Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,530 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
from __future__ import annotations
from itertools import count
import logging
from typing import TYPE_CHECKING
from toolz import unique, concat, pluck, get, memoize
from numba import literal_unroll
import numpy as np
import xarray as xr
from .antialias import AntialiasCombination
from .reductions import SpecialColumn, UsesCudaMutex, by, category_codes, summary
from .utils import (isnull, ngjit,
nanmax_in_place, nanmin_in_place, nansum_in_place, nanfirst_in_place, nanlast_in_place,
nanmax_n_in_place_3d, nanmax_n_in_place_4d, nanmin_n_in_place_3d, nanmin_n_in_place_4d,
nanfirst_n_in_place_3d, nanfirst_n_in_place_4d, nanlast_n_in_place_3d, nanlast_n_in_place_4d,
row_min_in_place, row_min_n_in_place_3d, row_min_n_in_place_4d,
row_max_in_place, row_max_n_in_place_3d, row_max_n_in_place_4d,
)
try:
from datashader.transfer_functions._cuda_utils import cuda_mutex_lock, cuda_mutex_unlock
except ImportError:
cuda_mutex_lock, cuda_mutex_unlock = None, None
if TYPE_CHECKING:
from datashader.antialias import UnzippedAntialiasStage2
__all__ = ['compile_components']
logger = logging.getLogger(__name__)
@memoize
def compile_components(agg, schema, glyph, *, antialias=False, cuda=False, partitioned=False):
"""Given an ``Aggregation`` object and a schema, return 5 sub-functions
and information on how to perform the second stage aggregation if
antialiasing is requested,
Parameters
----------
agg : Aggregation
The expression describing the aggregation(s) to be computed.
schema : DataShape
Columns and dtypes in the source dataset.
glyph : Glyph
The glyph to render.
antialias : bool
Whether to render using antialiasing.
cuda : bool
Whether to render using CUDA (on the GPU) or CPU.
partitioned : bool
Whether the source dataset is partitioned using dask.
Returns
-------
A tuple of the following:
``create(shape)``
Function that takes the aggregate shape, and returns a tuple of
initialized numpy arrays.
``info(df, canvas_shape)``
Function that takes a dataframe, and returns preprocessed 1D numpy
arrays of the needed columns.
``append(i, x, y, *aggs_and_cols)``
Function that appends the ``i``th row of the table to the ``(x, y)``
bin, given the base arrays and columns in ``aggs_and_cols``. This does
the bulk of the work.
``combine(base_tuples)``
Function that combines a list of base tuples into a single base tuple.
This forms the reducing step in a reduction tree.
``finalize(aggs, cuda)``
Function that is given a tuple of base numpy arrays and returns the
finalized ``DataArray`` or ``Dataset``.
``antialias_stage_2``
If using antialiased lines this is a tuple of the ``AntialiasCombination``
values corresponding to the aggs. If not using antialiased lines then
this is ``False``.
``antialias_stage_2_funcs``
If using antialiased lines which require a second stage combine, this
is a tuple of the three combine functions which are the accumulate,
clear and copy_back functions. If not using antialiased lines then this
is ``None``.
``column_names``
Names of DataFrame columns or DataArray variables that are used by the
agg.
"""
reds = list(traverse_aggregation(agg))
# List of base reductions (actually computed)
bases = list(unique(concat(r._build_bases(cuda, partitioned) for r in reds)))
dshapes = [b.out_dshape(schema, antialias, cuda, partitioned) for b in bases]
# Information on how to perform second stage aggregation of antialiased lines,
# including whether antialiased lines self-intersect or not as we need a single
# value for this even for a compound reduction. This is by default True, but
# is False if a single constituent reduction requests it.
if antialias:
self_intersect, antialias_stage_2 = make_antialias_stage_2(reds, bases)
if cuda:
import cupy
array_module = cupy
else:
array_module = np
antialias_stage_2 = antialias_stage_2(array_module)
antialias_stage_2_funcs = make_antialias_stage_2_functions(antialias_stage_2, bases, cuda,
partitioned)
else:
self_intersect = False
antialias_stage_2 = False
antialias_stage_2_funcs = None
# List of tuples of
# (append, base, input columns, temps, combine temps, uses cuda mutex, is_categorical)
calls = [_get_call_tuples(b, d, schema, cuda, antialias, self_intersect, partitioned)
for (b, d) in zip(bases, dshapes)]
# List of unique column names needed, including nan_check_columns
cols = list(concat(pluck(2, calls)))
nan_check_cols = list(c[3] for c in calls if c[3] is not None)
cols = list(unique(cols + nan_check_cols))
# List of temps needed
temps = list(pluck(4, calls))
combine_temps = list(pluck(5, calls))
create = make_create(bases, dshapes, cuda)
append, any_uses_cuda_mutex = make_append(bases, cols, calls, glyph, antialias)
info = make_info(cols, cuda, any_uses_cuda_mutex)
combine = make_combine(bases, dshapes, temps, combine_temps, antialias, cuda, partitioned)
finalize = make_finalize(bases, agg, schema, cuda, partitioned)
column_names = [c.column for c in cols if c.column != SpecialColumn.RowIndex]
return create, info, append, combine, finalize, antialias_stage_2, antialias_stage_2_funcs, \
column_names
def _get_antialias_stage_2_combine_func(combination: AntialiasCombination, zero: float,
n_reduction: bool, categorical: bool):
if n_reduction:
if zero == -1:
if combination in (AntialiasCombination.MAX, AntialiasCombination.LAST):
return row_max_n_in_place_4d if categorical else row_max_n_in_place_3d
elif combination in (AntialiasCombination.MIN, AntialiasCombination.FIRST):
return row_min_n_in_place_4d if categorical else row_min_n_in_place_3d
else:
raise NotImplementedError
else:
if combination == AntialiasCombination.MAX:
return nanmax_n_in_place_4d if categorical else nanmax_n_in_place_3d
elif combination == AntialiasCombination.MIN:
return nanmin_n_in_place_4d if categorical else nanmin_n_in_place_3d
elif combination == AntialiasCombination.FIRST:
return nanfirst_n_in_place_4d if categorical else nanfirst_n_in_place_3d
elif combination == AntialiasCombination.LAST:
return nanlast_n_in_place_4d if categorical else nanlast_n_in_place_3d
else:
raise NotImplementedError
else:
# The aggs to combine here are either 3D (ny, nx, ncat) if categorical is True or
# 2D (ny, nx) if categorical is False. The same combination functions can be for both
# as all elements are independent.
if zero == -1:
if combination in (AntialiasCombination.MAX, AntialiasCombination.LAST):
return row_max_in_place
elif combination in (AntialiasCombination.MIN, AntialiasCombination.FIRST):
return row_min_in_place
else:
raise NotImplementedError
else:
if combination == AntialiasCombination.MAX:
return nanmax_in_place
elif combination == AntialiasCombination.MIN:
return nanmin_in_place
elif combination == AntialiasCombination.FIRST:
return nanfirst_in_place
elif combination == AntialiasCombination.LAST:
return nanlast_in_place
else:
return nansum_in_place
def make_antialias_stage_2_functions(antialias_stage_2, bases, cuda, partitioned):
aa_combinations, aa_zeroes, aa_n_reductions, aa_categorical = antialias_stage_2
# Accumulate functions.
funcs = [_get_antialias_stage_2_combine_func(comb, zero, n_red, cat) for comb, zero, n_red, cat
in zip(aa_combinations, aa_zeroes, aa_n_reductions, aa_categorical)]
base_is_where = [b.is_where() for b in bases]
next_base_is_where = base_is_where[1:] + [False]
namespace = {}
namespace["literal_unroll"] = literal_unroll
for func in set(funcs):
namespace[func.__name__] = func
# Generator of unique names for combine functions
names = (f"combine{i}" for i in count())
# aa_stage_2_accumulate
lines = [
"def aa_stage_2_accumulate(aggs_and_copies, first_pass):",
# Don't need to accumulate if first_pass, just copy (opposite of aa_stage_2_copy_back)
" if first_pass:",
" for a in literal_unroll(aggs_and_copies):",
" a[1][:] = a[0][:]",
" else:",
]
for i, (func, is_where, next_is_where) in enumerate(zip(funcs, base_is_where,
next_base_is_where)):
if is_where:
where_reduction = bases[i]
if isinstance(where_reduction, by):
where_reduction = where_reduction.reduction
combine = where_reduction._combine_callback(cuda, partitioned, aa_categorical[i])
name = next(names) # Unique name
namespace[name] = combine
lines.append(
f" {name}(aggs_and_copies[{i}][::-1], aggs_and_copies[{i-1}][::-1])")
elif next_is_where:
# This is dealt with as part of the following base which is a where reduction.
pass
else:
lines.append(
f" {func.__name__}(aggs_and_copies[{i}][1], aggs_and_copies[{i}][0])")
code = "\n".join(lines)
logger.debug(code)
exec(code, namespace)
aa_stage_2_accumulate = ngjit(namespace["aa_stage_2_accumulate"])
# aa_stage_2_clear
if np.any(np.isnan(aa_zeroes)):
namespace["nan"] = np.nan
lines = ["def aa_stage_2_clear(aggs_and_copies):"]
for i, aa_zero in enumerate(aa_zeroes):
lines.append(f" aggs_and_copies[{i}][0].fill({aa_zero})")
code = "\n".join(lines)
logger.debug(code)
exec(code, namespace)
aa_stage_2_clear = ngjit(namespace["aa_stage_2_clear"])
# aa_stage_2_copy_back
@ngjit
def aa_stage_2_copy_back(aggs_and_copies):
# Numba access to heterogeneous tuples is only permitted using literal_unroll.
for agg_and_copy in literal_unroll(aggs_and_copies):
agg_and_copy[0][:] = agg_and_copy[1][:]
return aa_stage_2_accumulate, aa_stage_2_clear, aa_stage_2_copy_back
def traverse_aggregation(agg):
"""Yield a left->right traversal of an aggregation"""
if isinstance(agg, summary):
for a in agg.values:
for a2 in traverse_aggregation(a):
yield a2
else:
yield agg
def _get_call_tuples(base, dshape, schema, cuda, antialias, self_intersect, partitioned):
# Comments refer to usage in make_append()
return (
base._build_append(dshape, schema, cuda, antialias, self_intersect), # func
(base,), # bases
base.inputs, # cols, arrays of these are passed to reduction append functions
base.nan_check_column, # column used to check for NaNs in some where reductions
base._build_temps(cuda), # temps
base._build_combine_temps(cuda, partitioned), # combine temps
base.uses_cuda_mutex() if cuda else UsesCudaMutex.No, # uses cuda mutex
base.is_categorical(),
)
def make_create(bases, dshapes, cuda):
creators = [b._build_create(d) for (b, d) in zip(bases, dshapes)]
if cuda:
import cupy
array_module = cupy
else:
array_module = np
return lambda shape: tuple(c(shape, array_module) for c in creators)
def make_info(cols, cuda, uses_cuda_mutex: bool):
def info(df, canvas_shape):
ret = tuple(c.apply(df, cuda) for c in cols)
if uses_cuda_mutex:
import cupy # Guaranteed to be available if uses_cuda_mutex is True
import numba
from packaging.version import Version
if Version(numba.__version__) >= Version("0.57"):
mutex_array = cupy.zeros(canvas_shape, dtype=np.uint32)
else:
mutex_array = cupy.zeros((1,), dtype=np.uint32)
ret += (mutex_array,)
return ret
return info
def make_append(bases, cols, calls, glyph, antialias):
names = ('_{0}'.format(i) for i in count())
inputs = list(bases) + list(cols)
namespace = {}
need_isnull = any(call[3] for call in calls)
if need_isnull:
namespace["isnull"] = isnull
global_cuda_mutex = any(call[6] == UsesCudaMutex.Global for call in calls)
any_uses_cuda_mutex = any(call[6] != UsesCudaMutex.No for call in calls)
if any_uses_cuda_mutex:
# This adds an argument to the append() function that is the cuda mutex
# generated in make_info.
inputs += ["_cuda_mutex"]
namespace["cuda_mutex_lock"] = cuda_mutex_lock
namespace["cuda_mutex_unlock"] = cuda_mutex_unlock
signature = [next(names) for i in inputs]
arg_lk = dict(zip(inputs, signature))
local_lk = {}
head = []
body = []
ndims = glyph.ndims
if ndims is not None:
subscript = ', '.join(['i' + str(n) for n in range(ndims)])
else:
subscript = None
prev_local_cuda_mutex = False
categorical_args = {} # Reuse categorical arguments if used in more than one reduction
where_selectors = {} # Reuse where.selector if used more than once in a summary reduction
if logger.isEnabledFor(logging.DEBUG): # mostly does nothing...
logger.debug(f"global_cuda_mutex {global_cuda_mutex}")
logger.debug(f"any_uses_cuda_mutex {any_uses_cuda_mutex}")
for k, v in arg_lk.items():
logger.debug(f"arg_lk {v} {k} {getattr(k, 'column', None)}")
def get_cuda_mutex_call(lock: bool) -> str:
func = "cuda_mutex_lock" if lock else "cuda_mutex_unlock"
return f'{func}({arg_lk["_cuda_mutex"]}, (y, x))'
for index, (func, bases, cols, nan_check_column, temps, _, uses_cuda_mutex, categorical) \
in enumerate(calls):
local_cuda_mutex = not global_cuda_mutex and uses_cuda_mutex == UsesCudaMutex.Local
local_lk.update(zip(temps, (next(names) for i in temps)))
func_name = next(names)
logger.debug(f"func {func_name} {func}")
namespace[func_name] = func
args = [arg_lk[i] for i in bases]
if categorical and isinstance(cols[0], category_codes):
args.extend('{0}[{1}]'.format(arg_lk[col], subscript) for col in cols[1:])
elif ndims is None:
args.extend('{0}'.format(arg_lk[i]) for i in cols)
elif categorical:
args.extend('{0}[{1}][1]'.format(arg_lk[i], subscript)
for i in cols)
else:
args.extend('{0}[{1}]'.format(arg_lk[i], subscript)
for i in cols)
if categorical:
# Categorical aggregate arrays need to be unpacked
categorical_arg = arg_lk[cols[0]]
cat_name = categorical_args.get(categorical_arg, None)
if cat_name is None:
# Each categorical column only needs to be unpacked once
col_index = '' if isinstance(cols[0], category_codes) else '[0]'
cat_name = f'cat{next(names)}'
categorical_args[categorical_arg] = cat_name
head.append(f'{cat_name} = int({categorical_arg}[{subscript}]{col_index})')
arg = signature[index]
head.append(f'{arg} = {arg}[:, :, {cat_name}]')
args.extend([local_lk[i] for i in temps])
if antialias:
args += ["aa_factor", "prev_aa_factor"]
if local_cuda_mutex and prev_local_cuda_mutex:
# Avoid unnecessary mutex unlock and lock cycle
body.pop()
is_where = len(bases) == 1 and bases[0].is_where()
if is_where:
where_reduction = bases[0]
if isinstance(where_reduction, by):
where_reduction = where_reduction.reduction
selector_hash = hash(where_reduction.selector)
update_index_arg_name = where_selectors.get(selector_hash, None)
new_selector = update_index_arg_name is None
if new_selector:
update_index_arg_name = next(names)
where_selectors[selector_hash] = update_index_arg_name
args.append(update_index_arg_name)
# where reduction needs access to the return of the contained
# reduction, which is the preceding one here.
prev_body = body.pop()
if local_cuda_mutex and not prev_local_cuda_mutex:
body.append(get_cuda_mutex_call(True))
if new_selector:
body.append(f'{update_index_arg_name} = {prev_body}')
else:
body.append(prev_body)
# If nan_check_column is defined then need to check if value of
# correct row in that column is NaN and if so do nothing. This
# check needs to occur before the where.selector is called.
if nan_check_column is None:
whitespace = ''
else:
var = f"{arg_lk[nan_check_column]}[{subscript}]"
prev_body = body[-1]
body[-1] = f'if not isnull({var}):'
body.append(f' {prev_body}')
whitespace = ' '
body.append(f'{whitespace}if {update_index_arg_name} >= 0:')
body.append(f' {whitespace}{func_name}(x, y, {", ".join(args)})')
else:
if local_cuda_mutex and not prev_local_cuda_mutex:
body.append(get_cuda_mutex_call(True))
if nan_check_column:
var = f"{arg_lk[nan_check_column]}[{subscript}]"
body.append(f'if not isnull({var}):')
body.append(f' {func_name}(x, y, {", ".join(args)})')
else:
body.append(f'{func_name}(x, y, {", ".join(args)})')
if local_cuda_mutex:
body.append(get_cuda_mutex_call(False))
prev_local_cuda_mutex = local_cuda_mutex
body = head + ['{0} = {1}[y, x]'.format(name, arg_lk[agg])
for agg, name in local_lk.items()] + body
if global_cuda_mutex:
body = [get_cuda_mutex_call(True)] + body + [get_cuda_mutex_call(False)]
if antialias:
signature = ["aa_factor", "prev_aa_factor"] + signature
if ndims is None:
code = ('def append(x, y, {0}):\n'
' {1}').format(', '.join(signature), '\n '.join(body))
else:
code = ('def append({0}, x, y, {1}):\n'
' {2}'
).format(subscript, ', '.join(signature), '\n '.join(body))
logger.debug(code)
exec(code, namespace)
return ngjit(namespace['append']), any_uses_cuda_mutex
def make_combine(bases, dshapes, temps, combine_temps, antialias, cuda, partitioned):
# Lookup of base Reduction to argument index.
arg_lk = dict((k, v) for (v, k) in enumerate(bases))
# Also need lookup of by.reduction as the contained reduction is not aware of its wrapper.
arg_lk.update(dict((k.reduction, v) for (v, k) in enumerate(bases) if isinstance(k, by)))
# where._combine() deals with combine of preceding reduction so exclude
# it from explicit combine calls.
base_is_where = [b.is_where() for b in bases]
next_base_is_where = base_is_where[1:] + [False]
calls = [(None if n else b._build_combine(d, antialias, cuda, partitioned),
[arg_lk[i] for i in (b,) + t + ct])
for (b, d, t, ct, n) in zip(bases, dshapes, temps, combine_temps, next_base_is_where)]
def combine(base_tuples):
bases = tuple(np.stack(bs) for bs in zip(*base_tuples))
ret = []
for is_where, (func, inds) in zip(base_is_where, calls):
if func is None:
continue
call = func(*get(inds, bases))
if is_where:
# Separate aggs of where reduction and its selector,
# selector's goes first to match order of bases.
ret.extend(call[::-1])
else:
ret.append(call)
return tuple(ret)
return combine
def make_finalize(bases, agg, schema, cuda, partitioned):
arg_lk = dict((k, v) for (v, k) in enumerate(bases))
if isinstance(agg, summary):
calls = []
for key, val in zip(agg.keys, agg.values):
f = make_finalize(bases, val, schema, cuda, partitioned)
try:
# Override bases if possible
bases = val._build_bases(cuda, partitioned)
except AttributeError:
pass
inds = [arg_lk[b] for b in bases]
calls.append((key, f, inds))
def finalize(bases, cuda=False, **kwargs):
data = {key: finalizer(get(inds, bases), cuda, **kwargs)
for (key, finalizer, inds) in calls}
# Copy x and y range attrs from any DataArray (their ranges are all the same)
# to set on parent Dataset
name = agg.keys[0] # Name of first DataArray.
attrs = {attr: data[name].attrs[attr] for attr in ('x_range', 'y_range')}
return xr.Dataset(data, attrs=attrs)
return finalize
else:
return agg._build_finalize(schema)
def make_antialias_stage_2(reds, bases):
# Only called if antialias is True.
# Prefer a single-stage antialiased aggregation, but if any requested
# reduction requires two stages then force use of two for all reductions.
self_intersect = True
for red in reds:
if red._antialias_requires_2_stages():
self_intersect = False
break
def antialias_stage_2(array_module) -> UnzippedAntialiasStage2:
return tuple(zip(*concat(b._antialias_stage_2(self_intersect, array_module)
for b in bases)))
return self_intersect, antialias_stage_2
|