Spaces:
Sleeping
Sleeping
File size: 34,242 Bytes
b1b5dc2 5460b58 2f63946 b1b5dc2 1d3ba67 b1b5dc2 387f245 b1b5dc2 1431c60 b1b5dc2 41c382c 887a63e d491a19 b1b5dc2 60c1b0a b1b5dc2 60c1b0a b1b5dc2 0fbb97c f2b9a34 2b75953 f2b9a34 66a3d8f f2b9a34 60fbdb7 b1b5dc2 387f245 b1b5dc2 60c1b0a 887a63e 60c1b0a 887a63e 60c1b0a 3d53dd3 b1b5dc2 3d53dd3 887a63e 300b8a0 b1b5dc2 1431c60 b1b5dc2 1431c60 b1b5dc2 887a63e b1b5dc2 d37c745 b1b5dc2 d37c745 b1b5dc2 1431c60 b1b5dc2 d37c745 b1b5dc2 d37c745 b1b5dc2 e1c0285 b1b5dc2 e1c0285 b1b5dc2 e1c0285 b1b5dc2 e1c0285 b1b5dc2 5460b58 b1b5dc2 d37c745 b1b5dc2 887a63e b1b5dc2 5460b58 b1b5dc2 887a63e b1b5dc2 60fbdb7 2282ec1 b1b5dc2 387f245 60c1b0a 7809ddd 60c1b0a 7809ddd 387f245 b76e10d 15ce78e b76e10d 15ce78e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
import time
print(f"Starting up: {time.strftime('%Y-%m-%d %H:%M:%S')}")
# Standard library imports
import os
from pathlib import Path
from datetime import datetime
from itertools import chain
import base64
import json
# Third-party imports
import numpy as np
import pandas as pd
import torch
import gradio as gr
print(f"Gradio version: {gr.__version__}")
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
import matplotlib.pyplot as plt
import tqdm
import colormaps
import matplotlib.colors as mcolors
from matplotlib.colors import Normalize
import random
import opinionated # for fonts
plt.style.use("opinionated_rc")
from sklearn.neighbors import NearestNeighbors
def is_running_in_hf_zero_gpu():
print(os.environ.get("SPACES_ZERO_GPU"))
return os.environ.get("SPACES_ZERO_GPU")
is_running_in_hf_zero_gpu()
def is_running_in_hf_space():
return "SPACE_ID" in os.environ
if is_running_in_hf_space():
import spaces # necessary to run on Zero.
from spaces.zero.client import _get_token
#if is_running_in_hf_space():
#import spaces # necessary to run on Zero.
#print(f"Spaces version: {spaces.__version__}")
import datamapplot
import pyalex
# Local imports
from openalex_utils import (
openalex_url_to_pyalex_query,
get_field,
process_records_to_df,
openalex_url_to_filename
)
from styles import DATAMAP_CUSTOM_CSS
from data_setup import (
download_required_files,
setup_basemap_data,
setup_mapper,
setup_embedding_model,
)
from network_utils import create_citation_graph, draw_citation_graph
# Configure OpenAlex
pyalex.config.email = "[email protected]"
print(f"Imports completed: {time.strftime('%Y-%m-%d %H:%M:%S')}")
# Create a static directory to store the dynamic HTML files
static_dir = Path("./static")
static_dir.mkdir(parents=True, exist_ok=True)
# Tell Gradio which absolute paths are allowed to be served
os.environ["GRADIO_ALLOWED_PATHS"] = str(static_dir.resolve())
print("os.environ['GRADIO_ALLOWED_PATHS'] =", os.environ["GRADIO_ALLOWED_PATHS"])
# Create FastAPI app
app = FastAPI()
# Mount the static directory
app.mount("/static", StaticFiles(directory="static"), name="static")
# Resource configuration
REQUIRED_FILES = {
"100k_filtered_OA_sample_cluster_and_positions_supervised.pkl":
"https://huggingface.co/datasets/m7n/intermediate_sci_pickle/resolve/main/100k_filtered_OA_sample_cluster_and_positions_supervised.pkl",
"umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl":
"https://huggingface.co/datasets/m7n/intermediate_sci_pickle/resolve/main/umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl"
}
BASEMAP_PATH = "100k_filtered_OA_sample_cluster_and_positions_supervised.pkl"
MAPPER_PARAMS_PATH = "umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl"
MODEL_NAME = "m7n/discipline-tuned_specter_2_024"
# Initialize models and data
start_time = time.time()
print("Initializing resources...")
download_required_files(REQUIRED_FILES)
basedata_df = setup_basemap_data(BASEMAP_PATH)
mapper = setup_mapper(MAPPER_PARAMS_PATH)
model = setup_embedding_model(MODEL_NAME)
print(f"Resources initialized in {time.time() - start_time:.2f} seconds")
# Setting up decorators for embedding on HF-Zero:
def no_op_decorator(func):
"""A no-op (no operation) decorator that simply returns the function."""
def wrapper(*args, **kwargs):
# Do nothing special
return func(*args, **kwargs)
return wrapper
# # Decide which decorator to use based on environment
# decorator_to_use = spaces.GPU() if is_running_in_hf_space() else no_op_decorator
# #duration=120
if is_running_in_hf_space():
@spaces.GPU(duration=30)
def create_embeddings_30(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
@spaces.GPU(duration=59)
def create_embeddings_59(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
@spaces.GPU(duration=120)
def create_embeddings_120(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
@spaces.GPU(duration=299)
def create_embeddings_299(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
else:
def create_embeddings(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
def predict(request: gr.Request, text_input, sample_size_slider, reduce_sample_checkbox,
sample_reduction_method, plot_time_checkbox,
locally_approximate_publication_date_checkbox,
download_csv_checkbox, download_png_checkbox, citation_graph_checkbox,
progress=gr.Progress()):
"""
Main prediction pipeline that processes OpenAlex queries and creates visualizations.
Args:
request (gr.Request): Gradio request object
text_input (str): OpenAlex query URL
sample_size_slider (int): Maximum number of samples to process
reduce_sample_checkbox (bool): Whether to reduce sample size
sample_reduction_method (str): Method for sample reduction ("Random" or "Order of Results")
plot_time_checkbox (bool): Whether to color points by publication date
locally_approximate_publication_date_checkbox (bool): Whether to approximate publication date locally before plotting.
progress (gr.Progress): Gradio progress tracker
Returns:
tuple: (link to visualization, iframe HTML)
"""
# Get the authentication token
if is_running_in_hf_space():
token = _get_token(request)
payload = token.split('.')[1]
payload = f"{payload}{'=' * ((4 - len(payload) % 4) % 4)}"
payload = json.loads(base64.urlsafe_b64decode(payload).decode())
print(payload)
user = payload['user']
if user == None:
user_type = "anonymous"
elif '[pro]' in user:
user_type = "pro"
else:
user_type = "registered"
print(f"User type: {user_type}")
# Check if input is empty or whitespace
print(f"Input: {text_input}")
if not text_input or text_input.isspace():
error_message = "Error: Please enter a valid OpenAlex URL in the 'OpenAlex-search URL'-field"
return [
error_message, # iframe HTML
gr.DownloadButton(label="Download Interactive Visualization", value='html_file_path', visible=False), # html download
gr.DownloadButton(label="Download CSV Data", value='csv_file_path', visible=False), # csv download
gr.DownloadButton(label="Download Static Plot", value='png_file_path', visible=False), # png download
gr.Button(visible=False) # cancel button state
]
# Check if the input is a valid OpenAlex URL
start_time = time.time()
print('Starting data projection pipeline')
progress(0.1, desc="Starting...")
# Split input into multiple URLs if present
urls = [url.strip() for url in text_input.split(';')]
records = []
total_query_length = 0
# Use first URL for filename
first_query, first_params = openalex_url_to_pyalex_query(urls[0])
filename = openalex_url_to_filename(urls[0])
print(f"Filename: {filename}")
# Process each URL
for i, url in enumerate(urls):
query, params = openalex_url_to_pyalex_query(url)
query_length = query.count()
total_query_length += query_length
print(f'Requesting {query_length} entries from query {i+1}/{len(urls)}...')
target_size = sample_size_slider if reduce_sample_checkbox and sample_reduction_method == "First n samples" else query_length
records_per_query = 0
should_break = False
for page in query.paginate(per_page=200, n_max=None):
# Add retry mechanism for processing each page
max_retries = 5
base_wait_time = 1 # Starting wait time in seconds
exponent = 1.5 # Exponential factor
for retry_attempt in range(max_retries):
try:
for record in page:
records.append(record)
records_per_query += 1
progress(0.1 + (0.2 * len(records) / (total_query_length)),
desc=f"Getting data from query {i+1}/{len(urls)}...")
if reduce_sample_checkbox and sample_reduction_method == "First n samples" and records_per_query >= target_size:
should_break = True
break
# If we get here without an exception, break the retry loop
break
except Exception as e:
print(f"Error processing page: {e}")
if retry_attempt < max_retries - 1:
wait_time = base_wait_time * (exponent ** retry_attempt) + random.random()
print(f"Retrying in {wait_time:.2f} seconds (attempt {retry_attempt + 1}/{max_retries})...")
time.sleep(wait_time)
else:
print(f"Maximum retries reached. Continuing with next page.")
if should_break:
break
if should_break:
break
print(f"Query completed in {time.time() - start_time:.2f} seconds")
# Process records
processing_start = time.time()
records_df = process_records_to_df(records)
if reduce_sample_checkbox and sample_reduction_method != "All":
sample_size = min(sample_size_slider, len(records_df))
if sample_reduction_method == "n random samples":
records_df = records_df.sample(sample_size)
elif sample_reduction_method == "First n samples":
records_df = records_df.iloc[:sample_size]
print(f"Records processed in {time.time() - processing_start:.2f} seconds")
# Create embeddings
embedding_start = time.time()
progress(0.3, desc="Embedding Data...")
texts_to_embedd = [f"{title} {abstract}" for title, abstract
in zip(records_df['title'], records_df['abstract'])]
if is_running_in_hf_space():
if len(texts_to_embedd) < 2000:
embeddings = create_embeddings_30(texts_to_embedd)
elif len(texts_to_embedd) < 4000 or user_type == "anonymous":
embeddings = create_embeddings_59(texts_to_embedd)
elif len(texts_to_embedd) < 8000:
embeddings = create_embeddings_120(texts_to_embedd)
else:
embeddings = create_embeddings_299(texts_to_embedd)
else:
embeddings = create_embeddings(texts_to_embedd)
print(f"Embeddings created in {time.time() - embedding_start:.2f} seconds")
# Project embeddings
projection_start = time.time()
progress(0.5, desc="Project into UMAP-embedding...")
umap_embeddings = mapper.transform(embeddings)
records_df[['x','y']] = umap_embeddings
print(f"Projection completed in {time.time() - projection_start:.2f} seconds")
# Prepare visualization data
viz_prep_start = time.time()
progress(0.6, desc="Preparing visualization data...")
basedata_df['color'] = '#ced4d211'
if not plot_time_checkbox:
records_df['color'] = '#5e2784'
else:
cmap = colormaps.haline
if not locally_approximate_publication_date_checkbox:
# Create color mapping based on publication years
years = pd.to_numeric(records_df['publication_year'])
norm = mcolors.Normalize(vmin=years.min(), vmax=years.max())
records_df['color'] = [mcolors.to_hex(cmap(norm(year))) for year in years]
else:
n_neighbors = 10 # Adjust this value to control smoothing
nn = NearestNeighbors(n_neighbors=n_neighbors)
nn.fit(umap_embeddings)
distances, indices = nn.kneighbors(umap_embeddings)
# Calculate local average publication year for each point
local_years = np.array([
np.mean(records_df['publication_year'].iloc[idx])
for idx in indices
])
norm = mcolors.Normalize(vmin=local_years.min(), vmax=local_years.max())
records_df['color'] = [mcolors.to_hex(cmap(norm(year))) for year in local_years]
stacked_df = pd.concat([basedata_df, records_df], axis=0, ignore_index=True)
stacked_df = stacked_df.fillna("Unlabelled")
stacked_df['parsed_field'] = [get_field(row) for ix, row in stacked_df.iterrows()]
extra_data = pd.DataFrame(stacked_df['doi'])
print(f"Visualization data prepared in {time.time() - viz_prep_start:.2f} seconds")
if citation_graph_checkbox:
citation_graph_start = time.time()
citation_graph = create_citation_graph(records_df)
graph_file_name = f"{filename}_citation_graph.jpg"
graph_file_path = static_dir / graph_file_name
draw_citation_graph(citation_graph,path=graph_file_path,bundle_edges=True,
min_max_coordinates=[np.min(stacked_df['x']),np.max(stacked_df['x']),np.min(stacked_df['y']),np.max(stacked_df['y'])])
print(f"Citation graph created and saved in {time.time() - citation_graph_start:.2f} seconds")
# Create and save plot
plot_start = time.time()
progress(0.7, desc="Creating interactive plot...")
# Create a solid black colormap
black_cmap = mcolors.LinearSegmentedColormap.from_list('black', ['#000000', '#000000'])
plot = datamapplot.create_interactive_plot(
stacked_df[['x','y']].values,
np.array(stacked_df['cluster_2_labels']),
np.array(['Unlabelled' if pd.isna(x) else x for x in stacked_df['parsed_field']]),
hover_text=[str(row['title']) for ix, row in stacked_df.iterrows()],
marker_color_array=stacked_df['color'],
use_medoids=True, # Switch back once efficient mediod caclulation comes out!
width=1000,
height=1000,
point_radius_min_pixels=1,
text_outline_width=5,
point_hover_color='#5e2784',
point_radius_max_pixels=7,
cmap=black_cmap,
background_image=graph_file_name if citation_graph_checkbox else None,
#color_label_text=False,
font_family="Roboto Condensed",
font_weight=600,
tooltip_font_weight=600,
tooltip_font_family="Roboto Condensed",
extra_point_data=extra_data,
on_click="window.open(`{doi}`)",
custom_css=DATAMAP_CUSTOM_CSS,
initial_zoom_fraction=.8,
enable_search=False,
offline_mode=False
)
# Save plot
html_file_name = f"{filename}.html"
html_file_path = static_dir / html_file_name
plot.save(html_file_path)
print(f"Plot created and saved in {time.time() - plot_start:.2f} seconds")
#datamapplot==0.5.1
# Save additional files if requested
csv_file_path = static_dir / f"{filename}.csv"
png_file_path = static_dir / f"{filename}.png"
if download_csv_checkbox:
# Export relevant column
export_df = records_df[['title', 'abstract', 'doi', 'publication_year', 'x', 'y','id','primary_topic']]
export_df['parsed_field'] = [get_field(row) for ix, row in export_df.iterrows()]
export_df['referenced_works'] = [', '.join(x) for x in records_df['referenced_works']]
if locally_approximate_publication_date_checkbox:
export_df['approximate_publication_year'] = local_years
export_df.to_csv(csv_file_path, index=False)
if download_png_checkbox:
png_start_time = time.time()
print("Starting PNG generation...")
# Sample and prepare data
sample_prep_start = time.time()
sample_to_plot = basedata_df#.sample(20000)
labels1 = np.array(sample_to_plot['cluster_2_labels'])
labels2 = np.array(['Unlabelled' if pd.isna(x) else x for x in sample_to_plot['parsed_field']])
ratio = 0.6
mask = np.random.random(size=len(labels1)) < ratio
combined_labels = np.where(mask, labels1, labels2)
# Get the 30 most common labels
unique_labels, counts = np.unique(combined_labels, return_counts=True)
top_30_labels = set(unique_labels[np.argsort(counts)[-80:]])
# Replace less common labels with 'Unlabelled'
combined_labels = np.array(['Unlabelled' if label not in top_30_labels else label for label in combined_labels])
#combined_labels = np.array(['Unlabelled' for label in combined_labels])
#if label not in top_30_labels else label
colors_base = ['#536878' for _ in range(len(labels1))]
print(f"Sample preparation completed in {time.time() - sample_prep_start:.2f} seconds")
# Create main plot
print(labels1)
print(labels2)
print(sample_to_plot[['x','y']].values)
print(combined_labels)
main_plot_start = time.time()
fig, ax = datamapplot.create_plot(
sample_to_plot[['x','y']].values,
combined_labels,
label_wrap_width=12,
label_over_points=True,
dynamic_label_size=True,
use_medoids=True, # Switch back once efficient mediod caclulation comes out!
point_size=2,
marker_color_array=colors_base,
force_matplotlib=True,
max_font_size=12,
min_font_size=4,
min_font_weight=100,
max_font_weight=300,
font_family="Roboto Condensed",
color_label_text=False, add_glow=False,
highlight_labels=list(np.unique(labels1)),
label_font_size=8,
highlight_label_keywords={"fontsize": 12, "fontweight": "bold", "bbox":{"boxstyle":"circle", "pad":0.75,'alpha':0.}},
)
print(f"Main plot creation completed in {time.time() - main_plot_start:.2f} seconds")
if citation_graph_checkbox:
# Read and add the graph image
graph_img = plt.imread(graph_file_path)
ax.imshow(graph_img, extent=[np.min(stacked_df['x']),np.max(stacked_df['x']),np.min(stacked_df['y']),np.max(stacked_df['y'])],
alpha=0.9, aspect='auto')
if len(records_df) > 50_000:
point_size = .5
elif len(records_df) > 10_000:
point_size = 1
else:
point_size = 5
# Time-based visualization
scatter_start = time.time()
if plot_time_checkbox:
if locally_approximate_publication_date_checkbox:
scatter = plt.scatter(
umap_embeddings[:,0],
umap_embeddings[:,1],
c=local_years,
cmap=colormaps.haline,
alpha=0.8,
s=point_size
)
else:
years = pd.to_numeric(records_df['publication_year'])
scatter = plt.scatter(
umap_embeddings[:,0],
umap_embeddings[:,1],
c=years,
cmap=colormaps.haline,
alpha=0.8,
s=point_size
)
plt.colorbar(scatter, shrink=0.5, format='%d')
else:
scatter = plt.scatter(
umap_embeddings[:,0],
umap_embeddings[:,1],
c=records_df['color'],
alpha=0.8,
s=point_size
)
print(f"Scatter plot creation completed in {time.time() - scatter_start:.2f} seconds")
# Save plot
save_start = time.time()
plt.axis('off')
png_file_path = static_dir / f"{filename}.png"
plt.savefig(png_file_path, dpi=300, bbox_inches='tight')
plt.close()
print(f"Plot saving completed in {time.time() - save_start:.2f} seconds")
print(f"Total PNG generation completed in {time.time() - png_start_time:.2f} seconds")
progress(1.0, desc="Done!")
print(f"Total pipeline completed in {time.time() - start_time:.2f} seconds")
iframe = f"""<iframe src="{html_file_path}" width="100%" height="1000px"></iframe>"""
# Return iframe and download buttons with appropriate visibility
return [
iframe,
gr.DownloadButton(label="Download Interactive Visualization", value=html_file_path, visible=True, variant='secondary'),
gr.DownloadButton(label="Download CSV Data", value=csv_file_path, visible=download_csv_checkbox, variant='secondary'),
gr.DownloadButton(label="Download Static Plot", value=png_file_path, visible=download_png_checkbox, variant='secondary'),
gr.Button(visible=False) # Return hidden state for cancel button
]
predict.zerogpu = True
theme = gr.themes.Monochrome(
font=[gr.themes.GoogleFont("Roboto Condensed"), "ui-sans-serif", "system-ui", "sans-serif"],
text_size="lg",
).set(
button_secondary_background_fill="white",
button_secondary_background_fill_hover="#f3f4f6",
button_secondary_border_color="black",
button_secondary_text_color="black",
button_border_width="2px",
)
# Gradio interface setup
with gr.Blocks(theme=theme, css="""
.gradio-container a {
color: black !important;
text-decoration: none !important; /* Force remove default underline */
font-weight: bold;
transition: color 0.2s ease-in-out, border-bottom-color 0.2s ease-in-out;
display: inline-block; /* Enable proper spacing for descenders */
line-height: 1.1; /* Adjust line height */
padding-bottom: 2px; /* Add space for descenders */
}
.gradio-container a:hover {
color: #b23310 !important;
border-bottom: 3px solid #b23310; /* Wider underline, only on hover */
}
""") as demo:
gr.Markdown("""
<div style="max-width: 100%; margin: 0 auto;">
<br>
# OpenAlex Mapper
OpenAlex Mapper is a way of projecting search queries from the amazing OpenAlex database on a background map of randomly sampled papers from OpenAlex, which allows you to easily investigate interdisciplinary connections. OpenAlex Mapper was developed by [Maximilian Noichl](https://maxnoichl.eu) and [Andrea Loettgers](https://unige.academia.edu/AndreaLoettgers) at the [Possible Life project](http://www.possiblelife.eu/).
To use OpenAlex Mapper, first head over to [OpenAlex](https://openalex.org/) and search for something that interests you. For example, you could search for all the papers that make use of the [Kuramoto model](https://openalex.org/works?page=1&filter=default.search%3A%22Kuramoto%20Model%22), for all the papers that were published by researchers at [Utrecht University in 2019](https://openalex.org/works?page=1&filter=authorships.institutions.lineage%3Ai193662353,publication_year%3A2019), or for all the papers that cite Wittgenstein's [Philosophical Investigations](https://openalex.org/works?page=1&filter=cites%3Aw4251395411). Then you copy the URL to that search query into the OpenAlex search URL box below and click "Run Query." It will download all of these records from OpenAlex and embed them on our interactive map. As the embedding step is a little expensive, computationally, it's often a good idea to play around with smaller samples, before running a larger analysis (see below for a note on sample size and gpu-limits). After a little time, that map will appear and be available for you to interact with and download. You can find more explanations in the FAQs below.
</div>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
run_btn = gr.Button("Run Query", variant='primary')
cancel_btn = gr.Button("Cancel", visible=False, variant='secondary')
# Create separate download buttons
html_download = gr.DownloadButton("Download Interactive Visualization", visible=False, variant='secondary')
csv_download = gr.DownloadButton("Download CSV Data", visible=False, variant='secondary')
png_download = gr.DownloadButton("Download Static Plot", visible=False, variant='secondary')
text_input = gr.Textbox(label="OpenAlex-search URL",
info="Enter the URL to an OpenAlex-search.")
gr.Markdown("### Sample Settings")
reduce_sample_checkbox = gr.Checkbox(
label="Reduce Sample Size",
value=True,
info="Reduce sample size."
)
sample_reduction_method = gr.Dropdown(
["All", "First n samples", "n random samples"],
label="Sample Selection Method",
value="First n samples",
info="How to choose the samples to keep."
)
sample_size_slider = gr.Slider(
label="Sample Size",
minimum=500,
maximum=20000,
step=10,
value=1000,
info="How many samples to keep.",
visible=True
)
gr.Markdown("### Plot Settings")
plot_time_checkbox = gr.Checkbox(
label="Plot Time",
value=True,
info="Colour points by their publication date."
)
locally_approximate_publication_date_checkbox = gr.Checkbox(
label="Locally Approximate Publication Date",
value=True,
info="Colour points by the average publication date in their area."
)
gr.Markdown("### Download Options")
download_csv_checkbox = gr.Checkbox(
label="Generate CSV Export",
value=False,
info="Export the data as CSV file"
)
download_png_checkbox = gr.Checkbox(
label="Generate Static PNG Plot",
value=False,
info="Export a static PNG visualization. This will make things slower!"
)
gr.Markdown("### Citation graph")
citation_graph_checkbox = gr.Checkbox(
label="Add Citation Graph",
value=False,
info="Adds a citation graph of the sample to the plot."
)
with gr.Column(scale=2):
html = gr.HTML(
value='<div style="width: 100%; height: 1000px; display: flex; justify-content: center; align-items: center; border: 1px solid #ccc; background-color: #f8f9fa;"><p style="font-size: 1.2em; color: #666;">The visualization map will appear here after running a query</p></div>',
label="",
show_label=False
)
gr.Markdown("""
<div style="max-width: 100%; margin: 0 auto;">
# FAQs
## Who made this?
This project was developed by [Maximilian Noichl](https://maxnoichl.eu) (Utrecht University), in cooperation with Andrea Loettger and Tarja Knuuttila at the [Possible Life project](http://www.possiblelife.eu/), at the University of Vienna. If this project is useful in any way for your research, we would appreciate citation of **...**
This project received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (LIFEMODE project, grant agreement No. 818772).
## How does it work?
The base map for this project is developed by randomly downloading 250,000 articles from OpenAlex, then embedding their abstracts using our [fine-tuned](https://huggingface.co/m7n/discipline-tuned_specter_2_024) version of the [specter-2](https://huggingface.co/allenai/specter2_aug2023refresh_base) language model, running these embeddings through [UMAP](https://umap-learn.readthedocs.io/en/latest/) to give us a two-dimensional representation, and displaying that in an interactive window using [datamapplot](https://datamapplot.readthedocs.io/en/latest/index.html). After the data for your query is downloaded from OpenAlex, it then undergoes the exact same process, but the pre-trained UMAP model from earlier is used to project your new data points onto this original map, showing where they would show up if they were included in the original sample. For more details, you can take a look at the method section of this paper: **...**
## I'm getting an "out of GPU credits" error.
Running the embedding process requires an expensive A100 GPU. To provide this, we make use of HuggingFace's ZeroGPU service. As an anonymous user, this entitles you to one minute of GPU runtime, which is enough for several small queries of around a thousand records every day. If you create a free account on HuggingFace, this should increase to five minutes of runtime, allowing you to run successful queries of up to 10,000 records at a time. If you need more, there's always the option to either buy a HuggingFace Pro subscription for roughly ten dollars a month (entitling you to 25 minutes of runtime every day) or get in touch with us to run the pipeline outside of the HuggingFace environment.
## I want to add multiple queries at once!
That can be a good idea, e. g. if your interested in a specific paper, as well as all the papers that cite it. Just add the queries to the query box and separate them with a ";" without any spaces in between!
## I think I found a mistake in the map.
There are various considerations to take into account when working with this map:
1. The language model we use is fine-tuned to separate disciplines from each other, but of course, disciplines are weird, partially subjective social categories, so what the model has learned might not always correspond perfectly to what you would expect to see.
2. When pressing down a really high-dimensional space into a low-dimensional one, there will be trade-offs. For example, we see this big ring structure of the sciences on the map, but in the middle of the map there is a overly stretchedstring of bioinformaticsthat stretches from computer science at the bottom up to the life sciences clusters at the top. This is one of the areas where the UMAP algorithm had trouble pressing our high-dimensional dataset into a low-dimensional space. For more information on how to read a UMAP plot, I recommend looking into ["Understanding UMAP"](https://pair-code.github.io/understanding-umap/) by Andy Coenen & Adam Pearce.
3. Finally, the labels we're using for the regions of this plot are created from OpenAlex's own labels of sub-disciplines. They give a rough indication of the papers that could be expected in this broad area of the map, but they are not necessarily the perfect label for the articles that are precisely below them. They are just located at the median point of a usually much larger, much broader, and fuzzier category, so they should always be taken with quite a big grain of salt.
</div>
""")
def update_slider_visibility(method):
return gr.Slider(visible=(method != "All"))
sample_reduction_method.change(
fn=update_slider_visibility,
inputs=[sample_reduction_method],
outputs=[sample_size_slider]
)
def show_cancel_button():
return gr.Button(visible=True)
def hide_cancel_button():
return gr.Button(visible=False)
show_cancel_button.zerogpu = True
hide_cancel_button.zerogpu = True
predict.zerogpu = True
# Update the run button click event
run_event = run_btn.click(
fn=show_cancel_button,
outputs=cancel_btn,
queue=False
).then(
fn=predict,
inputs=[
text_input,
sample_size_slider,
reduce_sample_checkbox,
sample_reduction_method,
plot_time_checkbox,
locally_approximate_publication_date_checkbox,
download_csv_checkbox,
download_png_checkbox,
citation_graph_checkbox
],
outputs=[html, html_download, csv_download, png_download, cancel_btn]
)
# Add cancel button click event
cancel_btn.click(
fn=hide_cancel_button,
outputs=cancel_btn,
cancels=[run_event],
queue=False # Important to make the button hide immediately
)
# demo.static_dirs = {
# "static": str(static_dir)
# }
# Mount and run app
# app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False)
# app.zerogpu = True # Add this line
# if __name__ == "__main__":
# demo.launch(server_name="0.0.0.0", server_port=7860, share=True,allowed_paths=["/static"])
# Mount Gradio app to FastAPI
if is_running_in_hf_space():
app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False) # setting to false for now.
else:
app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False)
# Run both servers
if __name__ == "__main__":
if is_running_in_hf_space():
# For HF Spaces, use SSR mode
os.environ["GRADIO_SSR_MODE"] = "True"
uvicorn.run("app:app", host="0.0.0.0", port=7860)
else:
uvicorn.run(app, host="0.0.0.0", port=7860) |