Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,976 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""Assign coordinates to the nodes of a graph.
"""
from __future__ import annotations
import numpy as np
import param
import scipy.sparse
class LayoutAlgorithm(param.ParameterizedFunction):
"""
Baseclass for all graph layout algorithms.
"""
__abstract = True
seed = param.Integer(default=None, bounds=(0, 2**32-1), doc="""
Random seed used to initialize the pseudo-random number
generator.""")
x = param.String(default='x', doc="""
Column name for each node's x coordinate.""")
y = param.String(default='y', doc="""
Column name for each node's y coordinate.""")
source = param.String(default='source', doc="""
Column name for each edge's source.""")
target = param.String(default='target', doc="""
Column name for each edge's target.""")
weight = param.String(default=None, allow_None=True, doc="""
Column name for each edge weight. If None, weights are ignored.""")
id = param.String(default=None, allow_None=True, doc="""
Column name for a unique identifier for the node. If None, the
dataframe index is used.""")
def __call__(self, nodes, edges, **params):
"""
This method takes two dataframes representing a graph's nodes
and edges respectively. For the nodes dataframe, the only
column accessed is the specified `id` value (or the index if
no 'id'). For the edges dataframe, the columns are `id`,
`source`, `target`, and (optionally) `weight`.
Each layout algorithm will use the two dataframes as appropriate to
assign positions to the nodes. Upon generating positions, this
method will return a copy of the original nodes dataframe with
two additional columns for the x and y coordinates.
"""
return NotImplementedError
class random_layout(LayoutAlgorithm):
"""
Assign coordinates to the nodes randomly.
Accepts an edges argument for consistency with other layout algorithms,
but ignores it.
"""
def __call__(self, nodes, edges=None, **params):
p = param.ParamOverrides(self, params)
np.random.seed(p.seed)
df = nodes.copy()
points = np.asarray(np.random.random((len(df), 2)))
df[p.x] = points[:, 0]
df[p.y] = points[:, 1]
return df
class circular_layout(LayoutAlgorithm):
"""
Assign coordinates to the nodes along a circle.
The points on the circle can be spaced either uniformly or randomly.
Accepts an edges argument for consistency with other layout algorithms,
but ignores it.
"""
uniform = param.Boolean(True, doc="""
Whether to distribute nodes evenly on circle""")
def __call__(self, nodes, edges=None, **params):
p = param.ParamOverrides(self, params)
np.random.seed(p.seed)
r = 0.5 # radius
x0, y0 = 0.5, 0.5 # center of unit circle
circumference = 2 * np.pi
df = nodes.copy()
if p.uniform:
thetas = np.arange(circumference, step=circumference/len(df))
else:
thetas = np.asarray(np.random.random((len(df),))) * circumference
df[p.x] = x0 + r * np.cos(thetas)
df[p.y] = y0 + r * np.sin(thetas)
return df
def _extract_points_from_nodes(nodes, params, dtype=None):
if params.x in nodes.columns and params.y in nodes.columns:
points = np.asarray(nodes[[params.x, params.y]])
else:
points = np.asarray(np.random.random((len(nodes), params.dim)), dtype=dtype)
return points
def _convert_graph_to_sparse_matrix(nodes, edges, params, dtype=None, format='csr'):
nlen = len(nodes)
if params.id is not None and params.id in nodes:
index = dict(zip(nodes[params.id].values, range(nlen)))
else:
index = dict(zip(nodes.index.values, range(nlen)))
if params.weight and params.weight in edges:
edge_values = edges[[params.source, params.target, params.weight]].values
rows, cols, data = zip(*((index[src], index[dst], weight)
for src, dst, weight in edge_values
if src in index and dst in index))
else:
edge_values = edges[[params.source, params.target]].values
rows, cols, data = zip(*((index[src], index[dst], 1)
for src, dst in edge_values
if src in index and dst in index))
# Symmetrize matrix
d = data + data
r = rows + cols
c = cols + rows
# Check for nodes pointing to themselves
loops = edges[edges[params.source] == edges[params.target]]
if len(loops):
if params.weight and params.weight in edges:
loop_values = loops[[params.source, params.target, params.weight]].values
diag_index, diag_data = zip(*((index[src], -weight)
for src, dst, weight in loop_values
if src in index and dst in index))
else:
loop_values = loops[[params.source, params.target]].values
diag_index, diag_data = zip(*((index[src], -1)
for src, dst in loop_values
if src in index and dst in index))
d += diag_data
r += diag_index
c += diag_index
M = scipy.sparse.coo_matrix((d, (r, c)), shape=(nlen, nlen), dtype=dtype)
return M.asformat(format)
def _merge_points_with_nodes(nodes, points, params):
n = nodes.copy()
n[params.x] = points[:, 0]
n[params.y] = points[:, 1]
return n
def cooling(matrix, points, temperature, params):
dt = temperature / float(params.iterations + 1)
displacement = np.zeros((params.dim, len(points)))
for iteration in range(params.iterations):
displacement *= 0
for i in range(matrix.shape[0]):
# difference between this row's node position and all others
delta = (points[i] - points).T
# distance between points
distance = np.sqrt((delta ** 2).sum(axis=0))
# enforce minimum distance of 0.01
distance = np.where(distance < 0.01, 0.01, distance)
# the adjacency matrix row
ai = matrix[i].toarray()
# displacement "force"
dist = params.k * params.k / distance ** 2
if params.nohubs:
dist = dist / float(ai.sum(axis=1) + 1)
if params.linlog:
dist = np.log(dist + 1)
displacement[:, i] += (delta * (dist - ai * distance / params.k)).sum(axis=1)
# update points
length = np.sqrt((displacement ** 2).sum(axis=0))
length = np.where(length < 0.01, 0.01, length)
points += (displacement * temperature / length).T
# cool temperature
temperature -= dt
class forceatlas2_layout(LayoutAlgorithm):
"""
Assign coordinates to the nodes using force-directed algorithm.
This is a force-directed graph layout algorithm called
`ForceAtlas2`.
Timothee Poisot's `nxfa2` is the original implementation of this
algorithm.
.. _ForceAtlas2:
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0098679&type=printable
.. _nxfa2:
https://github.com/tpoisot/nxfa2
"""
iterations = param.Integer(default=10, bounds=(1, None), doc="""
Number of passes for the layout algorithm""")
linlog = param.Boolean(False, doc="""
Whether to use logarithmic attraction force""")
nohubs = param.Boolean(False, doc="""
Whether to grant authorities (nodes with a high indegree) a
more central position than hubs (nodes with a high outdegree)""")
k = param.Number(default=None, doc="""
Compensates for the repulsion for nodes that are far away
from the center. Defaults to the inverse of the number of
nodes.""")
dim = param.Integer(default=2, bounds=(1, None), doc="""
Coordinate dimensions of each node""")
def __call__(self, nodes, edges, **params):
p = param.ParamOverrides(self, params)
np.random.seed(p.seed)
# Convert graph into sparse adjacency matrix and array of points
points = _extract_points_from_nodes(nodes, p, dtype='f')
matrix = _convert_graph_to_sparse_matrix(nodes, edges, p, dtype='f')
if p.k is None:
p.k = np.sqrt(1.0 / len(points))
# the initial "temperature" is about .1 of domain area (=1x1)
# this is the largest step allowed in the dynamics.
temperature = 0.1
# simple cooling scheme.
# linearly step down by dt on each iteration so last iteration is size dt.
cooling(matrix, points, temperature, p)
# Return the nodes with updated positions
return _merge_points_with_nodes(nodes, points, p)
|