Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,466 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
from __future__ import annotations
import copyreg
import multiprocessing
import multiprocessing.pool
import os
import pickle
import sys
import traceback
from collections.abc import Hashable, Mapping, Sequence
from concurrent.futures import ProcessPoolExecutor
from functools import partial
from warnings import warn
import cloudpickle
from dask import config
from dask.local import MultiprocessingPoolExecutor, get_async, reraise
from dask.optimization import cull, fuse
from dask.system import CPU_COUNT
from dask.utils import ensure_dict
def _reduce_method_descriptor(m):
return getattr, (m.__objclass__, m.__name__)
# type(set.union) is used as a proxy to <class 'method_descriptor'>
copyreg.pickle(type(set.union), _reduce_method_descriptor)
_dumps = partial(cloudpickle.dumps, protocol=pickle.HIGHEST_PROTOCOL)
_loads = cloudpickle.loads
def _process_get_id():
return multiprocessing.current_process().ident
# -- Remote Exception Handling --
# By default, tracebacks can't be serialized using pickle. However, the
# `tblib` library can enable support for this. Since we don't mandate
# that tblib is installed, we do the following:
#
# - If tblib is installed, use it to serialize the traceback and reraise
# in the scheduler process
# - Otherwise, use a ``RemoteException`` class to contain a serialized
# version of the formatted traceback, which will then print in the
# scheduler process.
#
# To enable testing of the ``RemoteException`` class even when tblib is
# installed, we don't wrap the class in the try block below
class RemoteException(Exception):
"""Remote Exception
Contains the exception and traceback from a remotely run task
"""
def __init__(self, exception, traceback):
self.exception = exception
self.traceback = traceback
def __str__(self):
return str(self.exception) + "\n\nTraceback\n---------\n" + self.traceback
def __dir__(self):
return sorted(set(dir(type(self)) + list(self.__dict__) + dir(self.exception)))
def __getattr__(self, key):
try:
return object.__getattribute__(self, key)
except AttributeError:
return getattr(self.exception, key)
exceptions: dict[type[Exception], type[Exception]] = {}
def remote_exception(exc: Exception, tb) -> Exception:
"""Metaclass that wraps exception type in RemoteException"""
if type(exc) in exceptions:
typ = exceptions[type(exc)]
return typ(exc, tb)
else:
try:
typ = type(
exc.__class__.__name__,
(RemoteException, type(exc)),
{"exception_type": type(exc)},
)
exceptions[type(exc)] = typ
return typ(exc, tb)
except TypeError:
return exc
try:
import tblib.pickling_support
tblib.pickling_support.install()
def _pack_traceback(tb):
return tb
except ImportError:
def _pack_traceback(tb):
return "".join(traceback.format_tb(tb))
def reraise(exc, tb=None):
exc = remote_exception(exc, tb)
raise exc
def pack_exception(e, dumps):
exc_type, exc_value, exc_traceback = sys.exc_info()
tb = _pack_traceback(exc_traceback)
try:
result = dumps((e, tb))
except BaseException as e:
exc_type, exc_value, exc_traceback = sys.exc_info()
tb = _pack_traceback(exc_traceback)
result = dumps((e, tb))
return result
_CONTEXT_UNSUPPORTED = """\
The 'multiprocessing.context' configuration option will be ignored on Python 2
and on Windows, because they each only support a single context.
"""
def get_context():
"""Return the current multiprocessing context."""
# fork context does fork()-without-exec(), which can lead to deadlocks,
# so default to "spawn".
context_name = config.get("multiprocessing.context", "spawn")
if sys.platform == "win32":
if context_name != "spawn":
# Only spawn is supported on Win32, can't change it:
warn(_CONTEXT_UNSUPPORTED, UserWarning)
return multiprocessing
else:
return multiprocessing.get_context(context_name)
def get(
dsk: Mapping,
keys: Sequence[Hashable] | Hashable,
num_workers=None,
func_loads=None,
func_dumps=None,
optimize_graph=True,
pool=None,
initializer=None,
chunksize=None,
**kwargs,
):
"""Multiprocessed get function appropriate for Bags
Parameters
----------
dsk : dict
dask graph
keys : object or list
Desired results from graph
num_workers : int
Number of worker processes (defaults to number of cores)
func_dumps : function
Function to use for function serialization (defaults to cloudpickle.dumps)
func_loads : function
Function to use for function deserialization (defaults to cloudpickle.loads)
optimize_graph : bool
If True [default], `fuse` is applied to the graph before computation.
pool : Executor or Pool
Some sort of `Executor` or `Pool` to use
initializer: function
Ignored if ``pool`` has been set.
Function to initialize a worker process before running any tasks in it.
chunksize: int, optional
Size of chunks to use when dispatching work.
Defaults to 5 as some batching is helpful.
If -1, will be computed to evenly divide ready work across workers.
"""
chunksize = chunksize or config.get("chunksize", 6)
pool = pool or config.get("pool", None)
initializer = initializer or config.get("multiprocessing.initializer", None)
num_workers = num_workers or config.get("num_workers", None) or CPU_COUNT
if pool is None:
# In order to get consistent hashing in subprocesses, we need to set a
# consistent seed for the Python hash algorithm. Unfortunately, there
# is no way to specify environment variables only for the Pool
# processes, so we have to rely on environment variables being
# inherited.
if os.environ.get("PYTHONHASHSEED") in (None, "0"):
# This number is arbitrary; it was chosen to commemorate
# https://github.com/dask/dask/issues/6640.
os.environ["PYTHONHASHSEED"] = "6640"
context = get_context()
initializer = partial(initialize_worker_process, user_initializer=initializer)
pool = ProcessPoolExecutor(
num_workers, mp_context=context, initializer=initializer
)
cleanup = True
else:
if initializer is not None:
warn(
"The ``initializer`` argument is ignored when ``pool`` is provided. "
"The user should configure ``pool`` with the needed ``initializer`` "
"on creation."
)
if isinstance(pool, multiprocessing.pool.Pool):
pool = MultiprocessingPoolExecutor(pool)
cleanup = False
# Optimize Dask
dsk = ensure_dict(dsk)
dsk2, dependencies = cull(dsk, keys)
if optimize_graph:
dsk3, dependencies = fuse(dsk2, keys, dependencies)
else:
dsk3 = dsk2
# We specify marshalling functions in order to catch serialization
# errors and report them to the user.
loads = func_loads or config.get("func_loads", None) or _loads
dumps = func_dumps or config.get("func_dumps", None) or _dumps
# Note former versions used a multiprocessing Manager to share
# a Queue between parent and workers, but this is fragile on Windows
# (issue #1652).
try:
# Run
result = get_async(
pool.submit,
pool._max_workers,
dsk3,
keys,
get_id=_process_get_id,
dumps=dumps,
loads=loads,
pack_exception=pack_exception,
raise_exception=reraise,
chunksize=chunksize,
**kwargs,
)
finally:
if cleanup:
pool.shutdown()
return result
def default_initializer():
# If Numpy is already imported, presumably its random state was
# inherited from the parent => re-seed it.
np = sys.modules.get("numpy")
if np is not None:
np.random.seed()
def initialize_worker_process(user_initializer=None):
"""
Initialize a worker process before running any tasks in it.
"""
default_initializer()
if user_initializer is not None:
user_initializer()
|