File size: 18,418 Bytes
d1ed09d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
"""Bundle a graph's edges to emphasize the graph structure.

Given a large graph, the underlying structure can be obscured by edges in close
proximity. To uncover the group structure for clearer visualization, edges are
split into smaller edges and bundled with neighbors.

Ian Calvert's `Edgehammer`_ is the original implementation of the main
algorithm.

.. _Edgehammer:
   https://gitlab.com/ianjcalvert/edgehammer
"""

from __future__ import annotations

from math import ceil

from dask import compute, delayed
from pandas import DataFrame

try:
    import skimage
    from skimage.filters import gaussian, sobel_h, sobel_v
except Exception:
    skimage = None

import numpy as np
import pandas as pd
import param

from .utils import ngjit


@ngjit
def distance_between(a, b):
    """Find the Euclidean distance between two points."""
    return (((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2))**(0.5)


@ngjit
def resample_segment(segments, new_segments, min_segment_length, max_segment_length, ndims):
    next_point = np.zeros(ndims, dtype=segments.dtype)
    current_point = segments[0]
    pos = 0
    index = 1
    while index < len(segments):
        next_point = segments[index]
        distance = distance_between(current_point, next_point)
        if (distance < min_segment_length and 1 < index < (len(segments) - 2)):
            # Merge points, because they're too close to each other
            current_point = (current_point + next_point) / 2
            new_segments[pos] = current_point
            pos += 1
            index += 2
        elif distance > max_segment_length:
            # If points are too far away from each other, linearly place new points
            points = int(ceil(distance / ((max_segment_length + min_segment_length) / 2)))
            for i in range(points):
                new_segments[pos] = current_point + (i * ((next_point - current_point) / points))
                pos += 1
            current_point = next_point
            index += 1
        else:
            # Do nothing, everything is good
            new_segments[pos] = current_point
            pos += 1
            current_point = next_point
            index += 1
    new_segments[pos] = next_point
    return new_segments


@ngjit
def calculate_length(segments, min_segment_length, max_segment_length):
    current_point = segments[0]
    index = 1
    total = 0
    any_change = False
    while index < len(segments):
        next_point = segments[index]
        distance = distance_between(current_point, next_point)
        if (distance < min_segment_length and 1 < index < (len(segments) - 2)):
            any_change = True
            current_point = (current_point + next_point) / 2
            total += 1
            index += 2
        elif distance > max_segment_length:
            any_change = True
            # Linear subsample
            points = int(ceil(distance / ((max_segment_length + min_segment_length) / 2)))
            total += points
            current_point = next_point
            index += 1
        else:
            # Do nothing
            total += 1
            current_point = next_point
            index += 1
    total += 1
    return any_change, total


def resample_edge(segments, min_segment_length, max_segment_length, ndims):
    change, total_resamples = calculate_length(segments, min_segment_length, max_segment_length)
    if not change:
        return segments
    resampled = np.empty((total_resamples, ndims))
    resample_segment(segments, resampled, min_segment_length, max_segment_length, ndims)
    return resampled


@delayed
def resample_edges(edge_segments, min_segment_length, max_segment_length, ndims):
    replaced_edges = []
    for segments in edge_segments:
        replaced_edges.append(resample_edge(segments, min_segment_length, max_segment_length,
                                            ndims))
    return replaced_edges


@ngjit
def smooth_segment(segments, tension, idx, idy):
    seg_length = len(segments) - 2
    for i in range(1, seg_length):
        previous, current, next_point = segments[i - 1], segments[i], segments[i + 1]
        current[idx] = ((1-tension)*current[idx]) + (tension*(previous[idx] + next_point[idx]) / 2)
        current[idy] = ((1-tension)*current[idy]) + (tension*(previous[idy] + next_point[idy]) / 2)


def smooth(edge_segments, tension, idx, idy):
    for segments in edge_segments:
        smooth_segment(segments, tension, idx, idy)


@ngjit
def advect_segments(segments, vert, horiz, accuracy, idx, idy):
    for i in range(1, len(segments) - 1):
        x = int(segments[i][idx] * accuracy)
        y = int(segments[i][idy] * accuracy)
        segments[i][idx] = segments[i][idx] + horiz[x, y] / accuracy
        segments[i][idy] = segments[i][idy] + vert[x, y] / accuracy
        segments[i][idx] = max(0, min(segments[i][idx], 1))
        segments[i][idy] = max(0, min(segments[i][idy], 1))


def advect_and_resample(vert, horiz, segments, iterations, accuracy, min_segment_length,
                        max_segment_length, segment_class):
    for it in range(iterations):
        advect_segments(segments, vert, horiz, accuracy, segment_class.idx, segment_class.idy)
        if it % 2 == 0:
            segments = resample_edge(segments, min_segment_length, max_segment_length,
                                     segment_class.ndims)
    return segments


@delayed
def advect_resample_all(gradients, edge_segments, iterations, accuracy, min_segment_length,
                        max_segment_length, segment_class):
    vert, horiz = gradients
    return [advect_and_resample(vert, horiz, edges, iterations, accuracy, min_segment_length,
                                max_segment_length, segment_class)
            for edges in edge_segments]


def batches(seq, n):
    """Yield successive n-sized batches from seq."""
    for i in range(0, len(seq), n):
        yield seq[i:i + n]


@delayed
def draw_to_surface(edge_segments, bandwidth, accuracy, accumulator):
    img = np.zeros((accuracy + 1, accuracy + 1))
    for segments in edge_segments:
        for point in segments:
            accumulator(img, point, accuracy)
    return gaussian(img, sigma=bandwidth / 2)


@delayed
def get_gradients(img):
    img /= np.max(img)

    horiz = sobel_h(img)
    vert = sobel_v(img)

    magnitude = np.sqrt(horiz**2 + vert**2) + 1e-5
    vert /= magnitude
    horiz /= magnitude
    return (vert, horiz)


class BaseSegment:
    @classmethod
    def create_delimiter(cls):
        return np.full((1, cls.ndims), np.nan)


class UnweightedSegment(BaseSegment):
    ndims = 3
    idx, idy = 1, 2

    @staticmethod
    def get_columns(params):
        return ['edge_id', params.x, params.y]

    @staticmethod
    def get_merged_columns(params):
        return ['edge_id', 'src_x', 'src_y', 'dst_x', 'dst_y']

    @staticmethod
    @ngjit
    def create_segment(edge):
        return np.array([[edge[0], edge[1], edge[2]], [edge[0], edge[3], edge[4]]])

    @staticmethod
    @ngjit
    def accumulate(img, point, accuracy):
        img[int(point[1] * accuracy), int(point[2] * accuracy)] += 1


class EdgelessUnweightedSegment(BaseSegment):
    ndims = 2
    idx, idy = 0, 1

    @staticmethod
    def get_columns(params):
        return [params.x, params.y]

    @staticmethod
    def get_merged_columns(params):
        return ['edge_id', 'src_x', 'src_y', 'dst_x', 'dst_y']

    @staticmethod
    @ngjit
    def create_segment(edge):
        return np.array([[edge[0], edge[1]], [edge[2], edge[3]]])

    @staticmethod
    @ngjit
    def accumulate(img, point, accuracy):
        img[int(point[0] * accuracy), int(point[1] * accuracy)] += 1


class WeightedSegment(BaseSegment):
    ndims = 4
    idx, idy = 1, 2

    @staticmethod
    def get_columns(params):
        return ['edge_id', params.x, params.y, params.weight]

    @staticmethod
    def get_merged_columns(params):
        return ['edge_id', 'src_x', 'src_y', 'dst_x', 'dst_y', params.weight]

    @staticmethod
    @ngjit
    def create_segment(edge):
        return np.array([[edge[0], edge[1], edge[2], edge[5]],
                         [edge[0], edge[3], edge[4], edge[5]]])

    @staticmethod
    @ngjit
    def accumulate(img, point, accuracy):
        img[int(point[1] * accuracy), int(point[2] * accuracy)] += point[3]


class EdgelessWeightedSegment(BaseSegment):
    ndims = 3
    idx, idy = 0, 1

    @staticmethod
    def get_columns(params):
        return [params.x, params.y, params.weight]

    @staticmethod
    def get_merged_columns(params):
        return ['src_x', 'src_y', 'dst_x', 'dst_y', params.weight]

    @staticmethod
    @ngjit
    def create_segment(edge):
        return np.array([[edge[0], edge[1], edge[4]], [edge[2], edge[3], edge[4]]])

    @staticmethod
    @ngjit
    def accumulate(img, point, accuracy):
        img[int(point[0] * accuracy), int(point[1] * accuracy)] += point[2]


def _convert_graph_to_edge_segments(nodes, edges, params):
    """
    Merge graph dataframes into a list of edge segments.

    Given a graph defined as a pair of dataframes (nodes and edges), the
    nodes (id, coordinates) and edges (id, source, target, weight) are
    joined by node id to create a single dataframe with each source/target
    of an edge (including its optional weight) replaced with the respective
    coordinates. For both nodes and edges, each id column is assumed to be
    the index.

    We also return the dimensions of each point in the final dataframe and
    the accumulator function for drawing to an image.
    """

    df = pd.merge(edges, nodes, left_on=[params.source], right_index=True)
    df = df.rename(columns={params.x: 'src_x', params.y: 'src_y'})

    df = pd.merge(df, nodes, left_on=[params.target], right_index=True)
    df = df.rename(columns={params.x: 'dst_x', params.y: 'dst_y'})

    df = df.sort_index()
    df = df.reset_index()

    include_edge_id = params.include_edge_id
    if include_edge_id:
        df = df.rename(columns={'id': 'edge_id'})

    include_weight = params.weight and params.weight in edges

    if include_edge_id:
        if include_weight:
            segment_class = WeightedSegment
        else:
            segment_class = UnweightedSegment
    else:
        if include_weight:
            segment_class = EdgelessWeightedSegment
        else:
            segment_class = EdgelessUnweightedSegment

    df = df.filter(items=segment_class.get_merged_columns(params))

    edge_segments = []
    for tup in df.itertuples():
        edge = (tup.src_x, tup.src_y, tup.dst_x, tup.dst_y)
        if include_edge_id:
            edge = (tup.edge_id,) + edge
        if include_weight:
            edge += (getattr(tup, params.weight),)
        edge_segments.append(segment_class.create_segment(edge))

    return edge_segments, segment_class


def _convert_edge_segments_to_dataframe(edge_segments, segment_class, params):
    """
    Convert list of edge segments into a dataframe.

    For all edge segments, we create a dataframe to represent a path
    as successive points separated by a point with NaN as the x or y
    value.
    """

    # Need to put an array of NaNs with size point_dims between edges
    def edge_iterator():
        for edge in edge_segments:
            yield edge
            yield segment_class.create_delimiter()

    df = DataFrame(np.concatenate(list(edge_iterator())))
    df.columns = segment_class.get_columns(params)
    return df


class connect_edges(param.ParameterizedFunction):
    """
    Convert a graph into paths suitable for datashading.

    Base class that connects each edge using a single line segment.
    Subclasses can add more complex algorithms for connecting with
    curved or manhattan-style polylines.
    """

    x = param.String(default='x', doc="""
        Column name for each node's x coordinate.""")

    y = param.String(default='y', doc="""
        Column name for each node's y coordinate.""")

    source = param.String(default='source', doc="""
        Column name for each edge's source.""")

    target = param.String(default='target', doc="""
        Column name for each edge's target.""")

    weight = param.String(default=None, allow_None=True, doc="""
        Column name for each edge weight. If None, weights are ignored.""")

    include_edge_id = param.Boolean(default=False, doc="""
        Include edge IDs in bundled dataframe""")

    def __call__(self, nodes, edges, **params):
        """
        Convert a graph data structure into a path structure for plotting

        Given a set of nodes (as a dataframe with a unique ID for each
        node) and a set of edges (as a dataframe with with columns for the
        source and destination IDs for each edge), returns a dataframe
        with with one path for each edge suitable for use with
        Datashader. The returned dataframe has columns for x and y
        location, with paths represented as successive points separated by
        a point with NaN as the x or y value.
        """
        p = param.ParamOverrides(self, params)
        edges, segment_class = _convert_graph_to_edge_segments(nodes, edges, p)
        return _convert_edge_segments_to_dataframe(edges, segment_class, p)

directly_connect_edges = connect_edges # For backwards compatibility; deprecated


def minmax_normalize(X, lower, upper):
    return (X - lower) / (upper - lower)


def minmax_denormalize(X, lower, upper):
    return X * (upper - lower) + lower


class hammer_bundle(connect_edges):
    """
    Iteratively group edges and return as paths suitable for datashading.

    Breaks each edge into a path with multiple line segments, and
    iteratively curves this path to bundle edges into groups.
    """

    initial_bandwidth = param.Number(default=0.05,bounds=(0.0,None),doc="""
        Initial value of the bandwidth....""")

    decay = param.Number(default=0.7,bounds=(0.0,1.0),doc="""
        Rate of decay in the bandwidth value, with 1.0 indicating no decay.""")

    iterations = param.Integer(default=4,bounds=(1,None),doc="""
        Number of passes for the smoothing algorithm""")

    batch_size = param.Integer(default=20000,bounds=(1,None),doc="""
        Number of edges to process together""")

    tension = param.Number(default=0.3,bounds=(0,None),precedence=-0.5,doc="""
        Exponential smoothing factor to use when smoothing""")

    accuracy = param.Integer(default=500,bounds=(1,None),precedence=-0.5,doc="""
        Number of entries in table for...""")

    advect_iterations = param.Integer(default=50,bounds=(0,None),precedence=-0.5,doc="""
        Number of iterations to move edges along gradients""")

    min_segment_length = param.Number(default=0.008,bounds=(0,None),precedence=-0.5,doc="""
        Minimum length (in data space?) for an edge segment""")

    max_segment_length = param.Number(default=0.016,bounds=(0,None),precedence=-0.5,doc="""
        Maximum length (in data space?) for an edge segment""")

    weight = param.String(default='weight', allow_None=True, doc="""
        Column name for each edge weight. If None, weights are ignored.""")

    def __call__(self, nodes, edges, **params):
        if skimage is None:
            raise ImportError("hammer_bundle operation requires scikit-image. "
                              "Ensure you install the dependency before applying "
                              "bundling.")

        p = param.ParamOverrides(self, params)

        # Calculate min/max for coordinates
        xmin, xmax = np.min(nodes[p.x]), np.max(nodes[p.x])
        ymin, ymax = np.min(nodes[p.y]), np.max(nodes[p.y])

        # Normalize coordinates
        nodes = nodes.copy()
        nodes[p.x] = minmax_normalize(nodes[p.x], xmin, xmax)
        nodes[p.y] = minmax_normalize(nodes[p.y], ymin, ymax)

        # Convert graph into list of edge segments
        edges, segment_class = _convert_graph_to_edge_segments(nodes, edges, p)

        # This is simply to let the work split out over multiple cores
        edge_batches = list(batches(edges, p.batch_size))

        # This gets the edges split into lots of small segments
        # Doing this inside a delayed function lowers the transmission overhead
        edge_segments = [resample_edges(batch, p.min_segment_length, p.max_segment_length,
                                        segment_class.ndims) for batch in edge_batches]

        for i in range(p.iterations):
            # Each step, the size of the 'blur' shrinks
            bandwidth = p.initial_bandwidth * p.decay**(i + 1) * p.accuracy

            # If it's this small, there won't be a change anyway
            if bandwidth < 2:
                break

            # Draw the density maps and combine them
            images = [draw_to_surface(segment, bandwidth, p.accuracy, segment_class.accumulate)
                      for segment in edge_segments]
            overall_image = sum(images)

            gradients = get_gradients(overall_image)

            # Move edges along the gradients and resample when necessary
            # This could include smoothing to adjust the amount a graph can change
            edge_segments = [advect_resample_all(gradients, segment, p.advect_iterations,
                                                 p.accuracy, p.min_segment_length,
                                                 p.max_segment_length, segment_class)
                             for segment in edge_segments]

        # Do a final resample to a smaller size for nicer rendering
        edge_segments = [resample_edges(segment, p.min_segment_length, p.max_segment_length,
                                        segment_class.ndims) for segment in edge_segments]

        # Finally things can be sent for computation
        edge_segments = compute(*edge_segments)

        # Smooth out the graph
        for i in range(10):
            for batch in edge_segments:
                smooth(batch, p.tension, segment_class.idx, segment_class.idy)

        # Flatten things
        new_segs = []
        for batch in edge_segments:
            new_segs.extend(batch)

        # Convert list of edge segments to Pandas dataframe
        df = _convert_edge_segments_to_dataframe(new_segs, segment_class, p)

        # Denormalize coordinates
        df[p.x] = minmax_denormalize(df[p.x], xmin, xmax)
        df[p.y] = minmax_denormalize(df[p.y], ymin, ymax)

        return df