m7n's picture
first commit
d1ed09d
raw
history blame
55.9 kB
from __future__ import annotations
import codecs
import functools
import inspect
import os
import re
import shutil
import sys
import tempfile
import uuid
import warnings
from collections.abc import Hashable, Iterable, Iterator, Mapping, Set
from contextlib import contextmanager, nullcontext, suppress
from datetime import datetime, timedelta
from errno import ENOENT
from functools import lru_cache
from importlib import import_module
from numbers import Integral, Number
from operator import add
from threading import Lock
from typing import Any, ClassVar, Literal, TypeVar, overload
from weakref import WeakValueDictionary
import tlz as toolz
import dask
from dask import config
from dask.core import get_deps
K = TypeVar("K")
V = TypeVar("V")
T = TypeVar("T")
system_encoding = sys.getdefaultencoding()
if system_encoding == "ascii":
system_encoding = "utf-8"
def apply(func, args, kwargs=None):
"""Apply a function given its positional and keyword arguments.
Equivalent to ``func(*args, **kwargs)``
Most Dask users will never need to use the ``apply`` function.
It is typically only used by people who need to inject
keyword argument values into a low level Dask task graph.
Parameters
----------
func : callable
The function you want to apply.
args : tuple
A tuple containing all the positional arguments needed for ``func``
(eg: ``(arg_1, arg_2, arg_3)``)
kwargs : dict, optional
A dictionary mapping the keyword arguments
(eg: ``{"kwarg_1": value, "kwarg_2": value}``
Examples
--------
>>> from dask.utils import apply
>>> def add(number, second_number=5):
... return number + second_number
...
>>> apply(add, (10,), {"second_number": 2}) # equivalent to add(*args, **kwargs)
12
>>> task = apply(add, (10,), {"second_number": 2})
>>> dsk = {'task-name': task} # adds the task to a low level Dask task graph
"""
if kwargs:
return func(*args, **kwargs)
else:
return func(*args)
def _deprecated(
*,
version: str | None = None,
after_version: str | None = None,
message: str | None = None,
use_instead: str | None = None,
category: type[Warning] = FutureWarning,
):
"""Decorator to mark a function as deprecated
Parameters
----------
version : str, optional
Version of Dask in which the function was deprecated. If specified, the version
will be included in the default warning message. This should no longer be used
after the introduction of automated versioning system.
after_version : str, optional
Version of Dask after which the function was deprecated. If specified, the
version will be included in the default warning message.
message : str, optional
Custom warning message to raise.
use_instead : str, optional
Name of function to use in place of the deprecated function.
If specified, this will be included in the default warning
message.
category : type[Warning], optional
Type of warning to raise. Defaults to ``FutureWarning``.
Examples
--------
>>> from dask.utils import _deprecated
>>> @_deprecated(after_version="X.Y.Z", use_instead="bar")
... def foo():
... return "baz"
"""
def decorator(func):
if message is None:
msg = f"{func.__name__} "
if after_version is not None:
msg += f"was deprecated after version {after_version} "
elif version is not None:
msg += f"was deprecated in version {version} "
else:
msg += "is deprecated "
msg += "and will be removed in a future release."
if use_instead is not None:
msg += f" Please use {use_instead} instead."
else:
msg = message
@functools.wraps(func)
def wrapper(*args, **kwargs):
warnings.warn(msg, category=category, stacklevel=2)
return func(*args, **kwargs)
return wrapper
return decorator
def deepmap(func, *seqs):
"""Apply function inside nested lists
>>> inc = lambda x: x + 1
>>> deepmap(inc, [[1, 2], [3, 4]])
[[2, 3], [4, 5]]
>>> add = lambda x, y: x + y
>>> deepmap(add, [[1, 2], [3, 4]], [[10, 20], [30, 40]])
[[11, 22], [33, 44]]
"""
if isinstance(seqs[0], (list, Iterator)):
return [deepmap(func, *items) for items in zip(*seqs)]
else:
return func(*seqs)
@_deprecated()
def homogeneous_deepmap(func, seq):
if not seq:
return seq
n = 0
tmp = seq
while isinstance(tmp, list):
n += 1
tmp = tmp[0]
return ndeepmap(n, func, seq)
def ndeepmap(n, func, seq):
"""Call a function on every element within a nested container
>>> def inc(x):
... return x + 1
>>> L = [[1, 2], [3, 4, 5]]
>>> ndeepmap(2, inc, L)
[[2, 3], [4, 5, 6]]
"""
if n == 1:
return [func(item) for item in seq]
elif n > 1:
return [ndeepmap(n - 1, func, item) for item in seq]
elif isinstance(seq, list):
return func(seq[0])
else:
return func(seq)
def import_required(mod_name, error_msg):
"""Attempt to import a required dependency.
Raises a RuntimeError if the requested module is not available.
"""
try:
return import_module(mod_name)
except ImportError as e:
raise RuntimeError(error_msg) from e
@contextmanager
def tmpfile(extension="", dir=None):
"""
Function to create and return a unique temporary file with the given extension, if provided.
Parameters
----------
extension : str
The extension of the temporary file to be created
dir : str
If ``dir`` is not None, the file will be created in that directory; otherwise,
Python's default temporary directory is used.
Returns
-------
out : str
Path to the temporary file
See Also
--------
NamedTemporaryFile : Built-in alternative for creating temporary files
tmp_path : pytest fixture for creating a temporary directory unique to the test invocation
Notes
-----
This context manager is particularly useful on Windows for opening temporary files multiple times.
"""
extension = extension.lstrip(".")
if extension:
extension = "." + extension
handle, filename = tempfile.mkstemp(extension, dir=dir)
os.close(handle)
os.remove(filename)
try:
yield filename
finally:
if os.path.exists(filename):
with suppress(OSError): # sometimes we can't remove a generated temp file
if os.path.isdir(filename):
shutil.rmtree(filename)
else:
os.remove(filename)
@contextmanager
def tmpdir(dir=None):
"""
Function to create and return a unique temporary directory.
Parameters
----------
dir : str
If ``dir`` is not None, the directory will be created in that directory; otherwise,
Python's default temporary directory is used.
Returns
-------
out : str
Path to the temporary directory
Notes
-----
This context manager is particularly useful on Windows for opening temporary directories multiple times.
"""
dirname = tempfile.mkdtemp(dir=dir)
try:
yield dirname
finally:
if os.path.exists(dirname):
if os.path.isdir(dirname):
with suppress(OSError):
shutil.rmtree(dirname)
else:
with suppress(OSError):
os.remove(dirname)
@contextmanager
def filetext(text, extension="", open=open, mode="w"):
with tmpfile(extension=extension) as filename:
f = open(filename, mode=mode)
try:
f.write(text)
finally:
try:
f.close()
except AttributeError:
pass
yield filename
@contextmanager
def changed_cwd(new_cwd):
old_cwd = os.getcwd()
os.chdir(new_cwd)
try:
yield
finally:
os.chdir(old_cwd)
@contextmanager
def tmp_cwd(dir=None):
with tmpdir(dir) as dirname:
with changed_cwd(dirname):
yield dirname
class IndexCallable:
"""Provide getitem syntax for functions
>>> def inc(x):
... return x + 1
>>> I = IndexCallable(inc)
>>> I[3]
4
"""
__slots__ = ("fn",)
def __init__(self, fn):
self.fn = fn
def __getitem__(self, key):
return self.fn(key)
@contextmanager
def filetexts(d, open=open, mode="t", use_tmpdir=True):
"""Dumps a number of textfiles to disk
Parameters
----------
d : dict
a mapping from filename to text like {'a.csv': '1,1\n2,2'}
Since this is meant for use in tests, this context manager will
automatically switch to a temporary current directory, to avoid
race conditions when running tests in parallel.
"""
with tmp_cwd() if use_tmpdir else nullcontext():
for filename, text in d.items():
try:
os.makedirs(os.path.dirname(filename))
except OSError:
pass
f = open(filename, "w" + mode)
try:
f.write(text)
finally:
try:
f.close()
except AttributeError:
pass
yield list(d)
for filename in d:
if os.path.exists(filename):
with suppress(OSError):
os.remove(filename)
def concrete(seq):
"""Make nested iterators concrete lists
>>> data = [[1, 2], [3, 4]]
>>> seq = iter(map(iter, data))
>>> concrete(seq)
[[1, 2], [3, 4]]
"""
if isinstance(seq, Iterator):
seq = list(seq)
if isinstance(seq, (tuple, list)):
seq = list(map(concrete, seq))
return seq
def pseudorandom(n: int, p, random_state=None):
"""Pseudorandom array of integer indexes
>>> pseudorandom(5, [0.5, 0.5], random_state=123)
array([1, 0, 0, 1, 1], dtype=int8)
>>> pseudorandom(10, [0.5, 0.2, 0.2, 0.1], random_state=5)
array([0, 2, 0, 3, 0, 1, 2, 1, 0, 0], dtype=int8)
"""
import numpy as np
p = list(p)
cp = np.cumsum([0] + p)
assert np.allclose(1, cp[-1])
assert len(p) < 256
if not isinstance(random_state, np.random.RandomState):
random_state = np.random.RandomState(random_state)
x = random_state.random_sample(n)
out = np.empty(n, dtype="i1")
for i, (low, high) in enumerate(zip(cp[:-1], cp[1:])):
out[(x >= low) & (x < high)] = i
return out
def random_state_data(n: int, random_state=None) -> list:
"""Return a list of arrays that can initialize
``np.random.RandomState``.
Parameters
----------
n : int
Number of arrays to return.
random_state : int or np.random.RandomState, optional
If an int, is used to seed a new ``RandomState``.
"""
import numpy as np
if not all(
hasattr(random_state, attr) for attr in ["normal", "beta", "bytes", "uniform"]
):
random_state = np.random.RandomState(random_state)
random_data = random_state.bytes(624 * n * 4) # `n * 624` 32-bit integers
l = list(np.frombuffer(random_data, dtype=np.uint32).reshape((n, -1)))
assert len(l) == n
return l
def is_integer(i) -> bool:
"""
>>> is_integer(6)
True
>>> is_integer(42.0)
True
>>> is_integer('abc')
False
"""
return isinstance(i, Integral) or (isinstance(i, float) and i.is_integer())
ONE_ARITY_BUILTINS = {
abs,
all,
any,
ascii,
bool,
bytearray,
bytes,
callable,
chr,
classmethod,
complex,
dict,
dir,
enumerate,
eval,
float,
format,
frozenset,
hash,
hex,
id,
int,
iter,
len,
list,
max,
min,
next,
oct,
open,
ord,
range,
repr,
reversed,
round,
set,
slice,
sorted,
staticmethod,
str,
sum,
tuple,
type,
vars,
zip,
memoryview,
}
MULTI_ARITY_BUILTINS = {
compile,
delattr,
divmod,
filter,
getattr,
hasattr,
isinstance,
issubclass,
map,
pow,
setattr,
}
def getargspec(func):
"""Version of inspect.getargspec that works with partial and warps."""
if isinstance(func, functools.partial):
return getargspec(func.func)
func = getattr(func, "__wrapped__", func)
if isinstance(func, type):
return inspect.getfullargspec(func.__init__)
else:
return inspect.getfullargspec(func)
def takes_multiple_arguments(func, varargs=True):
"""Does this function take multiple arguments?
>>> def f(x, y): pass
>>> takes_multiple_arguments(f)
True
>>> def f(x): pass
>>> takes_multiple_arguments(f)
False
>>> def f(x, y=None): pass
>>> takes_multiple_arguments(f)
False
>>> def f(*args): pass
>>> takes_multiple_arguments(f)
True
>>> class Thing:
... def __init__(self, a): pass
>>> takes_multiple_arguments(Thing)
False
"""
if func in ONE_ARITY_BUILTINS:
return False
elif func in MULTI_ARITY_BUILTINS:
return True
try:
spec = getargspec(func)
except Exception:
return False
try:
is_constructor = spec.args[0] == "self" and isinstance(func, type)
except Exception:
is_constructor = False
if varargs and spec.varargs:
return True
ndefaults = 0 if spec.defaults is None else len(spec.defaults)
return len(spec.args) - ndefaults - is_constructor > 1
def get_named_args(func) -> list[str]:
"""Get all non ``*args/**kwargs`` arguments for a function"""
s = inspect.signature(func)
return [
n
for n, p in s.parameters.items()
if p.kind in [p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY, p.KEYWORD_ONLY]
]
class Dispatch:
"""Simple single dispatch."""
def __init__(self, name=None):
self._lookup = {}
self._lazy = {}
if name:
self.__name__ = name
def register(self, type, func=None):
"""Register dispatch of `func` on arguments of type `type`"""
def wrapper(func):
if isinstance(type, tuple):
for t in type:
self.register(t, func)
else:
self._lookup[type] = func
return func
return wrapper(func) if func is not None else wrapper
def register_lazy(self, toplevel, func=None):
"""
Register a registration function which will be called if the
*toplevel* module (e.g. 'pandas') is ever loaded.
"""
def wrapper(func):
self._lazy[toplevel] = func
return func
return wrapper(func) if func is not None else wrapper
def dispatch(self, cls):
"""Return the function implementation for the given ``cls``"""
lk = self._lookup
for cls2 in cls.__mro__:
try:
impl = lk[cls2]
except KeyError:
pass
else:
if cls is not cls2:
# Cache lookup
lk[cls] = impl
return impl
# Is a lazy registration function present?
toplevel, _, _ = cls2.__module__.partition(".")
try:
register = self._lazy[toplevel]
except KeyError:
pass
else:
register()
self._lazy.pop(toplevel, None)
return self.dispatch(cls) # recurse
raise TypeError(f"No dispatch for {cls}")
def __call__(self, arg, *args, **kwargs):
"""
Call the corresponding method based on type of argument.
"""
meth = self.dispatch(type(arg))
return meth(arg, *args, **kwargs)
@property
def __doc__(self):
try:
func = self.dispatch(object)
return func.__doc__
except TypeError:
return "Single Dispatch for %s" % self.__name__
def ensure_not_exists(filename) -> None:
"""
Ensure that a file does not exist.
"""
try:
os.unlink(filename)
except OSError as e:
if e.errno != ENOENT:
raise
def _skip_doctest(line):
# NumPy docstring contains cursor and comment only example
stripped = line.strip()
if stripped == ">>>" or stripped.startswith(">>> #"):
return line
elif ">>>" in stripped and "+SKIP" not in stripped:
if "# doctest:" in line:
return line + ", +SKIP"
else:
return line + " # doctest: +SKIP"
else:
return line
def skip_doctest(doc):
if doc is None:
return ""
return "\n".join([_skip_doctest(line) for line in doc.split("\n")])
def extra_titles(doc):
lines = doc.split("\n")
titles = {
i: lines[i].strip()
for i in range(len(lines) - 1)
if lines[i + 1].strip() and all(c == "-" for c in lines[i + 1].strip())
}
seen = set()
for i, title in sorted(titles.items()):
if title in seen:
new_title = "Extra " + title
lines[i] = lines[i].replace(title, new_title)
lines[i + 1] = lines[i + 1].replace("-" * len(title), "-" * len(new_title))
else:
seen.add(title)
return "\n".join(lines)
def ignore_warning(doc, cls, name, extra="", skipblocks=0, inconsistencies=None):
"""Expand docstring by adding disclaimer and extra text"""
import inspect
if inspect.isclass(cls):
l1 = "This docstring was copied from {}.{}.{}.\n\n".format(
cls.__module__,
cls.__name__,
name,
)
else:
l1 = f"This docstring was copied from {cls.__name__}.{name}.\n\n"
l2 = "Some inconsistencies with the Dask version may exist."
i = doc.find("\n\n")
if i != -1:
# Insert our warning
head = doc[: i + 2]
tail = doc[i + 2 :]
while skipblocks > 0:
i = tail.find("\n\n")
head = tail[: i + 2]
tail = tail[i + 2 :]
skipblocks -= 1
# Indentation of next line
indent = re.match(r"\s*", tail).group(0)
# Insert the warning, indented, with a blank line before and after
if extra:
more = [indent, extra.rstrip("\n") + "\n\n"]
else:
more = []
if inconsistencies is not None:
l3 = f"Known inconsistencies: \n {inconsistencies}"
bits = [head, indent, l1, l2, "\n\n", l3, "\n\n"] + more + [tail]
else:
bits = [head, indent, l1, indent, l2, "\n\n"] + more + [tail]
doc = "".join(bits)
return doc
def unsupported_arguments(doc, args):
"""Mark unsupported arguments with a disclaimer"""
lines = doc.split("\n")
for arg in args:
subset = [
(i, line)
for i, line in enumerate(lines)
if re.match(r"^\s*" + arg + " ?:", line)
]
if len(subset) == 1:
[(i, line)] = subset
lines[i] = line + " (Not supported in Dask)"
return "\n".join(lines)
def _derived_from(
cls, method, ua_args=None, extra="", skipblocks=0, inconsistencies=None
):
"""Helper function for derived_from to ease testing"""
ua_args = ua_args or []
# do not use wraps here, as it hides keyword arguments displayed
# in the doc
original_method = getattr(cls, method.__name__)
doc = getattr(original_method, "__doc__", None)
if isinstance(original_method, property):
# some things like SeriesGroupBy.unique are generated.
original_method = original_method.fget
if not doc:
doc = getattr(original_method, "__doc__", None)
if doc is None:
doc = ""
# pandas DataFrame/Series sometimes override methods without setting __doc__
if not doc and cls.__name__ in {"DataFrame", "Series"}:
for obj in cls.mro():
obj_method = getattr(obj, method.__name__, None)
if obj_method is not None and obj_method.__doc__:
doc = obj_method.__doc__
break
# Insert disclaimer that this is a copied docstring
if doc:
doc = ignore_warning(
doc,
cls,
method.__name__,
extra=extra,
skipblocks=skipblocks,
inconsistencies=inconsistencies,
)
elif extra:
doc += extra.rstrip("\n") + "\n\n"
# Mark unsupported arguments
try:
method_args = get_named_args(method)
original_args = get_named_args(original_method)
not_supported = [m for m in original_args if m not in method_args]
except ValueError:
not_supported = []
if len(ua_args) > 0:
not_supported.extend(ua_args)
if len(not_supported) > 0:
doc = unsupported_arguments(doc, not_supported)
doc = skip_doctest(doc)
doc = extra_titles(doc)
return doc
def derived_from(
original_klass, version=None, ua_args=None, skipblocks=0, inconsistencies=None
):
"""Decorator to attach original class's docstring to the wrapped method.
The output structure will be: top line of docstring, disclaimer about this
being auto-derived, any extra text associated with the method being patched,
the body of the docstring and finally, the list of keywords that exist in
the original method but not in the dask version.
Parameters
----------
original_klass: type
Original class which the method is derived from
version : str
Original package version which supports the wrapped method
ua_args : list
List of keywords which Dask doesn't support. Keywords existing in
original but not in Dask will automatically be added.
skipblocks : int
How many text blocks (paragraphs) to skip from the start of the
docstring. Useful for cases where the target has extra front-matter.
inconsistencies: list
List of known inconsistencies with method whose docstrings are being
copied.
"""
ua_args = ua_args or []
def wrapper(method):
try:
extra = getattr(method, "__doc__", None) or ""
method.__doc__ = _derived_from(
original_klass,
method,
ua_args=ua_args,
extra=extra,
skipblocks=skipblocks,
inconsistencies=inconsistencies,
)
return method
except AttributeError:
module_name = original_klass.__module__.split(".")[0]
@functools.wraps(method)
def wrapped(*args, **kwargs):
msg = f"Base package doesn't support '{method.__name__}'."
if version is not None:
msg2 = " Use {0} {1} or later to use this method."
msg += msg2.format(module_name, version)
raise NotImplementedError(msg)
return wrapped
return wrapper
def funcname(func) -> str:
"""Get the name of a function."""
# functools.partial
if isinstance(func, functools.partial):
return funcname(func.func)
# methodcaller
if isinstance(func, methodcaller):
return func.method[:50]
module_name = getattr(func, "__module__", None) or ""
type_name = getattr(type(func), "__name__", None) or ""
# toolz.curry
if "toolz" in module_name and "curry" == type_name:
return func.func_name[:50]
# multipledispatch objects
if "multipledispatch" in module_name and "Dispatcher" == type_name:
return func.name[:50]
# numpy.vectorize objects
if "numpy" in module_name and "vectorize" == type_name:
return ("vectorize_" + funcname(func.pyfunc))[:50]
# All other callables
try:
name = func.__name__
if name == "<lambda>":
return "lambda"
return name[:50]
except AttributeError:
return str(func)[:50]
def typename(typ: Any, short: bool = False) -> str:
"""
Return the name of a type
Examples
--------
>>> typename(int)
'int'
>>> from dask.core import literal
>>> typename(literal)
'dask.core.literal'
>>> typename(literal, short=True)
'dask.literal'
"""
if not isinstance(typ, type):
return typename(type(typ))
try:
if not typ.__module__ or typ.__module__ == "builtins":
return typ.__name__
else:
if short:
module, *_ = typ.__module__.split(".")
else:
module = typ.__module__
return module + "." + typ.__name__
except AttributeError:
return str(typ)
def ensure_bytes(s) -> bytes:
"""Attempt to turn `s` into bytes.
Parameters
----------
s : Any
The object to be converted. Will correctly handled
* str
* bytes
* objects implementing the buffer protocol (memoryview, ndarray, etc.)
Returns
-------
b : bytes
Raises
------
TypeError
When `s` cannot be converted
Examples
--------
>>> ensure_bytes('123')
b'123'
>>> ensure_bytes(b'123')
b'123'
>>> ensure_bytes(bytearray(b'123'))
b'123'
"""
if isinstance(s, bytes):
return s
elif hasattr(s, "encode"):
return s.encode()
else:
try:
return bytes(s)
except Exception as e:
raise TypeError(
f"Object {s} is neither a bytes object nor can be encoded to bytes"
) from e
def ensure_unicode(s) -> str:
"""Turn string or bytes to string
>>> ensure_unicode('123')
'123'
>>> ensure_unicode(b'123')
'123'
"""
if isinstance(s, str):
return s
elif hasattr(s, "decode"):
return s.decode()
else:
try:
return codecs.decode(s)
except Exception as e:
raise TypeError(
f"Object {s} is neither a str object nor can be decoded to str"
) from e
def digit(n, k, base):
"""
>>> digit(1234, 0, 10)
4
>>> digit(1234, 1, 10)
3
>>> digit(1234, 2, 10)
2
>>> digit(1234, 3, 10)
1
"""
return n // base**k % base
def insert(tup, loc, val):
"""
>>> insert(('a', 'b', 'c'), 0, 'x')
('x', 'b', 'c')
"""
L = list(tup)
L[loc] = val
return tuple(L)
def dependency_depth(dsk):
deps, _ = get_deps(dsk)
@lru_cache(maxsize=None)
def max_depth_by_deps(key):
if not deps[key]:
return 1
d = 1 + max(max_depth_by_deps(dep_key) for dep_key in deps[key])
return d
return max(max_depth_by_deps(dep_key) for dep_key in deps.keys())
def memory_repr(num):
for x in ["bytes", "KB", "MB", "GB", "TB"]:
if num < 1024.0:
return f"{num:3.1f} {x}"
num /= 1024.0
def asciitable(columns, rows):
"""Formats an ascii table for given columns and rows.
Parameters
----------
columns : list
The column names
rows : list of tuples
The rows in the table. Each tuple must be the same length as
``columns``.
"""
rows = [tuple(str(i) for i in r) for r in rows]
columns = tuple(str(i) for i in columns)
widths = tuple(max(max(map(len, x)), len(c)) for x, c in zip(zip(*rows), columns))
row_template = ("|" + (" %%-%ds |" * len(columns))) % widths
header = row_template % tuple(columns)
bar = "+%s+" % "+".join("-" * (w + 2) for w in widths)
data = "\n".join(row_template % r for r in rows)
return "\n".join([bar, header, bar, data, bar])
def put_lines(buf, lines):
if any(not isinstance(x, str) for x in lines):
lines = [str(x) for x in lines]
buf.write("\n".join(lines))
_method_cache: dict[str, methodcaller] = {}
class methodcaller:
"""
Return a callable object that calls the given method on its operand.
Unlike the builtin `operator.methodcaller`, instances of this class are
cached and arguments are passed at call time instead of build time.
"""
__slots__ = ("method",)
method: str
@property
def func(self) -> str:
# For `funcname` to work
return self.method
def __new__(cls, method: str):
try:
return _method_cache[method]
except KeyError:
self = object.__new__(cls)
self.method = method
_method_cache[method] = self
return self
def __call__(self, __obj, *args, **kwargs):
return getattr(__obj, self.method)(*args, **kwargs)
def __reduce__(self):
return (methodcaller, (self.method,))
def __str__(self):
return f"<{self.__class__.__name__}: {self.method}>"
__repr__ = __str__
class itemgetter:
"""Variant of operator.itemgetter that supports equality tests"""
__slots__ = ("index",)
def __init__(self, index):
self.index = index
def __call__(self, x):
return x[self.index]
def __reduce__(self):
return (itemgetter, (self.index,))
def __eq__(self, other):
return type(self) is type(other) and self.index == other.index
class MethodCache:
"""Attribute access on this object returns a methodcaller for that
attribute.
Examples
--------
>>> a = [1, 3, 3]
>>> M.count(a, 3) == a.count(3)
True
"""
def __getattr__(self, item):
return methodcaller(item)
def __dir__(self):
return list(_method_cache)
M = MethodCache()
class SerializableLock:
"""A Serializable per-process Lock
This wraps a normal ``threading.Lock`` object and satisfies the same
interface. However, this lock can also be serialized and sent to different
processes. It will not block concurrent operations between processes (for
this you should look at ``multiprocessing.Lock`` or ``locket.lock_file``
but will consistently deserialize into the same lock.
So if we make a lock in one process::
lock = SerializableLock()
And then send it over to another process multiple times::
bytes = pickle.dumps(lock)
a = pickle.loads(bytes)
b = pickle.loads(bytes)
Then the deserialized objects will operate as though they were the same
lock, and collide as appropriate.
This is useful for consistently protecting resources on a per-process
level.
The creation of locks is itself not threadsafe.
"""
_locks: ClassVar[WeakValueDictionary[Hashable, Lock]] = WeakValueDictionary()
token: Hashable
lock: Lock
def __init__(self, token: Hashable | None = None):
self.token = token or str(uuid.uuid4())
if self.token in SerializableLock._locks:
self.lock = SerializableLock._locks[self.token]
else:
self.lock = Lock()
SerializableLock._locks[self.token] = self.lock
def acquire(self, *args, **kwargs):
return self.lock.acquire(*args, **kwargs)
def release(self, *args, **kwargs):
return self.lock.release(*args, **kwargs)
def __enter__(self):
self.lock.__enter__()
def __exit__(self, *args):
self.lock.__exit__(*args)
def locked(self):
return self.lock.locked()
def __getstate__(self):
return self.token
def __setstate__(self, token):
self.__init__(token)
def __str__(self):
return f"<{self.__class__.__name__}: {self.token}>"
__repr__ = __str__
def get_scheduler_lock(collection=None, scheduler=None):
"""Get an instance of the appropriate lock for a certain situation based on
scheduler used."""
from dask import multiprocessing
from dask.base import get_scheduler
actual_get = get_scheduler(collections=[collection], scheduler=scheduler)
if actual_get == multiprocessing.get:
return multiprocessing.get_context().Manager().Lock()
return SerializableLock()
def ensure_dict(d: Mapping[K, V], *, copy: bool = False) -> dict[K, V]:
"""Convert a generic Mapping into a dict.
Optimize use case of :class:`~dask.highlevelgraph.HighLevelGraph`.
Parameters
----------
d : Mapping
copy : bool
If True, guarantee that the return value is always a shallow copy of d;
otherwise it may be the input itself.
"""
if type(d) is dict:
return d.copy() if copy else d
try:
layers = d.layers # type: ignore
except AttributeError:
return dict(d)
result = {}
for layer in toolz.unique(layers.values(), key=id):
result.update(layer)
return result
def ensure_set(s: Set[T], *, copy: bool = False) -> set[T]:
"""Convert a generic Set into a set.
Parameters
----------
s : Set
copy : bool
If True, guarantee that the return value is always a shallow copy of s;
otherwise it may be the input itself.
"""
if type(s) is set:
return s.copy() if copy else s
return set(s)
class OperatorMethodMixin:
"""A mixin for dynamically implementing operators"""
__slots__ = ()
@classmethod
def _bind_operator(cls, op):
"""bind operator to this class"""
name = op.__name__
if name.endswith("_"):
# for and_ and or_
name = name[:-1]
elif name == "inv":
name = "invert"
meth = f"__{name}__"
if name in ("abs", "invert", "neg", "pos"):
setattr(cls, meth, cls._get_unary_operator(op))
else:
setattr(cls, meth, cls._get_binary_operator(op))
if name in ("eq", "gt", "ge", "lt", "le", "ne", "getitem"):
return
rmeth = f"__r{name}__"
setattr(cls, rmeth, cls._get_binary_operator(op, inv=True))
@classmethod
def _get_unary_operator(cls, op):
"""Must return a method used by unary operator"""
raise NotImplementedError
@classmethod
def _get_binary_operator(cls, op, inv=False):
"""Must return a method used by binary operator"""
raise NotImplementedError
def partial_by_order(*args, **kwargs):
"""
>>> from operator import add
>>> partial_by_order(5, function=add, other=[(1, 10)])
15
"""
function = kwargs.pop("function")
other = kwargs.pop("other")
args2 = list(args)
for i, arg in other:
args2.insert(i, arg)
return function(*args2, **kwargs)
def is_arraylike(x) -> bool:
"""Is this object a numpy array or something similar?
This function tests specifically for an object that already has
array attributes (e.g. np.ndarray, dask.array.Array, cupy.ndarray,
sparse.COO), **NOT** for something that can be coerced into an
array object (e.g. Python lists and tuples). It is meant for dask
developers and developers of downstream libraries.
Note that this function does not correspond with NumPy's
definition of array_like, which includes any object that can be
coerced into an array (see definition in the NumPy glossary):
https://numpy.org/doc/stable/glossary.html
Examples
--------
>>> import numpy as np
>>> is_arraylike(np.ones(5))
True
>>> is_arraylike(np.ones(()))
True
>>> is_arraylike(5)
False
>>> is_arraylike('cat')
False
"""
from dask.base import is_dask_collection
is_duck_array = hasattr(x, "__array_function__") or hasattr(x, "__array_ufunc__")
return bool(
hasattr(x, "shape")
and isinstance(x.shape, tuple)
and hasattr(x, "dtype")
and not any(is_dask_collection(n) for n in x.shape)
# We special case scipy.sparse and cupyx.scipy.sparse arrays as having partial
# support for them is useful in scenarios where we mostly call `map_partitions`
# or `map_blocks` with scikit-learn functions on dask arrays and dask dataframes.
# https://github.com/dask/dask/pull/3738
and (is_duck_array or "scipy.sparse" in typename(type(x)))
)
def is_dataframe_like(df) -> bool:
"""Looks like a Pandas DataFrame"""
if (df.__class__.__module__, df.__class__.__name__) == (
"pandas.core.frame",
"DataFrame",
):
# fast exec for most likely input
return True
typ = df.__class__
return (
all(hasattr(typ, name) for name in ("groupby", "head", "merge", "mean"))
and all(hasattr(df, name) for name in ("dtypes", "columns"))
and not any(hasattr(typ, name) for name in ("name", "dtype"))
)
def is_series_like(s) -> bool:
"""Looks like a Pandas Series"""
typ = s.__class__
return (
all(hasattr(typ, name) for name in ("groupby", "head", "mean"))
and all(hasattr(s, name) for name in ("dtype", "name"))
and "index" not in typ.__name__.lower()
)
def is_index_like(s) -> bool:
"""Looks like a Pandas Index"""
typ = s.__class__
return (
all(hasattr(s, name) for name in ("name", "dtype"))
and "index" in typ.__name__.lower()
)
def is_cupy_type(x) -> bool:
# TODO: avoid explicit reference to CuPy
return "cupy" in str(type(x))
def natural_sort_key(s: str) -> list[str | int]:
"""
Sorting `key` function for performing a natural sort on a collection of
strings
See https://en.wikipedia.org/wiki/Natural_sort_order
Parameters
----------
s : str
A string that is an element of the collection being sorted
Returns
-------
tuple[str or int]
Tuple of the parts of the input string where each part is either a
string or an integer
Examples
--------
>>> a = ['f0', 'f1', 'f2', 'f8', 'f9', 'f10', 'f11', 'f19', 'f20', 'f21']
>>> sorted(a)
['f0', 'f1', 'f10', 'f11', 'f19', 'f2', 'f20', 'f21', 'f8', 'f9']
>>> sorted(a, key=natural_sort_key)
['f0', 'f1', 'f2', 'f8', 'f9', 'f10', 'f11', 'f19', 'f20', 'f21']
"""
return [int(part) if part.isdigit() else part for part in re.split(r"(\d+)", s)]
def parse_bytes(s: float | str) -> int:
"""Parse byte string to numbers
>>> from dask.utils import parse_bytes
>>> parse_bytes('100')
100
>>> parse_bytes('100 MB')
100000000
>>> parse_bytes('100M')
100000000
>>> parse_bytes('5kB')
5000
>>> parse_bytes('5.4 kB')
5400
>>> parse_bytes('1kiB')
1024
>>> parse_bytes('1e6')
1000000
>>> parse_bytes('1e6 kB')
1000000000
>>> parse_bytes('MB')
1000000
>>> parse_bytes(123)
123
>>> parse_bytes('5 foos')
Traceback (most recent call last):
...
ValueError: Could not interpret 'foos' as a byte unit
"""
if isinstance(s, (int, float)):
return int(s)
s = s.replace(" ", "")
if not any(char.isdigit() for char in s):
s = "1" + s
for i in range(len(s) - 1, -1, -1):
if not s[i].isalpha():
break
index = i + 1
prefix = s[:index]
suffix = s[index:]
try:
n = float(prefix)
except ValueError as e:
raise ValueError("Could not interpret '%s' as a number" % prefix) from e
try:
multiplier = byte_sizes[suffix.lower()]
except KeyError as e:
raise ValueError("Could not interpret '%s' as a byte unit" % suffix) from e
result = n * multiplier
return int(result)
byte_sizes = {
"kB": 10**3,
"MB": 10**6,
"GB": 10**9,
"TB": 10**12,
"PB": 10**15,
"KiB": 2**10,
"MiB": 2**20,
"GiB": 2**30,
"TiB": 2**40,
"PiB": 2**50,
"B": 1,
"": 1,
}
byte_sizes = {k.lower(): v for k, v in byte_sizes.items()}
byte_sizes.update({k[0]: v for k, v in byte_sizes.items() if k and "i" not in k})
byte_sizes.update({k[:-1]: v for k, v in byte_sizes.items() if k and "i" in k})
def format_time(n: float) -> str:
"""format integers as time
>>> from dask.utils import format_time
>>> format_time(1)
'1.00 s'
>>> format_time(0.001234)
'1.23 ms'
>>> format_time(0.00012345)
'123.45 us'
>>> format_time(123.456)
'123.46 s'
>>> format_time(1234.567)
'20m 34s'
>>> format_time(12345.67)
'3hr 25m'
>>> format_time(123456.78)
'34hr 17m'
>>> format_time(1234567.89)
'14d 6hr'
"""
if n > 24 * 60 * 60 * 2:
d = int(n / 3600 / 24)
h = int((n - d * 3600 * 24) / 3600)
return f"{d}d {h}hr"
if n > 60 * 60 * 2:
h = int(n / 3600)
m = int((n - h * 3600) / 60)
return f"{h}hr {m}m"
if n > 60 * 10:
m = int(n / 60)
s = int(n - m * 60)
return f"{m}m {s}s"
if n >= 1:
return "%.2f s" % n
if n >= 1e-3:
return "%.2f ms" % (n * 1e3)
return "%.2f us" % (n * 1e6)
def format_time_ago(n: datetime) -> str:
"""Calculate a '3 hours ago' type string from a Python datetime.
Examples
--------
>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> format_time_ago(now)
'Just now'
>>> past = datetime.now() - timedelta(minutes=1)
>>> format_time_ago(past)
'1 minute ago'
>>> past = datetime.now() - timedelta(minutes=2)
>>> format_time_ago(past)
'2 minutes ago'
>>> past = datetime.now() - timedelta(hours=1)
>>> format_time_ago(past)
'1 hour ago'
>>> past = datetime.now() - timedelta(hours=6)
>>> format_time_ago(past)
'6 hours ago'
>>> past = datetime.now() - timedelta(days=1)
>>> format_time_ago(past)
'1 day ago'
>>> past = datetime.now() - timedelta(days=5)
>>> format_time_ago(past)
'5 days ago'
>>> past = datetime.now() - timedelta(days=8)
>>> format_time_ago(past)
'1 week ago'
>>> past = datetime.now() - timedelta(days=16)
>>> format_time_ago(past)
'2 weeks ago'
>>> past = datetime.now() - timedelta(days=190)
>>> format_time_ago(past)
'6 months ago'
>>> past = datetime.now() - timedelta(days=800)
>>> format_time_ago(past)
'2 years ago'
"""
units = {
"years": lambda diff: diff.days / 365,
"months": lambda diff: diff.days / 30.436875, # Average days per month
"weeks": lambda diff: diff.days / 7,
"days": lambda diff: diff.days,
"hours": lambda diff: diff.seconds / 3600,
"minutes": lambda diff: diff.seconds % 3600 / 60,
}
diff = datetime.now() - n
for unit in units:
dur = int(units[unit](diff))
if dur > 0:
if dur == 1: # De-pluralize
unit = unit[:-1]
return f"{dur} {unit} ago"
return "Just now"
def format_bytes(n: int) -> str:
"""Format bytes as text
>>> from dask.utils import format_bytes
>>> format_bytes(1)
'1 B'
>>> format_bytes(1234)
'1.21 kiB'
>>> format_bytes(12345678)
'11.77 MiB'
>>> format_bytes(1234567890)
'1.15 GiB'
>>> format_bytes(1234567890000)
'1.12 TiB'
>>> format_bytes(1234567890000000)
'1.10 PiB'
For all values < 2**60, the output is always <= 10 characters.
"""
for prefix, k in (
("Pi", 2**50),
("Ti", 2**40),
("Gi", 2**30),
("Mi", 2**20),
("ki", 2**10),
):
if n >= k * 0.9:
return f"{n / k:.2f} {prefix}B"
return f"{n} B"
timedelta_sizes = {
"s": 1,
"ms": 1e-3,
"us": 1e-6,
"ns": 1e-9,
"m": 60,
"h": 3600,
"d": 3600 * 24,
"w": 7 * 3600 * 24,
}
tds2 = {
"second": 1,
"minute": 60,
"hour": 60 * 60,
"day": 60 * 60 * 24,
"week": 7 * 60 * 60 * 24,
"millisecond": 1e-3,
"microsecond": 1e-6,
"nanosecond": 1e-9,
}
tds2.update({k + "s": v for k, v in tds2.items()})
timedelta_sizes.update(tds2)
timedelta_sizes.update({k.upper(): v for k, v in timedelta_sizes.items()})
@overload
def parse_timedelta(s: None, default: str | Literal[False] = "seconds") -> None:
...
@overload
def parse_timedelta(
s: str | float | timedelta, default: str | Literal[False] = "seconds"
) -> float:
...
def parse_timedelta(s, default="seconds"):
"""Parse timedelta string to number of seconds
Parameters
----------
s : str, float, timedelta, or None
default: str or False, optional
Unit of measure if s does not specify one. Defaults to seconds.
Set to False to require s to explicitly specify its own unit.
Examples
--------
>>> from datetime import timedelta
>>> from dask.utils import parse_timedelta
>>> parse_timedelta('3s')
3
>>> parse_timedelta('3.5 seconds')
3.5
>>> parse_timedelta('300ms')
0.3
>>> parse_timedelta(timedelta(seconds=3)) # also supports timedeltas
3
"""
if s is None:
return None
if isinstance(s, timedelta):
s = s.total_seconds()
return int(s) if int(s) == s else s
if isinstance(s, Number):
s = str(s)
s = s.replace(" ", "")
if not s[0].isdigit():
s = "1" + s
for i in range(len(s) - 1, -1, -1):
if not s[i].isalpha():
break
index = i + 1
prefix = s[:index]
suffix = s[index:] or default
if suffix is False:
raise ValueError(f"Missing time unit: {s}")
if not isinstance(suffix, str):
raise TypeError(f"default must be str or False, got {default!r}")
n = float(prefix)
multiplier = timedelta_sizes[suffix.lower()]
result = n * multiplier
if int(result) == result:
result = int(result)
return result
def has_keyword(func, keyword):
try:
return keyword in inspect.signature(func).parameters
except Exception:
return False
def ndimlist(seq):
if not isinstance(seq, (list, tuple)):
return 0
elif not seq:
return 1
else:
return 1 + ndimlist(seq[0])
def iter_chunks(sizes, max_size):
"""Split sizes into chunks of total max_size each
Parameters
----------
sizes : iterable of numbers
The sizes to be chunked
max_size : number
Maximum total size per chunk.
It must be greater or equal than each size in sizes
"""
chunk, chunk_sum = [], 0
iter_sizes = iter(sizes)
size = next(iter_sizes, None)
while size is not None:
assert size <= max_size
if chunk_sum + size <= max_size:
chunk.append(size)
chunk_sum += size
size = next(iter_sizes, None)
else:
assert chunk
yield chunk
chunk, chunk_sum = [], 0
if chunk:
yield chunk
hex_pattern = re.compile("[a-f]+")
@functools.lru_cache(100000)
def key_split(s):
"""
>>> key_split('x')
'x'
>>> key_split('x-1')
'x'
>>> key_split('x-1-2-3')
'x'
>>> key_split(('x-2', 1))
'x'
>>> key_split("('x-2', 1)")
'x'
>>> key_split("('x', 1)")
'x'
>>> key_split('hello-world-1')
'hello-world'
>>> key_split(b'hello-world-1')
'hello-world'
>>> key_split('ae05086432ca935f6eba409a8ecd4896')
'data'
>>> key_split('<module.submodule.myclass object at 0xdaf372')
'myclass'
>>> key_split(None)
'Other'
>>> key_split('x-abcdefab') # ignores hex
'x'
>>> key_split('_(x)') # strips unpleasant characters
'x'
"""
if type(s) is bytes:
s = s.decode()
if type(s) is tuple:
s = s[0]
try:
words = s.split("-")
if not words[0][0].isalpha():
result = words[0].split(",")[0].strip("_'()\"")
else:
result = words[0]
for word in words[1:]:
if word.isalpha() and not (
len(word) == 8 and hex_pattern.match(word) is not None
):
result += "-" + word
else:
break
if len(result) == 32 and re.match(r"[a-f0-9]{32}", result):
return "data"
else:
if result[0] == "<":
result = result.strip("<>").split()[0].split(".")[-1]
return result
except Exception:
return "Other"
def stringify(obj, exclusive: Iterable | None = None):
"""Convert an object to a string
If ``exclusive`` is specified, search through `obj` and convert
values that are in ``exclusive``.
Note that when searching through dictionaries, only values are
converted, not the keys.
Parameters
----------
obj : Any
Object (or values within) to convert to string
exclusive: Iterable, optional
Set of values to search for when converting values to strings
Returns
-------
result : type(obj)
Stringified copy of ``obj`` or ``obj`` itself if it is already a
string or bytes.
Examples
--------
>>> stringify(b'x')
b'x'
>>> stringify('x')
'x'
>>> stringify({('a',0):('a',0), ('a',1): ('a',1)})
"{('a', 0): ('a', 0), ('a', 1): ('a', 1)}"
>>> stringify({('a',0):('a',0), ('a',1): ('a',1)}, exclusive={('a',0)})
{('a', 0): "('a', 0)", ('a', 1): ('a', 1)}
"""
typ = type(obj)
if typ is str or typ is bytes:
return obj
elif exclusive is None:
return str(obj)
if typ is tuple and obj:
from dask.optimization import SubgraphCallable
obj0 = obj[0]
if type(obj0) is SubgraphCallable:
obj0 = obj0
return (
SubgraphCallable(
stringify(obj0.dsk, exclusive),
obj0.outkey,
stringify(obj0.inkeys, exclusive),
obj0.name,
),
) + tuple(stringify(x, exclusive) for x in obj[1:])
elif callable(obj0):
return (obj0,) + tuple(stringify(x, exclusive) for x in obj[1:])
if typ is list:
return [stringify(v, exclusive) for v in obj]
if typ is dict:
return {k: stringify(v, exclusive) for k, v in obj.items()}
try:
if obj in exclusive:
return stringify(obj)
except TypeError: # `obj` not hashable
pass
if typ is tuple: # If the tuple itself isn't a key, check its elements
return tuple(stringify(v, exclusive) for v in obj)
return obj
def stringify_collection_keys(obj):
"""Convert all collection keys in ``obj`` to strings.
This is a specialized version of ``stringify()`` that only converts keys
of the form: ``("a string", ...)``
"""
typ = type(obj)
if typ is tuple and obj:
obj0 = obj[0]
if type(obj0) is str or type(obj0) is bytes:
return stringify(obj)
if callable(obj0):
return (obj0,) + tuple(stringify_collection_keys(x) for x in obj[1:])
if typ is list:
return [stringify_collection_keys(v) for v in obj]
if typ is dict:
return {k: stringify_collection_keys(v) for k, v in obj.items()}
if typ is tuple: # If the tuple itself isn't a key, check its elements
return tuple(stringify_collection_keys(v) for v in obj)
return obj
class cached_property(functools.cached_property):
"""Read only version of functools.cached_property."""
def __set__(self, instance, val):
"""Raise an error when attempting to set a cached property."""
raise AttributeError("Can't set attribute")
class _HashIdWrapper:
"""Hash and compare a wrapped object by identity instead of value"""
def __init__(self, wrapped):
self.wrapped = wrapped
def __eq__(self, other):
if not isinstance(other, _HashIdWrapper):
return NotImplemented
return self.wrapped is other.wrapped
def __ne__(self, other):
if not isinstance(other, _HashIdWrapper):
return NotImplemented
return self.wrapped is not other.wrapped
def __hash__(self):
return id(self.wrapped)
@functools.lru_cache
def _cumsum(seq, initial_zero):
if isinstance(seq, _HashIdWrapper):
seq = seq.wrapped
if initial_zero:
return tuple(toolz.accumulate(add, seq, 0))
else:
return tuple(toolz.accumulate(add, seq))
def cached_cumsum(seq, initial_zero=False):
"""Compute :meth:`toolz.accumulate` with caching.
Caching is by the identify of `seq` rather than the value. It is thus
important that `seq` is a tuple of immutable objects, and this function
is intended for use where `seq` is a value that will persist (generally
block sizes).
Parameters
----------
seq : tuple
Values to cumulatively sum.
initial_zero : bool, optional
If true, the return value is prefixed with a zero.
Returns
-------
tuple
"""
if isinstance(seq, tuple):
# Look up by identity first, to avoid a linear-time __hash__
# if we've seen this tuple object before.
result = _cumsum(_HashIdWrapper(seq), initial_zero)
else:
# Construct a temporary tuple, and look up by value.
result = _cumsum(tuple(seq), initial_zero)
return result
def show_versions() -> None:
"""Provide version information for bug reports."""
from importlib.metadata import PackageNotFoundError, version
from json import dumps
from platform import uname
from sys import stdout, version_info
try:
from distributed import __version__ as distributed_version
except ImportError:
distributed_version = None
from dask import __version__ as dask_version
deps = [
"numpy",
"pandas",
"cloudpickle",
"fsspec",
"bokeh",
"fastparquet",
"pyarrow",
"zarr",
]
result: dict[str, str | None] = {
# note: only major, minor, micro are extracted
"Python": ".".join([str(i) for i in version_info[:3]]),
"Platform": uname().system,
"dask": dask_version,
"distributed": distributed_version,
}
for modname in deps:
try:
result[modname] = version(modname)
except PackageNotFoundError:
result[modname] = None
stdout.writelines(dumps(result, indent=2))
return
def maybe_pluralize(count, noun, plural_form=None):
"""Pluralize a count-noun string pattern when necessary"""
if count == 1:
return f"{count} {noun}"
else:
return f"{count} {plural_form or noun + 's'}"
def is_namedtuple_instance(obj: Any) -> bool:
"""Returns True if obj is an instance of a namedtuple.
Note: This function checks for the existence of the methods and
attributes that make up the namedtuple API, so it will return True
IFF obj's type implements that API.
"""
return (
isinstance(obj, tuple)
and hasattr(obj, "_make")
and hasattr(obj, "_asdict")
and hasattr(obj, "_replace")
and hasattr(obj, "_fields")
and hasattr(obj, "_field_defaults")
)
def get_default_shuffle_algorithm() -> str:
if d := config.get("dataframe.shuffle.algorithm", None):
return d
try:
from distributed import default_client
default_client()
# We might lose annotations if low level fusion is active
if not dask.config.get("optimization.fuse.active"):
try:
from distributed.shuffle import check_minimal_arrow_version
check_minimal_arrow_version()
return "p2p"
except RuntimeError:
pass
return "tasks"
except (ImportError, ValueError):
return "disk"