m7n's picture
first commit
d1ed09d
raw
history blame
12.3 kB
import os
import re
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data.dataset import Dataset
from transformers import PreTrainedModel, Seq2SeqTrainer, Trainer, __version__
from transformers.configuration_utils import PretrainedConfig
from transformers.data.data_collator import DataCollator
from transformers.modeling_utils import unwrap_model
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import TrainerCallback, TrainerControl, TrainerState
from transformers.trainer_utils import EvalPrediction
from transformers.training_args import TrainingArguments
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, is_sagemaker_mp_enabled, logging
from .composition import AdapterCompositionBlock, Fuse
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
logger = logging.get_logger(__name__)
class AdapterTrainer(Trainer):
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Callable[[], PreTrainedModel] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
adapter_names: Optional[List[List[str]]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = None,
):
if model is not None:
model_quantized = getattr(model, "is_quantized", False)
model.is_quantized = False
super().__init__(
model,
args,
data_collator,
train_dataset,
eval_dataset,
tokenizer=tokenizer,
model_init=model_init,
compute_metrics=compute_metrics,
callbacks=[AdapterTrainerCallback(self)] + callbacks if callbacks else [AdapterTrainerCallback(self)],
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
if model is not None:
model.is_quantized = model_quantized
if adapter_names is not None:
self.model.set_active_adapters(adapter_names)
# Set the defaults for loading/ saving model & adapters
if isinstance(self.model, PreTrainedModel):
model_frozen = getattr(self.model.base_model, "model_frozen", False)
else:
model_frozen = False
if model_frozen and self.model.active_adapters:
# Check if training AdapterFusion
self.train_adapter_fusion = (
isinstance(self.model.active_adapters, Fuse)
or isinstance(self.model.active_adapters, AdapterCompositionBlock)
and any([isinstance(child, Fuse) for child in self.model.active_adapters.children])
)
if self.model.active_adapters is None:
raise ValueError(
"Expected a model with an active adapter setup."
"If you want to fully finetune the model use the Trainer class."
)
if (self.label_names is None or len(self.label_names) < 1) and self.model.active_head is not None:
all_label_names = set()
for head in self.model._active_heads:
all_label_names |= set(self.model.heads[head].get_label_names())
self.label_names = list(all_label_names)
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.optimizer is None:
decay_parameters = self.get_decay_parameter_names(opt_model)
if hasattr(self.model, "config") and hasattr(self.model.config, "adapters"):
match_str = r"adapter_fusion_layer\..*\.value"
decay_parameters = [name for name in decay_parameters if not re.match(match_str, name)]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if is_sagemaker_mp_enabled():
self.optimizer = smp.DistributedOptimizer(self.optimizer)
return self.optimizer
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
if isinstance(unwrap_model(self.model), PreTrainedModel):
if state_dict is None:
state_dict = self.model.state_dict()
unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
else:
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
if state_dict is None:
state_dict = self.model.state_dict()
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
else:
self.model.save_all_adapters(output_dir)
if self.train_adapter_fusion:
self.model.save_all_adapter_fusions(output_dir)
if hasattr(self.model, "heads"):
self.model.save_all_heads(output_dir)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
def _load_from_checkpoint(self, resume_from_checkpoint):
args = self.args
if os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
logger.info(f"Loading model from {resume_from_checkpoint}).")
if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
checkpoint_version = config.transformers_version
if checkpoint_version is not None and checkpoint_version != __version__:
logger.warn(
f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
f"Transformers but your current version is {__version__}. This is not recommended and could "
"yield to errors or unwanted behaviors."
)
if args.deepspeed:
# will be resumed in deepspeed_init
pass
else:
adapter_loaded = False
if os.path.isdir(resume_from_checkpoint):
adapter_loaded = self._load_adapters(resume_from_checkpoint)
self._load_adapter_fusions(resume_from_checkpoint)
# Save all heads for a model with heads
if hasattr(self.model, "heads"):
self._load_heads(resume_from_checkpoint)
if not adapter_loaded:
raise Exception("Can't find a valid checkpoint at {}".format(resume_from_checkpoint))
def _load_adapters(self, resume_from_checkpoint):
adapter_loaded = False
for file_name in os.listdir(resume_from_checkpoint):
if os.path.isdir(os.path.join(resume_from_checkpoint, file_name)):
if "," not in file_name and "adapter_config.json" in os.listdir(
os.path.join(resume_from_checkpoint, file_name)
):
self.model.load_adapter(os.path.join(os.path.join(resume_from_checkpoint, file_name)))
adapter_loaded = True
return adapter_loaded
def _load_adapter_fusions(self, resume_from_checkpoint):
for file_name in os.listdir(resume_from_checkpoint):
if os.path.isdir(os.path.join(resume_from_checkpoint, file_name)):
if "," in file_name:
self.model.load_adapter_fusion(os.path.join(resume_from_checkpoint, file_name))
def _load_heads(self, resume_from_checkpoint):
for file_name in os.listdir(resume_from_checkpoint):
if os.path.isdir(os.path.join(resume_from_checkpoint, file_name)):
if "," not in file_name and "head_config.json" in os.listdir(
os.path.join(resume_from_checkpoint, file_name)
):
self.model.load_head(os.path.join(resume_from_checkpoint, file_name))
def _load_best_model(self):
model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
logger.info(
f"Loading best adapter(s) from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
)
# attempt to re-load all adapters from checkpoint
for adapter in model.adapters_config.adapters:
adapter_dir = os.path.join(self.state.best_model_checkpoint, adapter)
if os.path.exists(adapter_dir):
model.load_adapter(adapter_dir)
model.adapter_to(adapter, device=self.args.device)
if self.train_adapter_fusion:
logger.info(
f"Loading best adapter fusion(s) from {self.state.best_model_checkpoint} (score:"
f" {self.state.best_metric})."
)
# attempt to re-load all adapter fusions from checkpoint
for fusion in model.adapters_config.fusions:
fusion_dir = os.path.join(self.state.best_model_checkpoint, fusion)
if os.path.exists(fusion_dir):
model.load_adapter_fusion(fusion_dir)
model.adapter_fusion_to(fusion, device=self.args.device)
class AdapterTrainerCallback(TrainerCallback):
def __init__(self, trainer):
super().__init__()
self.trainer = trainer
def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
model = kwargs.pop("model")
model_frozen = getattr(model.base_model, "model_frozen", False)
if not model_frozen:
raise ValueError(
"The pre-trained model weights are not frozen. For training adapters, please call the train_adapter()"
" method"
)
def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
# apply adapter fusion weight regularization on the value matrix
model = kwargs.pop("model")
if self.trainer.train_adapter_fusion:
fusion_reg_loss = model.base_model.get_fusion_regularization_loss()
if fusion_reg_loss is not None:
fusion_reg_loss.backward()
class Seq2SeqAdapterTrainer(AdapterTrainer, Seq2SeqTrainer):
pass