from __future__ import annotations import copyreg import multiprocessing import multiprocessing.pool import os import pickle import sys import traceback from collections.abc import Hashable, Mapping, Sequence from concurrent.futures import ProcessPoolExecutor from functools import partial from warnings import warn import cloudpickle from dask import config from dask.local import MultiprocessingPoolExecutor, get_async, reraise from dask.optimization import cull, fuse from dask.system import CPU_COUNT from dask.utils import ensure_dict def _reduce_method_descriptor(m): return getattr, (m.__objclass__, m.__name__) # type(set.union) is used as a proxy to copyreg.pickle(type(set.union), _reduce_method_descriptor) _dumps = partial(cloudpickle.dumps, protocol=pickle.HIGHEST_PROTOCOL) _loads = cloudpickle.loads def _process_get_id(): return multiprocessing.current_process().ident # -- Remote Exception Handling -- # By default, tracebacks can't be serialized using pickle. However, the # `tblib` library can enable support for this. Since we don't mandate # that tblib is installed, we do the following: # # - If tblib is installed, use it to serialize the traceback and reraise # in the scheduler process # - Otherwise, use a ``RemoteException`` class to contain a serialized # version of the formatted traceback, which will then print in the # scheduler process. # # To enable testing of the ``RemoteException`` class even when tblib is # installed, we don't wrap the class in the try block below class RemoteException(Exception): """Remote Exception Contains the exception and traceback from a remotely run task """ def __init__(self, exception, traceback): self.exception = exception self.traceback = traceback def __str__(self): return str(self.exception) + "\n\nTraceback\n---------\n" + self.traceback def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + dir(self.exception))) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: return getattr(self.exception, key) exceptions: dict[type[Exception], type[Exception]] = {} def remote_exception(exc: Exception, tb) -> Exception: """Metaclass that wraps exception type in RemoteException""" if type(exc) in exceptions: typ = exceptions[type(exc)] return typ(exc, tb) else: try: typ = type( exc.__class__.__name__, (RemoteException, type(exc)), {"exception_type": type(exc)}, ) exceptions[type(exc)] = typ return typ(exc, tb) except TypeError: return exc try: import tblib.pickling_support tblib.pickling_support.install() def _pack_traceback(tb): return tb except ImportError: def _pack_traceback(tb): return "".join(traceback.format_tb(tb)) def reraise(exc, tb=None): exc = remote_exception(exc, tb) raise exc def pack_exception(e, dumps): exc_type, exc_value, exc_traceback = sys.exc_info() tb = _pack_traceback(exc_traceback) try: result = dumps((e, tb)) except BaseException as e: exc_type, exc_value, exc_traceback = sys.exc_info() tb = _pack_traceback(exc_traceback) result = dumps((e, tb)) return result _CONTEXT_UNSUPPORTED = """\ The 'multiprocessing.context' configuration option will be ignored on Python 2 and on Windows, because they each only support a single context. """ def get_context(): """Return the current multiprocessing context.""" # fork context does fork()-without-exec(), which can lead to deadlocks, # so default to "spawn". context_name = config.get("multiprocessing.context", "spawn") if sys.platform == "win32": if context_name != "spawn": # Only spawn is supported on Win32, can't change it: warn(_CONTEXT_UNSUPPORTED, UserWarning) return multiprocessing else: return multiprocessing.get_context(context_name) def get( dsk: Mapping, keys: Sequence[Hashable] | Hashable, num_workers=None, func_loads=None, func_dumps=None, optimize_graph=True, pool=None, initializer=None, chunksize=None, **kwargs, ): """Multiprocessed get function appropriate for Bags Parameters ---------- dsk : dict dask graph keys : object or list Desired results from graph num_workers : int Number of worker processes (defaults to number of cores) func_dumps : function Function to use for function serialization (defaults to cloudpickle.dumps) func_loads : function Function to use for function deserialization (defaults to cloudpickle.loads) optimize_graph : bool If True [default], `fuse` is applied to the graph before computation. pool : Executor or Pool Some sort of `Executor` or `Pool` to use initializer: function Ignored if ``pool`` has been set. Function to initialize a worker process before running any tasks in it. chunksize: int, optional Size of chunks to use when dispatching work. Defaults to 5 as some batching is helpful. If -1, will be computed to evenly divide ready work across workers. """ chunksize = chunksize or config.get("chunksize", 6) pool = pool or config.get("pool", None) initializer = initializer or config.get("multiprocessing.initializer", None) num_workers = num_workers or config.get("num_workers", None) or CPU_COUNT if pool is None: # In order to get consistent hashing in subprocesses, we need to set a # consistent seed for the Python hash algorithm. Unfortunately, there # is no way to specify environment variables only for the Pool # processes, so we have to rely on environment variables being # inherited. if os.environ.get("PYTHONHASHSEED") in (None, "0"): # This number is arbitrary; it was chosen to commemorate # https://github.com/dask/dask/issues/6640. os.environ["PYTHONHASHSEED"] = "6640" context = get_context() initializer = partial(initialize_worker_process, user_initializer=initializer) pool = ProcessPoolExecutor( num_workers, mp_context=context, initializer=initializer ) cleanup = True else: if initializer is not None: warn( "The ``initializer`` argument is ignored when ``pool`` is provided. " "The user should configure ``pool`` with the needed ``initializer`` " "on creation." ) if isinstance(pool, multiprocessing.pool.Pool): pool = MultiprocessingPoolExecutor(pool) cleanup = False # Optimize Dask dsk = ensure_dict(dsk) dsk2, dependencies = cull(dsk, keys) if optimize_graph: dsk3, dependencies = fuse(dsk2, keys, dependencies) else: dsk3 = dsk2 # We specify marshalling functions in order to catch serialization # errors and report them to the user. loads = func_loads or config.get("func_loads", None) or _loads dumps = func_dumps or config.get("func_dumps", None) or _dumps # Note former versions used a multiprocessing Manager to share # a Queue between parent and workers, but this is fragile on Windows # (issue #1652). try: # Run result = get_async( pool.submit, pool._max_workers, dsk3, keys, get_id=_process_get_id, dumps=dumps, loads=loads, pack_exception=pack_exception, raise_exception=reraise, chunksize=chunksize, **kwargs, ) finally: if cleanup: pool.shutdown() return result def default_initializer(): # If Numpy is already imported, presumably its random state was # inherited from the parent => re-seed it. np = sys.modules.get("numpy") if np is not None: np.random.seed() def initialize_worker_process(user_initializer=None): """ Initialize a worker process before running any tasks in it. """ default_initializer() if user_initializer is not None: user_initializer()