m7n's picture
first commit
d1ed09d
raw
history blame
47.4 kB
from __future__ import annotations
import abc
import copy
import html
from collections.abc import Hashable, Iterable, KeysView, Mapping, MutableMapping, Set
from typing import Any, cast
import tlz as toolz
from dask import config
from dask.base import clone_key, flatten, is_dask_collection
from dask.core import keys_in_tasks, reverse_dict
from dask.utils import ensure_dict, ensure_set, import_required, key_split, stringify
from dask.widgets import get_template
def compute_layer_dependencies(layers):
"""Returns the dependencies between layers"""
def _find_layer_containing_key(key):
for k, v in layers.items():
if key in v:
return k
raise RuntimeError(f"{repr(key)} not found")
all_keys = {key for layer in layers.values() for key in layer}
ret = {k: set() for k in layers}
for k, v in layers.items():
for key in keys_in_tasks(all_keys - v.keys(), v.values()):
ret[k].add(_find_layer_containing_key(key))
return ret
class Layer(Mapping):
"""High level graph layer
This abstract class establish a protocol for high level graph layers.
The main motivation of a layer is to represent a collection of tasks
symbolically in order to speedup a series of operations significantly.
Ideally, a layer should stay in this symbolic state until execution
but in practice some operations will force the layer to generate all
its internal tasks. We say that the layer has been materialized.
Most of the default implementations in this class will materialize the
layer. It is up to derived classes to implement non-materializing
implementations.
"""
annotations: Mapping[str, Any] | None
collection_annotations: Mapping[str, Any] | None
def __init__(
self,
annotations: Mapping[str, Any] | None = None,
collection_annotations: Mapping[str, Any] | None = None,
):
"""Initialize Layer object.
Parameters
----------
annotations : Mapping[str, Any], optional
By default, None.
Annotations are metadata or soft constraints associated with tasks
that dask schedulers may choose to respect:
They signal intent without enforcing hard constraints.
As such, they are primarily designed for use with the distributed
scheduler. See the dask.annotate function for more information.
collection_annotations : Mapping[str, Any], optional. By default, None.
Experimental, intended to assist with visualizing the performance
characteristics of Dask computations.
These annotations are *not* passed to the distributed scheduler.
"""
self.annotations = annotations or copy.copy(config.get("annotations", None))
self.collection_annotations = collection_annotations or copy.copy(
config.get("collection_annotations", None)
)
@abc.abstractmethod
def is_materialized(self) -> bool:
"""Return whether the layer is materialized or not"""
return True
@abc.abstractmethod
def get_output_keys(self) -> Set:
"""Return a set of all output keys
Output keys are all keys in the layer that might be referenced by
other layers.
Classes overriding this implementation should not cause the layer
to be materialized.
Returns
-------
keys: Set
All output keys
"""
return self.keys() # this implementation will materialize the graph
def cull(
self, keys: set, all_hlg_keys: Iterable
) -> tuple[Layer, Mapping[Hashable, set]]:
"""Remove unnecessary tasks from the layer
In other words, return a new Layer with only the tasks required to
calculate `keys` and a map of external key dependencies.
Examples
--------
>>> inc = lambda x: x + 1
>>> add = lambda x, y: x + y
>>> d = MaterializedLayer({'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)})
>>> _, deps = d.cull({'out'}, d.keys())
>>> deps
{'out': {'x'}, 'x': set()}
Returns
-------
layer: Layer
Culled layer
deps: Map
Map of external key dependencies
"""
if len(keys) == len(self):
# Nothing to cull if preserving all existing keys
return (
self,
{k: self.get_dependencies(k, all_hlg_keys) for k in self.keys()},
)
ret_deps = {}
seen = set()
out = {}
work = keys.copy()
while work:
k = work.pop()
out[k] = self[k]
ret_deps[k] = self.get_dependencies(k, all_hlg_keys)
for d in ret_deps[k]:
if d not in seen:
if d in self:
seen.add(d)
work.add(d)
return MaterializedLayer(out, annotations=self.annotations), ret_deps
def get_dependencies(self, key: Hashable, all_hlg_keys: Iterable) -> set:
"""Get dependencies of `key` in the layer
Parameters
----------
key: Hashable
The key to find dependencies of
all_hlg_keys: Iterable
All keys in the high level graph.
Returns
-------
deps: set
A set of dependencies
"""
return keys_in_tasks(all_hlg_keys, [self[key]])
def __dask_distributed_annotations_pack__(
self, annotations: Mapping[str, Any] | None = None
) -> Mapping[str, Any] | None:
"""Packs Layer annotations for transmission to scheduler
Callables annotations are fully expanded over Layer keys, while
other values are simply transmitted as is
Parameters
----------
annotations : Mapping[str, Any], optional
A top-level annotations.
Returns
-------
packed_annotations : dict
Packed annotations.
"""
annotations = cast(
"dict[str, Any]", toolz.merge(self.annotations or {}, annotations or {})
)
packed = {}
for a, v in annotations.items():
if callable(v):
packed[a] = {stringify(k): v(k) for k in self}
packed[a]["__expanded_annotations__"] = True
else:
packed[a] = v
return packed
@staticmethod
def __dask_distributed_annotations_unpack__(
annotations: MutableMapping[str, Any],
new_annotations: Mapping[str, Any] | None,
keys: Iterable[Hashable],
) -> None:
"""
Unpack a set of layer annotations across a set of keys, then merge those
expanded annotations for the layer into an existing annotations mapping.
This is not a simple shallow merge because some annotations like retries,
priority, workers, etc need to be able to retain keys from different layers.
Parameters
----------
annotations: MutableMapping[str, Any], input/output
Already unpacked annotations, which are to be updated with the new
unpacked annotations
new_annotations: Mapping[str, Any], optional
New annotations to be unpacked into `annotations`
keys: Iterable
All keys in the layer.
"""
if new_annotations is None:
return
expanded = {}
keys_stringified = False
# Expand the new annotations across the keyset
for a, v in new_annotations.items():
if type(v) is dict and "__expanded_annotations__" in v:
# Maybe do a destructive update for efficiency?
v = v.copy()
del v["__expanded_annotations__"]
expanded[a] = v
else:
if not keys_stringified:
keys = [stringify(k) for k in keys]
keys_stringified = True
expanded[a] = dict.fromkeys(keys, v)
# Merge the expanded annotations with the existing annotations mapping
for k, v in expanded.items():
v.update(annotations.get(k, {}))
annotations.update(expanded)
def clone(
self,
keys: set,
seed: Hashable,
bind_to: Hashable = None,
) -> tuple[Layer, bool]:
"""Clone selected keys in the layer, as well as references to keys in other
layers
Parameters
----------
keys
Keys to be replaced. This never includes keys not listed by
:meth:`get_output_keys`. It must also include any keys that are outside
of this layer that may be referenced by it.
seed
Common hashable used to alter the keys; see :func:`dask.base.clone_key`
bind_to
Optional key to bind the leaf nodes to. A leaf node here is one that does
not reference any replaced keys; in other words it's a node where the
replacement graph traversal stops; it may still have dependencies on
non-replaced nodes.
A bound node will not be computed until after ``bind_to`` has been computed.
Returns
-------
- New layer
- True if the ``bind_to`` key was injected anywhere; False otherwise
Notes
-----
This method should be overridden by subclasses to avoid materializing the layer.
"""
from dask.graph_manipulation import chunks
is_leaf: bool
def clone_value(o):
"""Variant of distributed.utils_comm.subs_multiple, which allows injecting
bind_to
"""
nonlocal is_leaf
typ = type(o)
if typ is tuple and o and callable(o[0]):
return (o[0],) + tuple(clone_value(i) for i in o[1:])
elif typ is list:
return [clone_value(i) for i in o]
elif typ is dict:
return {k: clone_value(v) for k, v in o.items()}
else:
try:
if o not in keys:
return o
except TypeError:
return o
is_leaf = False
return clone_key(o, seed)
dsk_new = {}
bound = False
for key, value in self.items():
if key in keys:
key = clone_key(key, seed)
is_leaf = True
value = clone_value(value)
if bind_to is not None and is_leaf:
value = (chunks.bind, value, bind_to)
bound = True
dsk_new[key] = value
return MaterializedLayer(dsk_new), bound
def __dask_distributed_pack__(
self,
all_hlg_keys: Iterable[Hashable],
known_key_dependencies: Mapping[Hashable, Set],
client,
client_keys: Iterable[Hashable],
) -> Any:
"""Pack the layer for scheduler communication in Distributed
This method should pack its current state and is called by the Client when
communicating with the Scheduler.
The Scheduler will then use .__dask_distributed_unpack__(data, ...) to unpack
the state, materialize the layer, and merge it into the global task graph.
The returned state must be compatible with Distributed's scheduler, which
means it must obey the following:
- Serializable by msgpack (notice, msgpack converts lists to tuples)
- All remote data must be unpacked (see unpack_remotedata())
- All keys must be converted to strings now or when unpacking
- All tasks must be serialized (see dumps_task())
The default implementation materialize the layer thus layers such as Blockwise
and ShuffleLayer should implement a specialized pack and unpack function in
order to avoid materialization.
Parameters
----------
all_hlg_keys: Iterable[Hashable]
All keys in the high level graph
known_key_dependencies: Mapping[Hashable, Set]
Already known dependencies
client: distributed.Client
The client calling this function.
client_keys : Iterable[Hashable]
List of keys requested by the client.
Returns
-------
state: Object serializable by msgpack
Scheduler compatible state of the layer
"""
from distributed.client import Future
from distributed.utils import CancelledError
from distributed.utils_comm import subs_multiple, unpack_remotedata
from distributed.worker import dumps_task
dsk = dict(self)
# Find aliases not in `client_keys` and substitute all matching keys
# with its Future
future_aliases = {
k: v
for k, v in dsk.items()
if isinstance(v, Future) and k not in client_keys
}
if future_aliases:
dsk = subs_multiple(dsk, future_aliases)
# Remove `Future` objects from graph and note any future dependencies
dsk2 = {}
fut_deps = {}
for k, v in dsk.items():
dsk2[k], futs = unpack_remotedata(v, byte_keys=True)
if futs:
fut_deps[k] = futs
dsk = dsk2
# Check that any collected futures are valid
unpacked_futures = set.union(*fut_deps.values()) if fut_deps else set()
for future in unpacked_futures:
if future.client is not client:
raise ValueError(
"Inputs contain futures that were created by another client."
)
if stringify(future.key) not in client.futures:
raise CancelledError(stringify(future.key))
# Calculate dependencies without re-calculating already known dependencies
# - Start with known dependencies
dependencies = ensure_dict(known_key_dependencies, copy=True)
# - Remove aliases for any tasks that depend on both an alias and a future.
# These can only be found in the known_key_dependencies cache, since
# any dependencies computed in this method would have already had the
# aliases removed.
if future_aliases:
alias_keys = set(future_aliases)
dependencies = {k: v - alias_keys for k, v in dependencies.items()}
# - Add in deps for any missing keys
missing_keys = dsk.keys() - dependencies.keys()
dependencies.update(
(k, keys_in_tasks(all_hlg_keys, [dsk[k]], as_list=False))
for k in missing_keys
)
# - Add in deps for any tasks that depend on futures
for k, futures in fut_deps.items():
if futures:
d = ensure_set(dependencies[k], copy=True)
d.update(f.key for f in futures)
dependencies[k] = d
# The scheduler expect all keys to be strings
dependencies = {
stringify(k): {stringify(dep) for dep in deps}
for k, deps in dependencies.items()
}
merged_hlg_keys = all_hlg_keys | dsk.keys()
dsk = {
stringify(k): stringify(v, exclusive=merged_hlg_keys)
for k, v in dsk.items()
}
dsk = toolz.valmap(dumps_task, dsk)
return {"dsk": dsk, "dependencies": dependencies}
@classmethod
def __dask_distributed_unpack__(
cls,
state: Any,
dsk: Mapping[str, Any],
dependencies: Mapping[str, set],
) -> dict:
"""Unpack the state of a layer previously packed by __dask_distributed_pack__()
This method is called by the scheduler in Distributed in order to unpack
the state of a layer and merge it into its global task graph. The method
can use `dsk` and `dependencies`, which are the already materialized
state of the preceding layers in the high level graph. The layers of the
high level graph are unpacked in topological order.
See Layer.__dask_distributed_pack__() for packing detail.
Parameters
----------
state: Any
The state returned by Layer.__dask_distributed_pack__()
dsk: Mapping, read-only
The materialized low level graph of the already unpacked layers
dependencies: Mapping, read-only
The dependencies of each key in `dsk`
Returns
-------
unpacked-layer: dict
layer_dsk: Mapping[str, Any]
Materialized (stringified) graph of the layer
layer_deps: Mapping[str, set]
Dependencies of each key in `layer_dsk`
"""
return {"dsk": state["dsk"], "deps": state["dependencies"]}
def __reduce__(self):
"""Default serialization implementation, which materializes the Layer"""
return (MaterializedLayer, (dict(self),))
def __copy__(self):
"""Default shallow copy implementation"""
obj = type(self).__new__(self.__class__)
obj.__dict__.update(self.__dict__)
return obj
def _repr_html_(self, layer_index="", highlevelgraph_key="", dependencies=()):
if highlevelgraph_key != "":
shortname = key_split(highlevelgraph_key)
elif hasattr(self, "name"):
shortname = key_split(self.name)
else:
shortname = self.__class__.__name__
svg_repr = ""
if (
self.collection_annotations
and self.collection_annotations.get("type") == "dask.array.core.Array"
):
chunks = self.collection_annotations.get("chunks")
if chunks:
from dask.array.svg import svg
svg_repr = svg(chunks)
return get_template("highlevelgraph_layer.html.j2").render(
materialized=self.is_materialized(),
shortname=shortname,
layer_index=layer_index,
highlevelgraph_key=highlevelgraph_key,
info=self.layer_info_dict(),
dependencies=dependencies,
svg_repr=svg_repr,
)
def layer_info_dict(self):
info = {
"layer_type": type(self).__name__,
"is_materialized": self.is_materialized(),
"number of outputs": f"{len(self.get_output_keys())}",
}
if self.annotations is not None:
for key, val in self.annotations.items():
info[key] = html.escape(str(val))
if self.collection_annotations is not None:
for key, val in self.collection_annotations.items():
# Hide verbose chunk details from the HTML table
if key != "chunks":
info[key] = html.escape(str(val))
return info
class MaterializedLayer(Layer):
"""Fully materialized layer of `Layer`
Parameters
----------
mapping: Mapping
The mapping between keys and tasks, typically a dask graph.
"""
def __init__(self, mapping: Mapping, annotations=None):
super().__init__(annotations=annotations)
self.mapping = mapping
def __contains__(self, k):
return k in self.mapping
def __getitem__(self, k):
return self.mapping[k]
def __iter__(self):
return iter(self.mapping)
def __len__(self):
return len(self.mapping)
def is_materialized(self):
return True
def get_output_keys(self):
return self.keys()
class HighLevelGraph(Mapping):
"""Task graph composed of layers of dependent subgraphs
This object encodes a Dask task graph that is composed of layers of
dependent subgraphs, such as commonly occurs when building task graphs
using high level collections like Dask array, bag, or dataframe.
Typically each high level array, bag, or dataframe operation takes the task
graphs of the input collections, merges them, and then adds one or more new
layers of tasks for the new operation. These layers typically have at
least as many tasks as there are partitions or chunks in the collection.
The HighLevelGraph object stores the subgraphs for each operation
separately in sub-graphs, and also stores the dependency structure between
them.
Parameters
----------
layers : Mapping[str, Mapping]
The subgraph layers, keyed by a unique name
dependencies : Mapping[str, set[str]]
The set of layers on which each layer depends
key_dependencies : Mapping[Hashable, set], optional
Mapping (some) keys in the high level graph to their dependencies. If
a key is missing, its dependencies will be calculated on-the-fly.
Examples
--------
Here is an idealized example that shows the internal state of a
HighLevelGraph
>>> import dask.dataframe as dd
>>> df = dd.read_csv('myfile.*.csv') # doctest: +SKIP
>>> df = df + 100 # doctest: +SKIP
>>> df = df[df.name == 'Alice'] # doctest: +SKIP
>>> graph = df.__dask_graph__() # doctest: +SKIP
>>> graph.layers # doctest: +SKIP
{
'read-csv': {('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),
('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv')},
'add': {('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100)}
'filter': {('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3))}
}
>>> graph.dependencies # doctest: +SKIP
{
'read-csv': set(),
'add': {'read-csv'},
'filter': {'add'}
}
See Also
--------
HighLevelGraph.from_collections :
typically used by developers to make new HighLevelGraphs
"""
layers: Mapping[str, Layer]
dependencies: Mapping[str, Set]
key_dependencies: dict[Hashable, Set]
_to_dict: dict
_all_external_keys: set
def __init__(
self,
layers: Mapping[str, Mapping],
dependencies: Mapping[str, Set],
key_dependencies: dict[Hashable, Set] | None = None,
):
self.dependencies = dependencies
self.key_dependencies = key_dependencies or {}
# Makes sure that all layers are `Layer`
self.layers = {
k: v if isinstance(v, Layer) else MaterializedLayer(v)
for k, v in layers.items()
}
@classmethod
def _from_collection(cls, name, layer, collection):
"""`from_collections` optimized for a single collection"""
if not is_dask_collection(collection):
raise TypeError(type(collection))
graph = collection.__dask_graph__()
if isinstance(graph, HighLevelGraph):
layers = ensure_dict(graph.layers, copy=True)
layers[name] = layer
deps = ensure_dict(graph.dependencies, copy=True)
deps[name] = set(collection.__dask_layers__())
else:
key = _get_some_layer_name(collection)
layers = {name: layer, key: graph}
deps = {name: {key}, key: set()}
return cls(layers, deps)
@classmethod
def from_collections(cls, name, layer, dependencies=()):
"""Construct a HighLevelGraph from a new layer and a set of collections
This constructs a HighLevelGraph in the common case where we have a single
new layer and a set of old collections on which we want to depend.
This pulls out the ``__dask_layers__()`` method of the collections if
they exist, and adds them to the dependencies for this new layer. It
also merges all of the layers from all of the dependent collections
together into the new layers for this graph.
Parameters
----------
name : str
The name of the new layer
layer : Mapping
The graph layer itself
dependencies : List of Dask collections
A list of other dask collections (like arrays or dataframes) that
have graphs themselves
Examples
--------
In typical usage we make a new task layer, and then pass that layer
along with all dependent collections to this method.
>>> def add(self, other):
... name = 'add-' + tokenize(self, other)
... layer = {(name, i): (add, input_key, other)
... for i, input_key in enumerate(self.__dask_keys__())}
... graph = HighLevelGraph.from_collections(name, layer, dependencies=[self])
... return new_collection(name, graph)
"""
if len(dependencies) == 1:
return cls._from_collection(name, layer, dependencies[0])
layers = {name: layer}
deps = {name: set()}
for collection in toolz.unique(dependencies, key=id):
if is_dask_collection(collection):
graph = collection.__dask_graph__()
if isinstance(graph, HighLevelGraph):
layers.update(graph.layers)
deps.update(graph.dependencies)
deps[name] |= set(collection.__dask_layers__())
else:
key = _get_some_layer_name(collection)
layers[key] = graph
deps[name].add(key)
deps[key] = set()
else:
raise TypeError(type(collection))
return cls(layers, deps)
def __getitem__(self, key):
# Attempt O(1) direct access first, under the assumption that layer names match
# either the keys (Scalar, Item, Delayed) or the first element of the key tuples
# (Array, Bag, DataFrame, Series). This assumption is not always true.
try:
return self.layers[key][key]
except KeyError:
pass
try:
return self.layers[key[0]][key]
except (KeyError, IndexError, TypeError):
pass
# Fall back to O(n) access
for d in self.layers.values():
try:
return d[key]
except KeyError:
pass
raise KeyError(key)
def __len__(self) -> int:
# NOTE: this will double-count keys that are duplicated between layers, so it's
# possible that `len(hlg) > len(hlg.to_dict())`. However, duplicate keys should
# not occur through normal use, and their existence would usually be a bug.
# So we ignore this case in favor of better performance.
# https://github.com/dask/dask/issues/7271
return sum(len(layer) for layer in self.layers.values())
def __iter__(self):
return iter(self.to_dict())
def to_dict(self) -> dict:
"""Efficiently convert to plain dict. This method is faster than dict(self)."""
try:
return self._to_dict
except AttributeError:
out = self._to_dict = ensure_dict(self)
return out
def keys(self) -> KeysView:
"""Get all keys of all the layers.
This will in many cases materialize layers, which makes it a relatively
expensive operation. See :meth:`get_all_external_keys` for a faster alternative.
"""
return self.to_dict().keys()
def get_all_external_keys(self) -> set:
"""Get all output keys of all layers
This will in most cases _not_ materialize any layers, which makes
it a relative cheap operation.
Returns
-------
keys: set
A set of all external keys
"""
try:
return self._all_external_keys
except AttributeError:
keys: set = set()
for layer in self.layers.values():
# Note: don't use `keys |= ...`, because the RHS is a
# collections.abc.Set rather than a real set, and this will
# cause a whole new set to be constructed.
keys.update(layer.get_output_keys())
self._all_external_keys = keys
return keys
def items(self):
return self.to_dict().items()
def values(self):
return self.to_dict().values()
def get_all_dependencies(self) -> dict[Hashable, Set]:
"""Get dependencies of all keys
This will in most cases materialize all layers, which makes
it an expensive operation.
Returns
-------
map: Mapping
A map that maps each key to its dependencies
"""
all_keys = self.keys()
missing_keys = all_keys - self.key_dependencies.keys()
if missing_keys:
for layer in self.layers.values():
for k in missing_keys & layer.keys():
self.key_dependencies[k] = layer.get_dependencies(k, all_keys)
return self.key_dependencies
@property
def dependents(self):
return reverse_dict(self.dependencies)
def copy(self):
return HighLevelGraph(
ensure_dict(self.layers, copy=True),
ensure_dict(self.dependencies, copy=True),
self.key_dependencies.copy(),
)
@classmethod
def merge(cls, *graphs):
layers = {}
dependencies = {}
for g in graphs:
if isinstance(g, HighLevelGraph):
layers.update(g.layers)
dependencies.update(g.dependencies)
elif isinstance(g, Mapping):
layers[id(g)] = g
dependencies[id(g)] = set()
else:
raise TypeError(g)
return cls(layers, dependencies)
def visualize(self, filename="dask-hlg.svg", format=None, **kwargs):
"""
Visualize this dask high level graph.
Requires ``graphviz`` to be installed.
Parameters
----------
filename : str or None, optional
The name of the file to write to disk. If the provided `filename`
doesn't include an extension, '.png' will be used by default.
If `filename` is None, no file will be written, and the graph is
rendered in the Jupyter notebook only.
format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional
Format in which to write output file. Default is 'svg'.
color : {None, 'layer_type'}, optional (default: None)
Options to color nodes.
- None, no colors.
- layer_type, color nodes based on the layer type.
**kwargs
Additional keyword arguments to forward to ``to_graphviz``.
Examples
--------
>>> x.dask.visualize(filename='dask.svg') # doctest: +SKIP
>>> x.dask.visualize(filename='dask.svg', color='layer_type') # doctest: +SKIP
Returns
-------
result : IPython.diplay.Image, IPython.display.SVG, or None
See dask.dot.dot_graph for more information.
See Also
--------
dask.dot.dot_graph
dask.base.visualize # low level variant
"""
from dask.dot import graphviz_to_file
g = to_graphviz(self, **kwargs)
graphviz_to_file(g, filename, format)
return g
def _toposort_layers(self):
"""Sort the layers in a high level graph topologically
Parameters
----------
hlg : HighLevelGraph
The high level graph's layers to sort
Returns
-------
sorted: list
List of layer names sorted topologically
"""
degree = {k: len(v) for k, v in self.dependencies.items()}
reverse_deps = {k: [] for k in self.dependencies}
ready = []
for k, v in self.dependencies.items():
for dep in v:
reverse_deps[dep].append(k)
if not v:
ready.append(k)
ret = []
while len(ready) > 0:
layer = ready.pop()
ret.append(layer)
for rdep in reverse_deps[layer]:
degree[rdep] -= 1
if degree[rdep] == 0:
ready.append(rdep)
return ret
def cull(self, keys: Iterable) -> HighLevelGraph:
"""Return new HighLevelGraph with only the tasks required to calculate keys.
In other words, remove unnecessary tasks from dask.
Parameters
----------
keys
iterable of keys or nested list of keys such as the output of
``__dask_keys__()``
Returns
-------
hlg: HighLevelGraph
Culled high level graph
"""
from dask.layers import Blockwise
keys_set = set(flatten(keys))
all_ext_keys = self.get_all_external_keys()
ret_layers: dict = {}
ret_key_deps: dict = {}
for layer_name in reversed(self._toposort_layers()):
layer = self.layers[layer_name]
# Let's cull the layer to produce its part of `keys`.
# Note: use .intersection rather than & because the RHS is
# a collections.abc.Set rather than a real set, and using &
# would take time proportional to the size of the LHS, which
# if there is no culling can be much bigger than the RHS.
output_keys = keys_set.intersection(layer.get_output_keys())
if output_keys:
culled_layer, culled_deps = layer.cull(output_keys, all_ext_keys)
# Update `keys` with all layer's external key dependencies, which
# are all the layer's dependencies (`culled_deps`) excluding
# the layer's output keys.
external_deps = set()
for d in culled_deps.values():
external_deps |= d
external_deps -= culled_layer.get_output_keys()
keys_set |= external_deps
# Save the culled layer and its key dependencies
ret_layers[layer_name] = culled_layer
if (
isinstance(layer, Blockwise)
or isinstance(layer, MaterializedLayer)
or (layer.is_materialized() and (len(layer) == len(culled_deps)))
):
# Don't use culled_deps to update ret_key_deps
# unless they are "direct" key dependencies.
#
# Note that `MaterializedLayer` is "safe", because
# its `cull` method will return a complete dict of
# direct dependencies for all keys in its subgraph.
# See: https://github.com/dask/dask/issues/9389
# for performance motivation
ret_key_deps.update(culled_deps)
# Converting dict_keys to a real set lets Python optimise the set
# intersection to iterate over the smaller of the two sets.
ret_layers_keys = set(ret_layers.keys())
ret_dependencies = {
layer_name: self.dependencies[layer_name] & ret_layers_keys
for layer_name in ret_layers
}
return HighLevelGraph(ret_layers, ret_dependencies, ret_key_deps)
def cull_layers(self, layers: Iterable[str]) -> HighLevelGraph:
"""Return a new HighLevelGraph with only the given layers and their
dependencies. Internally, layers are not modified.
This is a variant of :meth:`HighLevelGraph.cull` which is much faster and does
not risk creating a collision between two layers with the same name and
different content when two culled graphs are merged later on.
Returns
-------
hlg: HighLevelGraph
Culled high level graph
"""
to_visit = set(layers)
ret_layers = {}
ret_dependencies = {}
while to_visit:
k = to_visit.pop()
ret_layers[k] = self.layers[k]
ret_dependencies[k] = self.dependencies[k]
to_visit |= ret_dependencies[k] - ret_dependencies.keys()
return HighLevelGraph(ret_layers, ret_dependencies)
def validate(self):
# Check dependencies
for layer_name, deps in self.dependencies.items():
if layer_name not in self.layers:
raise ValueError(
f"dependencies[{repr(layer_name)}] not found in layers"
)
for dep in deps:
if dep not in self.dependencies:
raise ValueError(f"{repr(dep)} not found in dependencies")
for layer in self.layers.values():
assert hasattr(layer, "annotations")
# Re-calculate all layer dependencies
dependencies = compute_layer_dependencies(self.layers)
# Check keys
dep_key1 = self.dependencies.keys()
dep_key2 = dependencies.keys()
if dep_key1 != dep_key2:
raise ValueError(
f"incorrect dependencies keys {set(dep_key1)!r} "
f"expected {set(dep_key2)!r}"
)
# Check values
for k in dep_key1:
if self.dependencies[k] != dependencies[k]:
raise ValueError(
f"incorrect dependencies[{repr(k)}]: {repr(self.dependencies[k])} "
f"expected {repr(dependencies[k])}"
)
def __dask_distributed_pack__(
self,
client,
client_keys: Iterable[Hashable],
annotations: Mapping[str, Any] | None = None,
) -> dict:
"""Pack the high level graph for Scheduler -> Worker communication
The approach is to delegate the packaging to each layer in the high level graph
by calling .__dask_distributed_pack__() and .__dask_distributed_annotations_pack__()
on each layer.
Parameters
----------
client : distributed.Client
The client calling this function.
client_keys : Iterable[Hashable]
List of keys requested by the client.
annotations : Mapping[str, Any], optional
A top-level annotations.
Returns
-------
data: dict
Packed high level graph layers
"""
# Dump each layer (in topological order)
layers = []
for layer in (self.layers[name] for name in self._toposort_layers()):
layers.append(
{
"__module__": layer.__module__,
"__name__": type(layer).__name__,
"state": layer.__dask_distributed_pack__(
self.get_all_external_keys(),
self.key_dependencies,
client,
client_keys,
),
"annotations": layer.__dask_distributed_annotations_pack__(
annotations
),
}
)
return {"layers": layers}
@staticmethod
def __dask_distributed_unpack__(hlg: dict) -> dict:
"""Unpack the high level graph for Scheduler -> Worker communication
The approach is to delegate the unpackaging to each layer in the high level graph
by calling ..._unpack__() and ..._annotations_unpack__()
on each layer.
Parameters
----------
hlg: dict
Packed high level graph layers
Returns
-------
unpacked-graph: dict
dsk: dict[str, Any]
Materialized (stringified) graph of all nodes in the high level graph
deps: dict[str, set]
Dependencies of each key in `dsk`
annotations: dict[str, Any]
Annotations for `dsk`
"""
from distributed.protocol.serialize import import_allowed_module
dsk: dict = {}
deps: dict = {}
anno: dict = {}
# Unpack each layer (in topological order)
for layer in hlg["layers"]:
# Find the unpack functions
if layer["__module__"] is None: # Default implementation
unpack_state = Layer.__dask_distributed_unpack__
unpack_anno = Layer.__dask_distributed_annotations_unpack__
else:
mod = import_allowed_module(layer["__module__"])
cls = getattr(mod, layer["__name__"])
unpack_state = cls.__dask_distributed_unpack__
unpack_anno = cls.__dask_distributed_annotations_unpack__
# Unpack state into a graph and key dependencies
unpacked_layer = unpack_state(layer["state"], dsk, deps)
dsk.update(unpacked_layer["dsk"])
for k, v in unpacked_layer["deps"].items():
deps[k] = deps.get(k, set()) | v
# Unpack the annotations
unpack_anno(anno, layer["annotations"], unpacked_layer["dsk"].keys())
return {"dsk": dsk, "deps": deps, "annotations": anno}
def __repr__(self) -> str:
representation = f"{type(self).__name__} with {len(self.layers)} layers.\n"
representation += f"<{self.__class__.__module__}.{self.__class__.__name__} object at {hex(id(self))}>\n"
for i, layerkey in enumerate(self._toposort_layers()):
representation += f" {i}. {layerkey}\n"
return representation
def _repr_html_(self):
return get_template("highlevelgraph.html.j2").render(
type=type(self).__name__,
layers=self.layers,
toposort=self._toposort_layers(),
layer_dependencies=self.dependencies,
n_outputs=len(self.get_all_external_keys()),
)
def to_graphviz(
hg,
data_attributes=None,
function_attributes=None,
rankdir="BT",
graph_attr=None,
node_attr=None,
edge_attr=None,
**kwargs,
):
from dask.dot import label, name
graphviz = import_required(
"graphviz",
"Drawing dask graphs with the graphviz visualization engine requires the `graphviz` "
"python library and the `graphviz` system library.\n\n"
"Please either conda or pip install as follows:\n\n"
" conda install python-graphviz # either conda install\n"
" python -m pip install graphviz # or pip install and follow installation instructions",
)
data_attributes = data_attributes or {}
function_attributes = function_attributes or {}
graph_attr = graph_attr or {}
node_attr = node_attr or {}
edge_attr = edge_attr or {}
graph_attr["rankdir"] = rankdir
node_attr["shape"] = "box"
node_attr["fontname"] = "helvetica"
graph_attr.update(kwargs)
g = graphviz.Digraph(
graph_attr=graph_attr, node_attr=node_attr, edge_attr=edge_attr
)
n_tasks = {}
for layer in hg.dependencies:
n_tasks[layer] = len(hg.layers[layer])
min_tasks = min(n_tasks.values())
max_tasks = max(n_tasks.values())
cache = {}
color = kwargs.get("color")
if color == "layer_type":
layer_colors = {
"DataFrameIOLayer": ["#CCC7F9", False], # purple
"ShuffleLayer": ["#F9CCC7", False], # rose
"SimpleShuffleLayer": ["#F9CCC7", False], # rose
"ArrayOverlayLayer": ["#FFD9F2", False], # pink
"BroadcastJoinLayer": ["#D9F2FF", False], # blue
"Blockwise": ["#D9FFE6", False], # green
"BlockwiseLayer": ["#D9FFE6", False], # green
"MaterializedLayer": ["#DBDEE5", False], # gray
}
for layer in hg.dependencies:
layer_name = name(layer)
attrs = data_attributes.get(layer, {})
node_label = label(layer, cache=cache)
node_size = (
20
if max_tasks == min_tasks
else int(20 + ((n_tasks[layer] - min_tasks) / (max_tasks - min_tasks)) * 20)
)
layer_type = str(type(hg.layers[layer]).__name__)
node_tooltips = (
f"A {layer_type.replace('Layer', '')} Layer with {n_tasks[layer]} Tasks.\n"
)
layer_ca = hg.layers[layer].collection_annotations
if layer_ca:
if layer_ca.get("type") == "dask.array.core.Array":
node_tooltips += (
f"Array Shape: {layer_ca.get('shape')}\n"
f"Data Type: {layer_ca.get('dtype')}\n"
f"Chunk Size: {layer_ca.get('chunksize')}\n"
f"Chunk Type: {layer_ca.get('chunk_type')}\n"
)
if layer_ca.get("type") == "dask.dataframe.core.DataFrame":
dftype = {"pandas.core.frame.DataFrame": "pandas"}
cols = layer_ca.get("columns")
node_tooltips += (
f"Number of Partitions: {layer_ca.get('npartitions')}\n"
f"DataFrame Type: {dftype.get(layer_ca.get('dataframe_type'))}\n"
f"{len(cols)} DataFrame Columns: {str(cols) if len(str(cols)) <= 40 else '[...]'}\n"
)
attrs.setdefault("label", str(node_label))
attrs.setdefault("fontsize", str(node_size))
attrs.setdefault("tooltip", str(node_tooltips))
if color == "layer_type":
node_color = layer_colors.get(layer_type)[0]
layer_colors.get(layer_type)[1] = True
attrs.setdefault("fillcolor", str(node_color))
attrs.setdefault("style", "filled")
g.node(layer_name, **attrs)
for layer, deps in hg.dependencies.items():
layer_name = name(layer)
for dep in deps:
dep_name = name(dep)
g.edge(dep_name, layer_name)
if color == "layer_type":
legend_title = "Key"
legend_label = (
'<<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" CELLPADDING="5">'
"<TR><TD><B>Legend: Layer types</B></TD></TR>"
)
for layer_type, color in layer_colors.items():
if color[1]:
legend_label += f'<TR><TD BGCOLOR="{color[0]}">{layer_type}</TD></TR>'
legend_label += "</TABLE>>"
attrs = data_attributes.get(legend_title, {})
attrs.setdefault("label", str(legend_label))
attrs.setdefault("fontsize", "20")
attrs.setdefault("margin", "0")
g.node(legend_title, **attrs)
return g
def _get_some_layer_name(collection) -> str:
"""Somehow get a unique name for a Layer from a non-HighLevelGraph dask mapping"""
try:
(name,) = collection.__dask_layers__()
return name
except (AttributeError, ValueError):
# collection does not define the optional __dask_layers__ method
# or it spuriously returns more than one layer
return str(id(collection))