ret_pixel[i]: istart = shift_and_insert(ret_pixel, other_value, i) break @ngjit def row_max_n_in_place_4d(ret, other): """Combine two row_max_n signed integer arrays. Equivalent to nanmax_n_in_place with -1 replacing NaN for missing data. Return the first array. """ ny, nx, ncat, _n = ret.shape for y in range(ny): for x in range(nx): for cat in range(ncat): _row_max_n_impl(ret[y, x, cat], other[y, x, cat]) @ngjit def row_max_n_in_place_3d(ret, other): ny, nx, _n = ret.shape for y in range(ny): for x in range(nx): _row_max_n_impl(ret[y, x], other[y, x]) @ngjit def _row_min_n_impl(ret_pixel, other_pixel): """Single pixel implementation of row_min_n_in_place. ret_pixel and other_pixel are both 1D arrays of the same length. Walk along other_pixel a value at a time, find insertion index in ret_pixel and shift values along to insert. Next other_pixel value is inserted at a higher index, so this walks the two pixel arrays just once each. """ n = len(ret_pixel) istart = 0 for other_value in other_pixel: if other_value == -1: break else: for i in range(istart, n): if ret_pixel[i] == -1 or other_value < ret_pixel[i]: istart = shift_and_insert(ret_pixel, other_value, i) break @ngjit def row_min_n_in_place_4d(ret, other): """Combine two row_min_n signed integer arrays. Equivalent to nanmin_n_in_place with -1 replacing NaN for missing data. Return the first array. """ ny, nx, ncat, _n = ret.shape for y in range(ny): for x in range(nx): for cat in range(ncat): _row_min_n_impl(ret[y, x, cat], other[y, x, cat]) @ngjit def row_min_n_in_place_3d(ret, other): ny, nx, _n = ret.shape for y in range(ny): for x in range(nx): _row_min_n_impl(ret[y, x], other[y, x])