m7n's picture
first commit
d1ed09d
raw
history blame
35.9 kB
"""
This module was adapted from https://github.com/CAB-LAB/gridtools
The MIT License (MIT)
Copyright (c) 2016, Brockmann Consult GmbH and contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from __future__ import annotations
from itertools import groupby
from math import floor, ceil
import dask.array as da
import numpy as np
from dask.delayed import delayed
from numba import prange
from .utils import ngjit, ngjit_parallel
try:
import cupy
except Exception:
cupy = None
#: Interpolation method for upsampling: Take nearest source grid cell, even if it is invalid.
US_NEAREST = 10
#: Interpolation method for upsampling: Bi-linear interpolation between the 4 nearest source grid
# cells.
US_LINEAR = 11
#: Aggregation method for downsampling: Take first valid source grid cell, ignore contribution
# areas.
DS_FIRST = 50
#: Aggregation method for downsampling: Take last valid source grid cell, ignore contribution areas.
DS_LAST = 51
#: Aggregation method for downsampling: Take the minimum source grid cell value, ignore contribution
# areas.
DS_MIN = 52
#: Aggregation method for downsampling: Take the maximum source grid cell value, ignore contribution
# areas.
DS_MAX = 53
#: Aggregation method for downsampling: Compute average of all valid source grid cells,
#: with weights given by contribution area.
DS_MEAN = 54
# DS_MEDIAN = 55
#: Aggregation method for downsampling: Compute most frequently seen valid source grid cell,
#: with frequency given by contribution area. Note that this mode can use an additional keyword
# argument
#: *mode_rank* which can be used to generate the n-th mode. See :py:function:`downsample_2d`.
DS_MODE = 56
#: Aggregation method for downsampling: Compute the biased weighted estimator of variance
#: (see https://en.wikipedia.org/wiki/Mean_square_weighted_deviation), with weights given by
# contribution area.
DS_VAR = 57
#: Aggregation method for downsampling: Compute the corresponding standard deviation to the biased
# weighted estimator
#: of variance
#: (see https://en.wikipedia.org/wiki/Mean_square_weighted_deviation), with weights given by
# contribution area.
DS_STD = 58
#: Constant indicating an empty 2-D mask
_NOMASK2D = np.ma.getmaskarray(np.ma.array([[0]], mask=[[0]]))
_EPS = 1e-10
upsample_methods = dict(nearest=US_NEAREST, linear=US_LINEAR)
downsample_methods = dict(first=DS_FIRST, last=DS_LAST, mode=DS_MODE,
mean=DS_MEAN, var=DS_VAR, std=DS_STD,
min=DS_MIN, max=DS_MAX)
def map_chunks(in_shape, out_shape, out_chunks):
"""
Maps index in source array to target array chunks.
For each chunk in the target array this function computes the
indexes into the source array that will be fed into the regridding
operation.
Parameters
----------
in_shape: tuple(int, int)
The shape of the input array
out_shape: tuple(int, int)
The shape of the output array
out_chunks: tuple(int, int)
The shape of each chunk in the output array
Returns
-------
Dictionary mapping of chunks and their indexes
in the input and output array.
"""
outy, outx = out_shape
cys, cxs = out_chunks
xchunks = list(range(0, outx, cxs)) + [outx]
ychunks = list(range(0, outy, cys)) + [outy]
iny, inx = in_shape
xscale = inx/outx
yscale = iny/outy
mapping = {}
for i in range(len(ychunks)-1):
cumy0, cumy1 = ychunks[i:i+2]
iny0, iny1 = cumy0*yscale, cumy1*yscale
iny0r, iny1r = floor(iny0), ceil(iny1)
y0_off, y1_off = iny0-iny0r, iny1r-iny1
for j in range(len(xchunks)-1):
cumx0, cumx1 = xchunks[j:j+2]
inx0, inx1 = cumx0*xscale, cumx1*xscale
inx0r, inx1r = floor(inx0), ceil(inx1)
x0_off, x1_off = inx0-inx0r, inx1r-inx1
mapping[(i, j)] = {
'out': {
'x': (cumx0, cumx1),
'y': (cumy0, cumy1),
'w': (cumx1-cumx0),
'h': (cumy1-cumy0),
},
'in': {
'x': (inx0r, inx1r),
'y': (iny0r, iny1r),
'xoffset': (x0_off, x1_off),
'yoffset': (y0_off, y1_off),
}
}
return mapping
def compute_chunksize(src, w, h, chunksize=None, max_mem=None):
"""
Attempts to compute a chunksize for the resampling output array
that is as close as possible to the input array chunksize, while
also respecting the maximum memory constraint to avoid loading
to much data into memory at the same time.
Parameters
----------
src : dask.array.Array
The source array to resample
w : int
New grid width
h : int
New grid height
chunksize : tuple(int, int) (optional)
Size of the output chunks. By default the chunk size is
inherited from the *src* array.
max_mem : int (optional)
The maximum number of bytes that should be loaded into memory
during the regridding operation.
Returns
-------
chunksize : tuple(int, int)
Size of the output chunks.
"""
start_chunksize = src.chunksize if chunksize is None else chunksize
if max_mem is None:
return start_chunksize
sh, sw = src.shape
height_fraction = float(sh)/h
width_fraction = float(sw)/w
ch, cw = start_chunksize
dim = True
nbytes = src.dtype.itemsize
while ((ch * height_fraction) * (cw * width_fraction) * nbytes) > max_mem:
if dim:
cw -= 1
else:
ch -= 1
dim = not dim
if ch == 0 or cw == 0:
min_mem = height_fraction * width_fraction * nbytes
raise ValueError(
"Given the memory constraints the resampling operation "
"could not find a chunksize that avoids loading too much "
"data into memory. Either relax the memory constraint to "
"a minimum of %d bytes or resample to a larger grid size. "
"Note: A future implementation could handle this condition "
"by declaring temporary arrays." % min_mem)
return ch, cw
def resample_2d_distributed(src, w, h, ds_method='mean', us_method='linear',
fill_value=None, mode_rank=1, chunksize=None,
max_mem=None):
"""
A distributed version of 2-d grid resampling which operates on
dask arrays and performs regridding on a chunked array.
Parameters
----------
src : dask.array.Array
The source array to resample
w : int
New grid width
h : int
New grid height
ds_method : str (optional)
Grid cell aggregation method for a possible downsampling
(one of the *DS_* constants).
us_method : str (optional)
Grid cell interpolation method for a possible upsampling
(one of the *US_* constants, optional).
fill_value : scalar (optional)
If None, numpy's default value is used.
mode_rank : scalar (optional)
The rank of the frequency determined by the *ds_method*
``DS_MODE``. One (the default) means most frequent value, two
means second most frequent value, and so forth.
chunksize : tuple(int, int) (optional)
Size of the output chunks. By default this the chunk size is
inherited from the *src* array.
max_mem : int (optional)
The maximum number of bytes that should be loaded into memory
during the regridding operation.
Returns
-------
resampled : dask.array.Array
A resampled version of the *src* array.
"""
temp_chunks = compute_chunksize(src, w, h, chunksize, max_mem)
if chunksize is None:
chunksize = src.chunksize
chunk_map = map_chunks(src.shape, (h, w), temp_chunks)
out_chunks = {}
for (i, j), chunk in chunk_map.items():
inds = chunk['in']
inx0, inx1 = inds['x']
iny0, iny1 = inds['y']
out = chunk['out']
chunk_array = src[iny0:iny1, inx0:inx1]
resampled = _resample_2d_delayed(
chunk_array, out['w'], out['h'], ds_method, us_method,
fill_value, mode_rank, inds['xoffset'], inds['yoffset'])
out_chunks[(i, j)] = {
'array': resampled,
'shape': (out['h'], out['w']),
'dtype': src.dtype,
'in': chunk['in'],
'out': out
}
rows = groupby(out_chunks.items(), lambda x: x[0][0])
cols = []
for i, row in rows:
row = da.concatenate([
da.from_delayed(chunk['array'], chunk['shape'], chunk['dtype'])
for _, chunk in row], 1)
cols.append(row)
out = da.concatenate(cols, 0)
# Ensure chunksize conforms to specified chunksize
if chunksize is not None and out.chunksize != chunksize:
out = out.rechunk(chunksize)
return out
def resample_2d(src, w, h, ds_method='mean', us_method='linear',
fill_value=None, mode_rank=1, x_offset=(0, 0),
y_offset=(0, 0), out=None):
"""
Resample a 2-D grid to a new resolution.
Parameters
----------
src : np.ndarray
The source array to resample
w : int
New grid width
h : int
New grid height
ds_method : str (optional)
Grid cell aggregation method for a possible downsampling
(one of the *DS_* constants).
us_method : str (optional)
Grid cell interpolation method for a possible upsampling
(one of the *US_* constants, optional).
fill_value : scalar (optional)
If ``None``, it is taken from **src** if it is a masked array,
otherwise from *out* if it is a masked array,
otherwise numpy's default value is used.
mode_rank : scalar (optional)
The rank of the frequency determined by the *ds_method*
``DS_MODE``. One (the default) means most frequent value, zwo
means second most frequent value, and so forth.
x_offset : tuple(float, float) (optional)
Offsets for the x-axis indices in the source array (useful
for distributed regridding where chunks are not aligned with
the underlying array).
y_offset : tuple(float, float) (optional)
Offsets for the x-axis indices in the source array (useful
for distributed regridding where chunks are not aligned with
the underlying array).
out : numpy.ndarray (optional)
Alternate output array in which to place the result. The
default is *None*; if provided, it must have the same shape as
the expected output.
Returns
-------
resampled : numpy.ndarray or dask.array.Array
A resampled version of the *src* array.
"""
out = _get_out(out, src, (h, w))
if out is None:
return src
mask, use_mask = _get_mask(src)
fill_value = _get_fill_value(fill_value, src, out)
us_method=upsample_methods[us_method]
ds_method=downsample_methods[ds_method]
if isinstance(src, np.ma.MaskedArray):
src = src.data
resampled = _resample_2d(src, mask, use_mask, ds_method, us_method,
fill_value, mode_rank, x_offset, y_offset, out)
return _mask_or_not(resampled, src, fill_value)
_resample_2d_delayed = delayed(resample_2d)
def upsample_2d(src, w, h, method=US_LINEAR, fill_value=None, out=None):
"""
Upsample a 2-D grid to a higher resolution by interpolating original grid cells.
src: 2-D *ndarray*
w: *int*
Grid width, which must be greater than or equal to *src.shape[-1]*
h: *int*
Grid height, which must be greater than or equal to *src.shape[-2]*
method: one of the *US_* constants, optional
Grid cell interpolation method
fill_value: *scalar*, optional
If ``None``, it is taken from **src** if it is a masked array,
otherwise from *out* if it is a masked array,
otherwise numpy's default value is used.
out: 2-D *ndarray*, optional
Alternate output array in which to place the result. The default is *None*; if provided,
it must have the same shape as the expected output.
Returns
-------
upsampled : numpy.ndarray or dask.array.Array
An upsampled version of the *src* array.
"""
out = _get_out(out, src, (h, w))
if out is None:
return src
mask, use_mask = _get_mask(src)
fill_value = _get_fill_value(fill_value, src, out)
if method not in UPSAMPLING_METHODS:
raise ValueError('invalid upsampling method')
upsampling_method = UPSAMPLING_METHODS[method]
upsampled = upsampling_method(
src, mask, use_mask, fill_value, (0, 0), (0, 0), out)
return _mask_or_not(upsampled, src, fill_value)
def downsample_2d(src, w, h, method=DS_MEAN, fill_value=None, mode_rank=1, out=None):
"""
Downsample a 2-D grid to a lower resolution by aggregating original grid cells.
Parameters
----------
src : numpy.ndarray or dask.array.Array
The source array to resample
w : int
New grid width
h : int
New grid height
ds_method : str (optional)
Grid cell aggregation method for a possible downsampling
(one of the *DS_* constants).
fill_value : scalar (optional)
If ``None``, it is taken from **src** if it is a masked array,
otherwise from *out* if it is a masked array,
otherwise numpy's default value is used.
mode_rank : scalar (optional)
The rank of the frequency determined by the *ds_method*
``DS_MODE``. One (the default) means most frequent value, two
means second most frequent value, and so forth.
out : numpy.ndarray (optional)
Alternate output array in which to place the result. The
default is *None*; if provided, it must have the same shape as
the expected output.
Returns
-------
downsampled : numpy.ndarray or dask.array.Array
An downsampled version of the *src* array.
"""
if method == DS_MODE and mode_rank < 1:
raise ValueError('mode_rank must be >= 1')
out = _get_out(out, src, (h, w))
if out is None:
return src
mask, use_mask = _get_mask(src)
fill_value = _get_fill_value(fill_value, src, out)
if method not in DOWNSAMPLING_METHODS:
raise ValueError('invalid downsampling method')
downsampling_method = DOWNSAMPLING_METHODS[method]
downsampled = downsampling_method(
src, mask, use_mask, method, fill_value, mode_rank, (0, 0),
(0, 0), out)
return _mask_or_not(downsampled, src, fill_value)
def _get_out(out, src, shape):
if out is None:
return np.zeros(shape, dtype=src.dtype)
else:
if out.shape != shape:
raise ValueError("'shape' and 'out' are incompatible")
if out.shape == src.shape:
return None
return out
def _get_mask(src):
if isinstance(src, np.ma.MaskedArray):
mask = np.ma.getmask(src)
if mask is not np.ma.nomask:
return mask, True
return _NOMASK2D, False
def _mask_or_not(out, src, fill_value):
if isinstance(src, np.ma.MaskedArray):
if not isinstance(out, np.ma.MaskedArray):
if np.isfinite(fill_value):
masked = np.ma.masked_equal(out, fill_value, copy=False)
else:
masked = np.ma.masked_invalid(out, copy=False)
masked.set_fill_value(fill_value)
return masked
return out
def _get_fill_value(fill_value, src, out):
if fill_value is None:
if isinstance(src, np.ma.MaskedArray):
fill_value = src.fill_value
elif isinstance(out, np.ma.MaskedArray):
fill_value = out.fill_value
else:
# use numpy's default fill_value
fill_value = np.ma.array([0], mask=[False], dtype=src.dtype).fill_value
return fill_value
@ngjit
def _get_dimensions(src, out):
src_w = src.shape[-1]
src_h = src.shape[-2]
out_w = out.shape[-1]
out_h = out.shape[-2]
return src_w, src_h, out_w, out_h
def _resample_2d(src, mask, use_mask, ds_method, us_method, fill_value,
mode_rank, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
src_wo = (src_w - x0_off - x1_off)
src_ho = (src_h - y0_off - y1_off)
if us_method not in UPSAMPLING_METHODS:
raise ValueError('invalid upsampling method')
elif ds_method not in DOWNSAMPLING_METHODS:
raise ValueError('invalid downsampling method')
downsampling_method = DOWNSAMPLING_METHODS[ds_method]
upsampling_method = UPSAMPLING_METHODS[us_method]
if src_h == 0 or src_w == 0 or out_h == 0 or out_w == 0:
return np.zeros((out_h, out_w), dtype=src.dtype)
elif out_w < src_wo and out_h < src_ho:
return downsampling_method(src, mask, use_mask, ds_method,
fill_value, mode_rank, x_offset,
y_offset, out)
elif out_w < src_wo:
if out_h > src_ho:
temp = np.zeros((src_h, out_w), dtype=src.dtype)
temp = downsampling_method(src, mask, use_mask, ds_method,
fill_value, mode_rank, x_offset,
y_offset, temp)
# todo - write test & fix: must use mask=np.ma.getmaskarray(temp) here if use_mask==True
return upsampling_method(temp, mask, use_mask, fill_value,
x_offset, y_offset, out)
else:
return downsampling_method(src, mask, use_mask, ds_method,
fill_value, mode_rank, x_offset,
y_offset, out)
elif out_h < src_ho:
if out_w > src_wo:
temp = np.zeros((out_h, src_w), dtype=src.dtype)
temp = downsampling_method(src, mask, use_mask, ds_method,
fill_value, mode_rank, x_offset,
y_offset, temp)
# todo - write test & fix: must use mask=np.ma.getmaskarray(temp) here if use_mask==True
return upsampling_method(temp, mask, use_mask, fill_value,
x_offset, y_offset, out)
else:
return downsampling_method(src, mask, use_mask, ds_method,
fill_value, mode_rank, x_offset,
y_offset, out)
elif out_w > src_wo or out_h > src_ho:
return upsampling_method(src, mask, use_mask, fill_value,
x_offset, y_offset, out)
return src
@ngjit_parallel
def _upsample_2d_nearest(src, mask, use_mask, fill_value, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
src_w = (src_w - x0_off - x1_off)
src_h = (src_h - y0_off - y1_off)
if src_w == out_w and src_h == out_h:
return src
if out_w < src_w or out_h < src_h:
raise ValueError("invalid target size")
scale_x = src_w / out_w
scale_y = src_h / out_h
for out_y in prange(out_h):
src_y = int((scale_y * out_y) + y0_off)
for out_x in range(out_w):
src_x = int((scale_x * out_x) + x0_off)
value = src[src_y, src_x]
if np.isfinite(value) and not (use_mask and mask[src_y, src_x]):
out[out_y, out_x] = value
else:
out[out_y, out_x] = fill_value
return out
@ngjit_parallel
def _upsample_2d_linear(src, mask, use_mask, fill_value, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
src_wo = (src_w - x0_off - x1_off)
src_ho = (src_h - y0_off - y1_off)
if src_wo == out_w and src_ho == out_h:
return src
if out_w < src_w or out_h < src_h:
raise ValueError("invalid target size")
scale_x = (src_wo - 1.0) / ((out_w - 1.0) if out_w > 1 else 1.0)
scale_y = (src_ho - 1.0) / ((out_h - 1.0) if out_h > 1 else 1.0)
for out_y in prange(out_h):
src_yf = (scale_y * out_y) + y0_off
src_y0 = int(src_yf)
wy = src_yf - src_y0
src_y1 = src_y0 + 1
if src_y1 >= src_h:
src_y1 = src_y0
for out_x in range(out_w):
src_xf = (scale_x * out_x) + x0_off
src_x0 = int(src_xf)
wx = src_xf - src_x0
src_x1 = src_x0 + 1
if src_x1 >= src_w:
src_x1 = src_x0
v00 = src[src_y0, src_x0]
v01 = src[src_y0, src_x1]
v10 = src[src_y1, src_x0]
v11 = src[src_y1, src_x1]
if use_mask:
v00_ok = np.isfinite(v00) and not mask[src_y0, src_x0]
v01_ok = np.isfinite(v01) and not mask[src_y0, src_x1]
v10_ok = np.isfinite(v10) and not mask[src_y1, src_x0]
v11_ok = np.isfinite(v11) and not mask[src_y1, src_x1]
else:
v00_ok = np.isfinite(v00)
v01_ok = np.isfinite(v01)
v10_ok = np.isfinite(v10)
v11_ok = np.isfinite(v11)
if v00_ok and v01_ok and v10_ok and v11_ok:
ok = True
v0 = v00 + wx * (v01 - v00)
v1 = v10 + wx * (v11 - v10)
value = v0 + wy * (v1 - v0)
elif wx < 0.5:
# NEAREST according to weight
if wy < 0.5:
ok = v00_ok
value = v00
else:
ok = v10_ok
value = v10
else:
# NEAREST according to weight
if wy < 0.5:
ok = v01_ok
value = v01
else:
ok = v11_ok
value = v11
if ok:
out[out_y, out_x] = value
else:
out[out_y, out_x] = fill_value
return out
UPSAMPLING_METHODS = {US_LINEAR: _upsample_2d_linear,
US_NEAREST: _upsample_2d_nearest}
@ngjit_parallel
def _downsample_2d_first_last(src, mask, use_mask, method, fill_value,
mode_rank, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
if src_w == out_w and src_h == out_h:
return src
if out_w > src_w or out_h > src_h:
raise ValueError("invalid target size")
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
scale_x = (src_w - x0_off - x1_off) / out_w
scale_y = (src_h - y0_off - y1_off) / out_h
for out_y in prange(out_h):
src_yf0 = (scale_y * out_y) + y0_off
src_yf1 = src_yf0 + scale_y
src_y0 = int(src_yf0)
src_y1 = int(src_yf1)
wy1 = src_yf1 - src_y1
if wy1 < _EPS and src_y1 > src_y0:
src_y1 -= 1
for out_x in range(out_w):
src_xf0 = (scale_x * out_x) + x0_off
src_xf1 = src_xf0 + scale_x
src_x0 = int(src_xf0)
src_x1 = int(src_xf1)
wx1 = src_xf1 - src_x1
if wx1 < _EPS and src_x1 > src_x0:
src_x1 -= 1
done = False
value = fill_value
for src_y in range(src_y0, src_y1 + 1):
for src_x in range(src_x0, src_x1 + 1):
v = src[src_y, src_x]
if np.isfinite(v) and not (use_mask and mask[src_y, src_x]):
value = v
if method == DS_FIRST:
done = True
break
if done:
break
out[out_y, out_x] = value
return out
@ngjit_parallel
def _downsample_2d_min_max(src, mask, use_mask, method, fill_value,
mode_rank, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
if src_w == out_w and src_h == out_h:
return src
if out_w > src_w or out_h > src_h:
raise ValueError("invalid target size")
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
scale_x = (src_w - x0_off - x1_off) / out_w
scale_y = (src_h - y0_off - y1_off) / out_h
for out_y in prange(out_h):
src_yf0 = (scale_y * out_y) + y0_off
src_yf1 = src_yf0 + scale_y
src_y0 = int(src_yf0)
src_y1 = int(src_yf1)
wy1 = src_yf1 - src_y1
if wy1 < _EPS and src_y1 > src_y0:
src_y1 -= 1
for out_x in range(out_w):
src_xf0 = (scale_x * out_x) + x0_off
src_xf1 = src_xf0 + scale_x
src_x0 = int(src_xf0)
src_x1 = int(src_xf1)
wx1 = src_xf1 - src_x1
if wx1 < _EPS and src_x1 > src_x0:
src_x1 -= 1
if method == DS_MIN:
value = np.inf
else:
value = -np.inf
for src_y in range(src_y0, src_y1 + 1):
for src_x in range(src_x0, src_x1 + 1):
v = src[src_y, src_x]
if np.isfinite(v) and not (use_mask and mask[src_y, src_x]):
if method == DS_MIN:
if v < value:
value = v
else:
if v > value:
value = v
if np.isfinite(value):
out[out_y, out_x] = value
else:
out[out_y, out_x] = fill_value
return out
@ngjit_parallel
def _downsample_2d_mode(src, mask, use_mask, method, fill_value,
mode_rank, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
if src_w == out_w and src_h == out_h:
return src
if out_w > src_w or out_h > src_h:
raise ValueError("invalid target size")
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
scale_x = (src_w - x0_off - x1_off) / out_w
scale_y = (src_h - y0_off - y1_off) / out_h
max_value_count = ceil(scale_x + 1) * ceil(scale_y + 1)
if mode_rank >= max_value_count:
raise ValueError("requested mode_rank too large for max_value_count being collected")
for out_y in prange(out_h):
src_yf0 = (scale_y * out_y) + y0_off
src_yf1 = src_yf0 + scale_y
src_y0 = int(src_yf0)
src_y1 = int(src_yf1)
wy0 = 1.0 - (src_yf0 - src_y0)
wy1 = src_yf1 - src_y1
if wy1 < _EPS:
wy1 = 1.0
if src_y1 > src_y0:
src_y1 -= 1
for out_x in range(out_w):
values = np.zeros((max_value_count,), dtype=src.dtype)
frequencies = np.zeros((max_value_count,), dtype=np.uint32)
src_xf0 = (scale_x * out_x) + x0_off
src_xf1 = src_xf0 + scale_x
src_x0 = int(src_xf0)
src_x1 = int(src_xf1)
wx0 = 1.0 - (src_xf0 - src_x0)
wx1 = src_xf1 - src_x1
if wx1 < _EPS:
wx1 = 1.0
if src_x1 > src_x0:
src_x1 -= 1
value_count = 0
for src_y in range(src_y0, src_y1 + 1):
wy = wy0 if (src_y == src_y0) else wy1 if (src_y == src_y1) else 1.0
for src_x in range(src_x0, src_x1 + 1):
wx = wx0 if (src_x == src_x0) else wx1 if (src_x == src_x1) else 1.0
v = src[src_y, src_x]
if np.isfinite(v) and not (use_mask and mask[src_y, src_x]):
w = wx * wy
found = False
for i in range(value_count):
if v == values[i]:
frequencies[i] += w
found = True
break
if not found:
values[value_count] = v
frequencies[value_count] = w
value_count += 1
w_max = -1.
value = fill_value
if mode_rank == 1:
for i in range(value_count):
w = frequencies[i]
if w > w_max:
w_max = w
value = values[i]
elif mode_rank <= max_value_count:
max_frequencies = np.full(mode_rank, -1.0, dtype=np.float64)
indices = np.zeros(mode_rank, dtype=np.int64)
for i in range(value_count):
w = frequencies[i]
for j in range(mode_rank):
if w > max_frequencies[j]:
max_frequencies[j] = w
indices[j] = i
break
value = values[indices[mode_rank - 1]]
out[out_y, out_x] = value
return out
@ngjit_parallel
def _downsample_2d_mean(src, mask, use_mask, method, fill_value,
mode_rank, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
if src_w == out_w and src_h == out_h:
return src
if out_w > src_w or out_h > src_h:
raise ValueError("invalid target size")
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
scale_x = (src_w - x0_off - x1_off) / out_w
scale_y = (src_h - y0_off - y1_off) / out_h
for out_y in prange(out_h):
src_yf0 = (scale_y * out_y) + y0_off
src_yf1 = (src_yf0 + scale_y)
src_y0 = int(src_yf0)
src_y1 = int(src_yf1)
wy0 = 1.0 - (src_yf0 - src_y0)
wy1 = src_yf1 - src_y1
if wy1 < _EPS:
wy1 = 1.0
if src_y1 > src_y0:
src_y1 -= 1
for out_x in range(out_w):
src_xf0 = (scale_x * out_x) + x0_off
src_xf1 = src_xf0 + scale_x
src_x0 = int(src_xf0)
src_x1 = int(src_xf1)
wx0 = 1.0 - (src_xf0 - src_x0)
wx1 = src_xf1 - src_x1
if wx1 < _EPS:
wx1 = 1.0
if src_x1 > src_x0:
src_x1 -= 1
v_sum = 0.0
w_sum = 0.0
for src_y in range(src_y0, src_y1 + 1):
wy = wy0 if (src_y == src_y0) else wy1 if (src_y == src_y1) else 1.0
for src_x in range(src_x0, src_x1 + 1):
wx = wx0 if (src_x == src_x0) else wx1 if (src_x == src_x1) else 1.0
v = src[src_y, src_x]
if np.isfinite(v) and not (use_mask and mask[src_y, src_x]):
w = wx * wy
v_sum += w * v
w_sum += w
if w_sum < _EPS:
out[out_y, out_x] = fill_value
else:
out[out_y, out_x] = v_sum / w_sum
return out
@ngjit_parallel
def _downsample_2d_std_var(src, mask, use_mask, method, fill_value,
mode_rank, x_offset, y_offset, out):
src_w, src_h, out_w, out_h = _get_dimensions(src, out)
if src_w == out_w and src_h == out_h:
return src
if out_w > src_w or out_h > src_h:
raise ValueError("invalid target size")
x0_off, x1_off = x_offset
y0_off, y1_off = y_offset
scale_x = (src_w - x0_off - x1_off) / out_w
scale_y = (src_h - y0_off - y1_off) / out_h
for out_y in prange(out_h):
src_yf0 = (scale_y * out_y) + y0_off
src_yf1 = src_yf0 + scale_y
src_y0 = int(src_yf0)
src_y1 = int(src_yf1)
wy0 = 1.0 - (src_yf0 - src_y0)
wy1 = src_yf1 - src_y1
if wy1 < _EPS:
wy1 = 1.0
if src_y1 > src_y0:
src_y1 -= 1
for out_x in range(out_w):
src_xf0 = (scale_x * out_x) + x0_off
src_xf1 = src_xf0 + scale_x
src_x0 = int(src_xf0)
src_x1 = int(src_xf1)
wx0 = 1.0 - (src_xf0 - src_x0)
wx1 = src_xf1 - src_x1
if wx1 < _EPS:
wx1 = 1.0
if src_x1 > src_x0:
src_x1 -= 1
v_sum = 0.0
w_sum = 0.0
wv_sum = 0.0
wvv_sum = 0.0
for src_y in range(src_y0, src_y1 + 1):
wy = wy0 if (src_y == src_y0) else wy1 if (src_y == src_y1) else 1.0
for src_x in range(src_x0, src_x1 + 1):
wx = wx0 if (src_x == src_x0) else wx1 if (src_x == src_x1) else 1.0
v = src[src_y, src_x]
if np.isfinite(v) and not (use_mask and mask[src_y, src_x]):
w = wx * wy
v_sum += v
w_sum += w
wv_sum += w * v
wvv_sum += w * v * v
if w_sum < _EPS:
out[out_y, out_x] = fill_value
else:
out[out_y, out_x] = (wvv_sum * w_sum - wv_sum * wv_sum) / w_sum / w_sum
if method == DS_STD:
out = np.sqrt(out)
return out
DOWNSAMPLING_METHODS = {DS_MEAN: _downsample_2d_mean,
DS_FIRST: _downsample_2d_first_last,
DS_LAST: _downsample_2d_first_last,
DS_MIN: _downsample_2d_min_max,
DS_MAX: _downsample_2d_min_max,
DS_MODE: _downsample_2d_mode,
DS_STD: _downsample_2d_std_var,
DS_VAR: _downsample_2d_std_var}
def infer_interval_breaks(coord, axis=0):
"""
>>> infer_interval_breaks(np.arange(5))
array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5])
>>> infer_interval_breaks([[0, 1], [3, 4]], axis=1)
array([[-0.5, 0.5, 1.5],
[ 2.5, 3.5, 4.5]])
"""
if cupy and isinstance(coord, cupy.ndarray):
# leave cupy array as-is
pass
else:
coord = np.asarray(coord)
if len(coord) == 0:
return np.array([], dtype=coord.dtype)
deltas = 0.5 * np.diff(coord, axis=axis)
first = np.take(coord, [0], axis=axis) - np.take(deltas, [0], axis=axis)
last = np.take(coord, [-1], axis=axis) + np.take(deltas, [-1], axis=axis)
trim_last = tuple(slice(None, -1) if n == axis else slice(None)
for n in range(coord.ndim))
return np.concatenate([first, coord[trim_last] + deltas, last], axis=axis)