Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numbers | |
import uuid | |
from enum import Enum | |
from dask import config, core, utils | |
from dask.core import ( | |
flatten, | |
get_dependencies, | |
ishashable, | |
istask, | |
reverse_dict, | |
subs, | |
toposort, | |
) | |
def cull(dsk, keys): | |
"""Return new dask with only the tasks required to calculate keys. | |
In other words, remove unnecessary tasks from dask. | |
``keys`` may be a single key or list of keys. | |
Examples | |
-------- | |
>>> def inc(x): | |
... return x + 1 | |
>>> def add(x, y): | |
... return x + y | |
>>> d = {'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)} | |
>>> dsk, dependencies = cull(d, 'out') | |
>>> dsk # doctest: +ELLIPSIS | |
{'out': (<function add at ...>, 'x', 10), 'x': 1} | |
>>> dependencies # doctest: +ELLIPSIS | |
{'out': ['x'], 'x': []} | |
Returns | |
------- | |
dsk: culled dask graph | |
dependencies: Dict mapping {key: [deps]}. Useful side effect to accelerate | |
other optimizations, notably fuse. | |
""" | |
if not isinstance(keys, (list, set)): | |
keys = [keys] | |
seen = set() | |
dependencies = dict() | |
out = {} | |
work = list(set(flatten(keys))) | |
while work: | |
new_work = [] | |
for k in work: | |
dependencies_k = get_dependencies(dsk, k, as_list=True) # fuse needs lists | |
out[k] = dsk[k] | |
dependencies[k] = dependencies_k | |
for d in dependencies_k: | |
if d not in seen: | |
seen.add(d) | |
new_work.append(d) | |
work = new_work | |
return out, dependencies | |
def default_fused_linear_keys_renamer(keys): | |
"""Create new keys for fused tasks""" | |
typ = type(keys[0]) | |
if typ is str: | |
names = [utils.key_split(x) for x in keys[:0:-1]] | |
names.append(keys[0]) | |
return "-".join(names) | |
elif typ is tuple and len(keys[0]) > 0 and isinstance(keys[0][0], str): | |
names = [utils.key_split(x) for x in keys[:0:-1]] | |
names.append(keys[0][0]) | |
return ("-".join(names),) + keys[0][1:] | |
else: | |
return None | |
def fuse_linear(dsk, keys=None, dependencies=None, rename_keys=True): | |
"""Return new dask graph with linear sequence of tasks fused together. | |
If specified, the keys in ``keys`` keyword argument are *not* fused. | |
Supply ``dependencies`` from output of ``cull`` if available to avoid | |
recomputing dependencies. | |
**This function is mostly superseded by ``fuse``** | |
Parameters | |
---------- | |
dsk: dict | |
keys: list | |
dependencies: dict, optional | |
{key: [list-of-keys]}. Must be a list to provide count of each key | |
This optional input often comes from ``cull`` | |
rename_keys: bool or func, optional | |
Whether to rename fused keys with ``default_fused_linear_keys_renamer`` | |
or not. Renaming fused keys can keep the graph more understandable | |
and comprehensive, but it comes at the cost of additional processing. | |
If False, then the top-most key will be used. For advanced usage, a | |
func is also accepted, ``new_key = rename_keys(fused_key_list)``. | |
Examples | |
-------- | |
>>> def inc(x): | |
... return x + 1 | |
>>> def add(x, y): | |
... return x + y | |
>>> d = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')} | |
>>> dsk, dependencies = fuse(d) | |
>>> dsk # doctest: +SKIP | |
{'a-b-c': (inc, (inc, 1)), 'c': 'a-b-c'} | |
>>> dsk, dependencies = fuse(d, rename_keys=False) | |
>>> dsk # doctest: +ELLIPSIS | |
{'c': (<function inc at ...>, (<function inc at ...>, 1))} | |
>>> dsk, dependencies = fuse(d, keys=['b'], rename_keys=False) | |
>>> dsk # doctest: +ELLIPSIS | |
{'b': (<function inc at ...>, 1), 'c': (<function inc at ...>, 'b')} | |
Returns | |
------- | |
dsk: output graph with keys fused | |
dependencies: dict mapping dependencies after fusion. Useful side effect | |
to accelerate other downstream optimizations. | |
""" | |
if keys is not None and not isinstance(keys, set): | |
if not isinstance(keys, list): | |
keys = [keys] | |
keys = set(flatten(keys)) | |
if dependencies is None: | |
dependencies = {k: get_dependencies(dsk, k, as_list=True) for k in dsk} | |
# locate all members of linear chains | |
child2parent = {} | |
unfusible = set() | |
for parent in dsk: | |
deps = dependencies[parent] | |
has_many_children = len(deps) > 1 | |
for child in deps: | |
if keys is not None and child in keys: | |
unfusible.add(child) | |
elif child in child2parent: | |
del child2parent[child] | |
unfusible.add(child) | |
elif has_many_children: | |
unfusible.add(child) | |
elif child not in unfusible: | |
child2parent[child] = parent | |
# construct the chains from ancestor to descendant | |
chains = [] | |
parent2child = dict(map(reversed, child2parent.items())) | |
while child2parent: | |
child, parent = child2parent.popitem() | |
chain = [child, parent] | |
while parent in child2parent: | |
parent = child2parent.pop(parent) | |
del parent2child[parent] | |
chain.append(parent) | |
chain.reverse() | |
while child in parent2child: | |
child = parent2child.pop(child) | |
del child2parent[child] | |
chain.append(child) | |
chains.append(chain) | |
dependencies = {k: set(v) for k, v in dependencies.items()} | |
if rename_keys is True: | |
key_renamer = default_fused_linear_keys_renamer | |
elif rename_keys is False: | |
key_renamer = None | |
else: | |
key_renamer = rename_keys | |
# create a new dask with fused chains | |
rv = {} | |
fused = set() | |
aliases = set() | |
is_renamed = False | |
for chain in chains: | |
if key_renamer is not None: | |
new_key = key_renamer(chain) | |
is_renamed = ( | |
new_key is not None and new_key not in dsk and new_key not in rv | |
) | |
child = chain.pop() | |
val = dsk[child] | |
while chain: | |
parent = chain.pop() | |
dependencies[parent].update(dependencies.pop(child)) | |
dependencies[parent].remove(child) | |
val = subs(dsk[parent], child, val) | |
fused.add(child) | |
child = parent | |
fused.add(child) | |
if is_renamed: | |
rv[new_key] = val | |
rv[child] = new_key | |
dependencies[new_key] = dependencies[child] | |
dependencies[child] = {new_key} | |
aliases.add(child) | |
else: | |
rv[child] = val | |
for key, val in dsk.items(): | |
if key not in fused: | |
rv[key] = val | |
if aliases: | |
for key, deps in dependencies.items(): | |
for old_key in deps & aliases: | |
new_key = rv[old_key] | |
deps.remove(old_key) | |
deps.add(new_key) | |
rv[key] = subs(rv[key], old_key, new_key) | |
if keys is not None: | |
for key in aliases - keys: | |
del rv[key] | |
del dependencies[key] | |
return rv, dependencies | |
def _flat_set(x): | |
if x is None: | |
return set() | |
elif isinstance(x, set): | |
return x | |
elif not isinstance(x, (list, set)): | |
x = [x] | |
return set(x) | |
def inline(dsk, keys=None, inline_constants=True, dependencies=None): | |
"""Return new dask with the given keys inlined with their values. | |
Inlines all constants if ``inline_constants`` keyword is True. Note that | |
the constant keys will remain in the graph, to remove them follow | |
``inline`` with ``cull``. | |
Examples | |
-------- | |
>>> def inc(x): | |
... return x + 1 | |
>>> def add(x, y): | |
... return x + y | |
>>> d = {'x': 1, 'y': (inc, 'x'), 'z': (add, 'x', 'y')} | |
>>> inline(d) # doctest: +ELLIPSIS | |
{'x': 1, 'y': (<function inc at ...>, 1), 'z': (<function add at ...>, 1, 'y')} | |
>>> inline(d, keys='y') # doctest: +ELLIPSIS | |
{'x': 1, 'y': (<function inc at ...>, 1), 'z': (<function add at ...>, 1, (<function inc at ...>, 1))} | |
>>> inline(d, keys='y', inline_constants=False) # doctest: +ELLIPSIS | |
{'x': 1, 'y': (<function inc at ...>, 'x'), 'z': (<function add at ...>, 'x', (<function inc at ...>, 'x'))} | |
""" | |
if dependencies and isinstance(next(iter(dependencies.values())), list): | |
dependencies = {k: set(v) for k, v in dependencies.items()} | |
keys = _flat_set(keys) | |
if dependencies is None: | |
dependencies = {k: get_dependencies(dsk, k) for k in dsk} | |
if inline_constants: | |
keys.update( | |
k | |
for k, v in dsk.items() | |
if (ishashable(v) and v in dsk) or (not dependencies[k] and not istask(v)) | |
) | |
# Keys may depend on other keys, so determine replace order with toposort. | |
# The values stored in `keysubs` do not include other keys. | |
replaceorder = toposort( | |
{k: dsk[k] for k in keys if k in dsk}, dependencies=dependencies | |
) | |
keysubs = {} | |
for key in replaceorder: | |
val = dsk[key] | |
for dep in keys & dependencies[key]: | |
if dep in keysubs: | |
replace = keysubs[dep] | |
else: | |
replace = dsk[dep] | |
val = subs(val, dep, replace) | |
keysubs[key] = val | |
# Make new dask with substitutions | |
dsk2 = keysubs.copy() | |
for key, val in dsk.items(): | |
if key not in dsk2: | |
for item in keys & dependencies[key]: | |
val = subs(val, item, keysubs[item]) | |
dsk2[key] = val | |
return dsk2 | |
def inline_functions( | |
dsk, output, fast_functions=None, inline_constants=False, dependencies=None | |
): | |
"""Inline cheap functions into larger operations | |
Examples | |
-------- | |
>>> inc = lambda x: x + 1 | |
>>> add = lambda x, y: x + y | |
>>> double = lambda x: x * 2 | |
>>> dsk = {'out': (add, 'i', 'd'), # doctest: +SKIP | |
... 'i': (inc, 'x'), | |
... 'd': (double, 'y'), | |
... 'x': 1, 'y': 1} | |
>>> inline_functions(dsk, [], [inc]) # doctest: +SKIP | |
{'out': (add, (inc, 'x'), 'd'), | |
'd': (double, 'y'), | |
'x': 1, 'y': 1} | |
Protect output keys. In the example below ``i`` is not inlined because it | |
is marked as an output key. | |
>>> inline_functions(dsk, ['i', 'out'], [inc, double]) # doctest: +SKIP | |
{'out': (add, 'i', (double, 'y')), | |
'i': (inc, 'x'), | |
'x': 1, 'y': 1} | |
""" | |
if not fast_functions: | |
return dsk | |
output = set(output) | |
fast_functions = set(fast_functions) | |
if dependencies is None: | |
dependencies = {k: get_dependencies(dsk, k) for k in dsk} | |
dependents = reverse_dict(dependencies) | |
def inlinable(v): | |
try: | |
return functions_of(v).issubset(fast_functions) | |
except TypeError: | |
return False | |
keys = [ | |
k | |
for k, v in dsk.items() | |
if istask(v) and dependents[k] and k not in output and inlinable(v) | |
] | |
if keys: | |
dsk = inline( | |
dsk, keys, inline_constants=inline_constants, dependencies=dependencies | |
) | |
for k in keys: | |
del dsk[k] | |
return dsk | |
def unwrap_partial(func): | |
while hasattr(func, "func"): | |
func = func.func | |
return func | |
def functions_of(task): | |
"""Set of functions contained within nested task | |
Examples | |
-------- | |
>>> inc = lambda x: x + 1 | |
>>> add = lambda x, y: x + y | |
>>> mul = lambda x, y: x * y | |
>>> task = (add, (mul, 1, 2), (inc, 3)) # doctest: +SKIP | |
>>> functions_of(task) # doctest: +SKIP | |
set([add, mul, inc]) | |
""" | |
funcs = set() | |
work = [task] | |
sequence_types = {list, tuple} | |
while work: | |
new_work = [] | |
for task in work: | |
if type(task) in sequence_types: | |
if istask(task): | |
funcs.add(unwrap_partial(task[0])) | |
new_work.extend(task[1:]) | |
else: | |
new_work.extend(task) | |
work = new_work | |
return funcs | |
def default_fused_keys_renamer(keys, max_fused_key_length=120): | |
"""Create new keys for ``fuse`` tasks. | |
The optional parameter `max_fused_key_length` is used to limit the maximum string length for each renamed key. | |
If this parameter is set to `None`, there is no limit. | |
""" | |
it = reversed(keys) | |
first_key = next(it) | |
typ = type(first_key) | |
if max_fused_key_length: # Take into account size of hash suffix | |
max_fused_key_length -= 5 | |
def _enforce_max_key_limit(key_name): | |
if max_fused_key_length and len(key_name) > max_fused_key_length: | |
name_hash = f"{hash(key_name):x}"[:4] | |
key_name = f"{key_name[:max_fused_key_length]}-{name_hash}" | |
return key_name | |
if typ is str: | |
first_name = utils.key_split(first_key) | |
names = {utils.key_split(k) for k in it} | |
names.discard(first_name) | |
names = sorted(names) | |
names.append(first_key) | |
concatenated_name = "-".join(names) | |
return _enforce_max_key_limit(concatenated_name) | |
elif typ is tuple and len(first_key) > 0 and isinstance(first_key[0], str): | |
first_name = utils.key_split(first_key) | |
names = {utils.key_split(k) for k in it} | |
names.discard(first_name) | |
names = sorted(names) | |
names.append(first_key[0]) | |
concatenated_name = "-".join(names) | |
return (_enforce_max_key_limit(concatenated_name),) + first_key[1:] | |
# PEP-484 compliant singleton constant | |
# https://www.python.org/dev/peps/pep-0484/#support-for-singleton-types-in-unions | |
class Default(Enum): | |
token = 0 | |
def __repr__(self) -> str: | |
return "<default>" | |
_default = Default.token | |
def fuse( | |
dsk, | |
keys=None, | |
dependencies=None, | |
ave_width=_default, | |
max_width=_default, | |
max_height=_default, | |
max_depth_new_edges=_default, | |
rename_keys=_default, | |
fuse_subgraphs=_default, | |
): | |
"""Fuse tasks that form reductions; more advanced than ``fuse_linear`` | |
This trades parallelism opportunities for faster scheduling by making tasks | |
less granular. It can replace ``fuse_linear`` in optimization passes. | |
This optimization applies to all reductions--tasks that have at most one | |
dependent--so it may be viewed as fusing "multiple input, single output" | |
groups of tasks into a single task. There are many parameters to fine | |
tune the behavior, which are described below. ``ave_width`` is the | |
natural parameter with which to compare parallelism to granularity, so | |
it should always be specified. Reasonable values for other parameters | |
will be determined using ``ave_width`` if necessary. | |
Parameters | |
---------- | |
dsk: dict | |
dask graph | |
keys: list or set, optional | |
Keys that must remain in the returned dask graph | |
dependencies: dict, optional | |
{key: [list-of-keys]}. Must be a list to provide count of each key | |
This optional input often comes from ``cull`` | |
ave_width: float (default 1) | |
Upper limit for ``width = num_nodes / height``, a good measure of | |
parallelizability. | |
dask.config key: ``optimization.fuse.ave-width`` | |
max_width: int (default infinite) | |
Don't fuse if total width is greater than this. | |
dask.config key: ``optimization.fuse.max-width`` | |
max_height: int or None (default None) | |
Don't fuse more than this many levels. Set to None to dynamically | |
adjust to ``1.5 + ave_width * log(ave_width + 1)``. | |
dask.config key: ``optimization.fuse.max-height`` | |
max_depth_new_edges: int or None (default None) | |
Don't fuse if new dependencies are added after this many levels. | |
Set to None to dynamically adjust to ave_width * 1.5. | |
dask.config key: ``optimization.fuse.max-depth-new-edges`` | |
rename_keys: bool or func, optional (default True) | |
Whether to rename the fused keys with ``default_fused_keys_renamer`` | |
or not. Renaming fused keys can keep the graph more understandable | |
and comprehensive, but it comes at the cost of additional processing. | |
If False, then the top-most key will be used. For advanced usage, a | |
function to create the new name is also accepted. | |
dask.config key: ``optimization.fuse.rename-keys`` | |
fuse_subgraphs : bool or None, optional (default None) | |
Whether to fuse multiple tasks into ``SubgraphCallable`` objects. | |
Set to None to let the default optimizer of individual dask collections decide. | |
If no collection-specific default exists, None defaults to False. | |
dask.config key: ``optimization.fuse.subgraphs`` | |
Returns | |
------- | |
dsk | |
output graph with keys fused | |
dependencies | |
dict mapping dependencies after fusion. Useful side effect to accelerate other | |
downstream optimizations. | |
""" | |
# Perform low-level fusion unless the user has | |
# specified False explicitly. | |
if config.get("optimization.fuse.active") is False: | |
return dsk, dependencies | |
if keys is not None and not isinstance(keys, set): | |
if not isinstance(keys, list): | |
keys = [keys] | |
keys = set(flatten(keys)) | |
# Read defaults from dask.yaml and/or user-defined config file | |
if ave_width is _default: | |
ave_width = config.get("optimization.fuse.ave-width") | |
assert ave_width is not _default | |
if max_height is _default: | |
max_height = config.get("optimization.fuse.max-height") | |
assert max_height is not _default | |
if max_depth_new_edges is _default: | |
max_depth_new_edges = config.get("optimization.fuse.max-depth-new-edges") | |
assert max_depth_new_edges is not _default | |
if max_depth_new_edges is None: | |
max_depth_new_edges = ave_width * 1.5 | |
if max_width is _default: | |
max_width = config.get("optimization.fuse.max-width") | |
assert max_width is not _default | |
if max_width is None: | |
max_width = 1.5 + ave_width * math.log(ave_width + 1) | |
if fuse_subgraphs is _default: | |
fuse_subgraphs = config.get("optimization.fuse.subgraphs") | |
assert fuse_subgraphs is not _default | |
if fuse_subgraphs is None: | |
fuse_subgraphs = False | |
if not ave_width or not max_height: | |
return dsk, dependencies | |
if rename_keys is _default: | |
rename_keys = config.get("optimization.fuse.rename-keys") | |
assert rename_keys is not _default | |
if rename_keys is True: | |
key_renamer = default_fused_keys_renamer | |
elif rename_keys is False: | |
key_renamer = None | |
elif not callable(rename_keys): | |
raise TypeError("rename_keys must be a boolean or callable") | |
else: | |
key_renamer = rename_keys | |
rename_keys = key_renamer is not None | |
if dependencies is None: | |
deps = {k: get_dependencies(dsk, k, as_list=True) for k in dsk} | |
else: | |
deps = dict(dependencies) | |
rdeps = {} | |
for k, vals in deps.items(): | |
for v in vals: | |
if v not in rdeps: | |
rdeps[v] = [k] | |
else: | |
rdeps[v].append(k) | |
deps[k] = set(vals) | |
reducible = {k for k, vals in rdeps.items() if len(vals) == 1} | |
if keys: | |
reducible -= keys | |
for k, v in dsk.items(): | |
if type(v) is not tuple and not isinstance(v, (numbers.Number, str)): | |
reducible.discard(k) | |
if not reducible and ( | |
not fuse_subgraphs or all(len(set(v)) != 1 for v in rdeps.values()) | |
): | |
# Quick return if there's nothing to do. Only progress if there's tasks | |
# fusible by the main `fuse`, or by `fuse_subgraphs` if enabled. | |
return dsk, deps | |
rv = dsk.copy() | |
fused_trees = {} | |
# These are the stacks we use to store data as we traverse the graph | |
info_stack = [] | |
children_stack = [] | |
# For speed | |
deps_pop = deps.pop | |
reducible_add = reducible.add | |
reducible_pop = reducible.pop | |
reducible_remove = reducible.remove | |
fused_trees_pop = fused_trees.pop | |
info_stack_append = info_stack.append | |
info_stack_pop = info_stack.pop | |
children_stack_append = children_stack.append | |
children_stack_extend = children_stack.extend | |
children_stack_pop = children_stack.pop | |
while reducible: | |
parent = reducible_pop() | |
reducible_add(parent) | |
while parent in reducible: | |
# Go to the top | |
parent = rdeps[parent][0] | |
children_stack_append(parent) | |
children_stack_extend(reducible & deps[parent]) | |
while True: | |
child = children_stack[-1] | |
if child != parent: | |
children = reducible & deps[child] | |
while children: | |
# Depth-first search | |
children_stack_extend(children) | |
parent = child | |
child = children_stack[-1] | |
children = reducible & deps[child] | |
children_stack_pop() | |
# This is a leaf node in the reduction region | |
# key, task, fused_keys, height, width, number of nodes, fudge, set of edges | |
info_stack_append( | |
( | |
child, | |
rv[child], | |
[child] if rename_keys else None, | |
1, | |
1, | |
1, | |
0, | |
deps[child] - reducible, | |
) | |
) | |
else: | |
children_stack_pop() | |
# Calculate metrics and fuse as appropriate | |
deps_parent = deps[parent] | |
edges = deps_parent - reducible | |
children = deps_parent - edges | |
num_children = len(children) | |
if num_children == 1: | |
( | |
child_key, | |
child_task, | |
child_keys, | |
height, | |
width, | |
num_nodes, | |
fudge, | |
children_edges, | |
) = info_stack_pop() | |
num_children_edges = len(children_edges) | |
if fudge > num_children_edges - 1 >= 0: | |
fudge = num_children_edges - 1 | |
edges |= children_edges | |
no_new_edges = len(edges) == num_children_edges | |
if not no_new_edges: | |
fudge += 1 | |
if ( | |
(num_nodes + fudge) / height <= ave_width | |
and | |
# Sanity check; don't go too deep if new levels introduce new edge dependencies | |
(no_new_edges or height < max_depth_new_edges) | |
): | |
# Perform substitutions as we go | |
val = subs(dsk[parent], child_key, child_task) | |
deps_parent.remove(child_key) | |
deps_parent |= deps_pop(child_key) | |
del rv[child_key] | |
reducible_remove(child_key) | |
if rename_keys: | |
child_keys.append(parent) | |
fused_trees[parent] = child_keys | |
fused_trees_pop(child_key, None) | |
if children_stack: | |
if no_new_edges: | |
# Linear fuse | |
info_stack_append( | |
( | |
parent, | |
val, | |
child_keys, | |
height, | |
width, | |
num_nodes, | |
fudge, | |
edges, | |
) | |
) | |
else: | |
info_stack_append( | |
( | |
parent, | |
val, | |
child_keys, | |
height + 1, | |
width, | |
num_nodes + 1, | |
fudge, | |
edges, | |
) | |
) | |
else: | |
rv[parent] = val | |
break | |
else: | |
rv[child_key] = child_task | |
reducible_remove(child_key) | |
if children_stack: | |
# Allow the parent to be fused, but only under strict circumstances. | |
# Ensure that linear chains may still be fused. | |
if fudge > int(ave_width - 1): | |
fudge = int(ave_width - 1) | |
# This task *implicitly* depends on `edges` | |
info_stack_append( | |
( | |
parent, | |
rv[parent], | |
[parent] if rename_keys else None, | |
1, | |
width, | |
1, | |
fudge, | |
edges, | |
) | |
) | |
else: | |
break | |
else: | |
child_keys = [] | |
height = 1 | |
width = 0 | |
num_single_nodes = 0 | |
num_nodes = 0 | |
fudge = 0 | |
children_edges = set() | |
max_num_edges = 0 | |
children_info = info_stack[-num_children:] | |
del info_stack[-num_children:] | |
for ( | |
_, | |
_, | |
_, | |
cur_height, | |
cur_width, | |
cur_num_nodes, | |
cur_fudge, | |
cur_edges, | |
) in children_info: | |
if cur_height == 1: | |
num_single_nodes += 1 | |
elif cur_height > height: | |
height = cur_height | |
width += cur_width | |
num_nodes += cur_num_nodes | |
fudge += cur_fudge | |
if len(cur_edges) > max_num_edges: | |
max_num_edges = len(cur_edges) | |
children_edges |= cur_edges | |
# Fudge factor to account for possible parallelism with the boundaries | |
num_children_edges = len(children_edges) | |
fudge += min( | |
num_children - 1, max(0, num_children_edges - max_num_edges) | |
) | |
if fudge > num_children_edges - 1 >= 0: | |
fudge = num_children_edges - 1 | |
edges |= children_edges | |
no_new_edges = len(edges) == num_children_edges | |
if not no_new_edges: | |
fudge += 1 | |
if ( | |
(num_nodes + fudge) / height <= ave_width | |
and num_single_nodes <= ave_width | |
and width <= max_width | |
and height <= max_height | |
and | |
# Sanity check; don't go too deep if new levels introduce new edge dependencies | |
(no_new_edges or height < max_depth_new_edges) | |
): | |
# Perform substitutions as we go | |
val = dsk[parent] | |
children_deps = set() | |
for child_info in children_info: | |
cur_child = child_info[0] | |
val = subs(val, cur_child, child_info[1]) | |
del rv[cur_child] | |
children_deps |= deps_pop(cur_child) | |
reducible_remove(cur_child) | |
if rename_keys: | |
fused_trees_pop(cur_child, None) | |
child_keys.extend(child_info[2]) | |
deps_parent -= children | |
deps_parent |= children_deps | |
if rename_keys: | |
child_keys.append(parent) | |
fused_trees[parent] = child_keys | |
if children_stack: | |
info_stack_append( | |
( | |
parent, | |
val, | |
child_keys, | |
height + 1, | |
width, | |
num_nodes + 1, | |
fudge, | |
edges, | |
) | |
) | |
else: | |
rv[parent] = val | |
break | |
else: | |
for child_info in children_info: | |
rv[child_info[0]] = child_info[1] | |
reducible_remove(child_info[0]) | |
if children_stack: | |
# Allow the parent to be fused, but only under strict circumstances. | |
# Ensure that linear chains may still be fused. | |
if width > max_width: | |
width = max_width | |
if fudge > int(ave_width - 1): | |
fudge = int(ave_width - 1) | |
# key, task, height, width, number of nodes, fudge, set of edges | |
# This task *implicitly* depends on `edges` | |
info_stack_append( | |
( | |
parent, | |
rv[parent], | |
[parent] if rename_keys else None, | |
1, | |
width, | |
1, | |
fudge, | |
edges, | |
) | |
) | |
else: | |
break | |
# Traverse upwards | |
parent = rdeps[parent][0] | |
if fuse_subgraphs: | |
_inplace_fuse_subgraphs(rv, keys, deps, fused_trees, rename_keys) | |
if key_renamer: | |
for root_key, fused_keys in fused_trees.items(): | |
alias = key_renamer(fused_keys) | |
if alias is not None and alias not in rv: | |
rv[alias] = rv[root_key] | |
rv[root_key] = alias | |
deps[alias] = deps[root_key] | |
deps[root_key] = {alias} | |
return rv, deps | |
def _inplace_fuse_subgraphs(dsk, keys, dependencies, fused_trees, rename_keys): | |
"""Subroutine of fuse. | |
Mutates dsk, dependencies, and fused_trees inplace""" | |
# locate all members of linear chains | |
child2parent = {} | |
unfusible = set() | |
for parent in dsk: | |
deps = dependencies[parent] | |
has_many_children = len(deps) > 1 | |
for child in deps: | |
if keys is not None and child in keys: | |
unfusible.add(child) | |
elif child in child2parent: | |
del child2parent[child] | |
unfusible.add(child) | |
elif has_many_children: | |
unfusible.add(child) | |
elif child not in unfusible: | |
child2parent[child] = parent | |
# construct the chains from ancestor to descendant | |
chains = [] | |
parent2child = {v: k for k, v in child2parent.items()} | |
while child2parent: | |
child, parent = child2parent.popitem() | |
chain = [child, parent] | |
while parent in child2parent: | |
parent = child2parent.pop(parent) | |
del parent2child[parent] | |
chain.append(parent) | |
chain.reverse() | |
while child in parent2child: | |
child = parent2child.pop(child) | |
del child2parent[child] | |
chain.append(child) | |
# Skip chains with < 2 executable tasks | |
ntasks = 0 | |
for key in chain: | |
ntasks += istask(dsk[key]) | |
if ntasks > 1: | |
chains.append(chain) | |
break | |
# Mutate dsk fusing chains into subgraphs | |
for chain in chains: | |
subgraph = {k: dsk[k] for k in chain} | |
outkey = chain[0] | |
# Update dependencies and graph | |
inkeys_set = dependencies[outkey] = dependencies[chain[-1]] | |
for k in chain[1:]: | |
del dependencies[k] | |
del dsk[k] | |
# Create new task | |
inkeys = tuple(inkeys_set) | |
dsk[outkey] = (SubgraphCallable(subgraph, outkey, inkeys),) + inkeys | |
# Mutate `fused_trees` if key renaming is needed (renaming done in fuse) | |
if rename_keys: | |
chain2 = [] | |
for k in chain: | |
subchain = fused_trees.pop(k, False) | |
if subchain: | |
chain2.extend(subchain) | |
else: | |
chain2.append(k) | |
fused_trees[outkey] = chain2 | |
class SubgraphCallable: | |
"""Create a callable object from a dask graph. | |
Parameters | |
---------- | |
dsk : dict | |
A dask graph | |
outkey : hashable | |
The output key from the graph | |
inkeys : list | |
A list of keys to be used as arguments to the callable. | |
name : str, optional | |
The name to use for the function. | |
""" | |
__slots__ = ("dsk", "outkey", "inkeys", "name") | |
def __init__(self, dsk, outkey, inkeys, name=None): | |
self.dsk = dsk | |
self.outkey = outkey | |
self.inkeys = inkeys | |
if name is None: | |
name = f"subgraph_callable-{uuid.uuid4()}" | |
self.name = name | |
def __repr__(self): | |
return self.name | |
def __eq__(self, other): | |
return ( | |
type(self) is type(other) | |
and self.name == other.name | |
and self.outkey == other.outkey | |
and set(self.inkeys) == set(other.inkeys) | |
) | |
def __ne__(self, other): | |
return not (self == other) | |
def __call__(self, *args): | |
if not len(args) == len(self.inkeys): | |
raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args))) | |
return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args))) | |
def __reduce__(self): | |
return (SubgraphCallable, (self.dsk, self.outkey, self.inkeys, self.name)) | |
def __hash__(self): | |
return hash(tuple((self.outkey, frozenset(self.inkeys), self.name))) | |