File size: 47,382 Bytes
d1ed09d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
from __future__ import annotations

import abc
import copy
import html
from collections.abc import Hashable, Iterable, KeysView, Mapping, MutableMapping, Set
from typing import Any, cast

import tlz as toolz

from dask import config
from dask.base import clone_key, flatten, is_dask_collection
from dask.core import keys_in_tasks, reverse_dict
from dask.utils import ensure_dict, ensure_set, import_required, key_split, stringify
from dask.widgets import get_template


def compute_layer_dependencies(layers):
    """Returns the dependencies between layers"""

    def _find_layer_containing_key(key):
        for k, v in layers.items():
            if key in v:
                return k
        raise RuntimeError(f"{repr(key)} not found")

    all_keys = {key for layer in layers.values() for key in layer}
    ret = {k: set() for k in layers}
    for k, v in layers.items():
        for key in keys_in_tasks(all_keys - v.keys(), v.values()):
            ret[k].add(_find_layer_containing_key(key))
    return ret


class Layer(Mapping):
    """High level graph layer

    This abstract class establish a protocol for high level graph layers.

    The main motivation of a layer is to represent a collection of tasks
    symbolically in order to speedup a series of operations significantly.
    Ideally, a layer should stay in this symbolic state until execution
    but in practice some operations will force the layer to generate all
    its internal tasks. We say that the layer has been materialized.

    Most of the default implementations in this class will materialize the
    layer. It is up to derived classes to implement non-materializing
    implementations.
    """

    annotations: Mapping[str, Any] | None
    collection_annotations: Mapping[str, Any] | None

    def __init__(
        self,
        annotations: Mapping[str, Any] | None = None,
        collection_annotations: Mapping[str, Any] | None = None,
    ):
        """Initialize Layer object.

        Parameters
        ----------
        annotations : Mapping[str, Any], optional
            By default, None.
            Annotations are metadata or soft constraints associated with tasks
            that dask schedulers may choose to respect:
            They signal intent without enforcing hard constraints.
            As such, they are primarily designed for use with the distributed
            scheduler. See the dask.annotate function for more information.
        collection_annotations : Mapping[str, Any], optional. By default, None.
            Experimental, intended to assist with visualizing the performance
            characteristics of Dask computations.
            These annotations are *not* passed to the distributed scheduler.
        """
        self.annotations = annotations or copy.copy(config.get("annotations", None))
        self.collection_annotations = collection_annotations or copy.copy(
            config.get("collection_annotations", None)
        )

    @abc.abstractmethod
    def is_materialized(self) -> bool:
        """Return whether the layer is materialized or not"""
        return True

    @abc.abstractmethod
    def get_output_keys(self) -> Set:
        """Return a set of all output keys

        Output keys are all keys in the layer that might be referenced by
        other layers.

        Classes overriding this implementation should not cause the layer
        to be materialized.

        Returns
        -------
        keys: Set
            All output keys
        """
        return self.keys()  # this implementation will materialize the graph

    def cull(
        self, keys: set, all_hlg_keys: Iterable
    ) -> tuple[Layer, Mapping[Hashable, set]]:
        """Remove unnecessary tasks from the layer

        In other words, return a new Layer with only the tasks required to
        calculate `keys` and a map of external key dependencies.

        Examples
        --------
        >>> inc = lambda x: x + 1
        >>> add = lambda x, y: x + y
        >>> d = MaterializedLayer({'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)})
        >>> _, deps = d.cull({'out'}, d.keys())
        >>> deps
        {'out': {'x'}, 'x': set()}

        Returns
        -------
        layer: Layer
            Culled layer
        deps: Map
            Map of external key dependencies
        """

        if len(keys) == len(self):
            # Nothing to cull if preserving all existing keys
            return (
                self,
                {k: self.get_dependencies(k, all_hlg_keys) for k in self.keys()},
            )

        ret_deps = {}
        seen = set()
        out = {}
        work = keys.copy()
        while work:
            k = work.pop()
            out[k] = self[k]
            ret_deps[k] = self.get_dependencies(k, all_hlg_keys)
            for d in ret_deps[k]:
                if d not in seen:
                    if d in self:
                        seen.add(d)
                        work.add(d)

        return MaterializedLayer(out, annotations=self.annotations), ret_deps

    def get_dependencies(self, key: Hashable, all_hlg_keys: Iterable) -> set:
        """Get dependencies of `key` in the layer

        Parameters
        ----------
        key: Hashable
            The key to find dependencies of
        all_hlg_keys: Iterable
            All keys in the high level graph.

        Returns
        -------
        deps: set
            A set of dependencies
        """
        return keys_in_tasks(all_hlg_keys, [self[key]])

    def __dask_distributed_annotations_pack__(
        self, annotations: Mapping[str, Any] | None = None
    ) -> Mapping[str, Any] | None:
        """Packs Layer annotations for transmission to scheduler

        Callables annotations are fully expanded over Layer keys, while
        other values are simply transmitted as is

        Parameters
        ----------
        annotations : Mapping[str, Any], optional
            A top-level annotations.

        Returns
        -------
        packed_annotations : dict
            Packed annotations.
        """
        annotations = cast(
            "dict[str, Any]", toolz.merge(self.annotations or {}, annotations or {})
        )
        packed = {}
        for a, v in annotations.items():
            if callable(v):
                packed[a] = {stringify(k): v(k) for k in self}
                packed[a]["__expanded_annotations__"] = True
            else:
                packed[a] = v
        return packed

    @staticmethod
    def __dask_distributed_annotations_unpack__(
        annotations: MutableMapping[str, Any],
        new_annotations: Mapping[str, Any] | None,
        keys: Iterable[Hashable],
    ) -> None:
        """
        Unpack a set of layer annotations across a set of keys, then merge those
        expanded annotations for the layer into an existing annotations mapping.

        This is not a simple shallow merge because some annotations like retries,
        priority, workers, etc need to be able to retain keys from different layers.

        Parameters
        ----------
        annotations: MutableMapping[str, Any], input/output
            Already unpacked annotations, which are to be updated with the new
            unpacked annotations
        new_annotations: Mapping[str, Any], optional
            New annotations to be unpacked into `annotations`
        keys: Iterable
            All keys in the layer.
        """
        if new_annotations is None:
            return

        expanded = {}
        keys_stringified = False

        # Expand the new annotations across the keyset
        for a, v in new_annotations.items():
            if type(v) is dict and "__expanded_annotations__" in v:
                # Maybe do a destructive update for efficiency?
                v = v.copy()
                del v["__expanded_annotations__"]
                expanded[a] = v
            else:
                if not keys_stringified:
                    keys = [stringify(k) for k in keys]
                    keys_stringified = True

                expanded[a] = dict.fromkeys(keys, v)

        # Merge the expanded annotations with the existing annotations mapping
        for k, v in expanded.items():
            v.update(annotations.get(k, {}))
        annotations.update(expanded)

    def clone(
        self,
        keys: set,
        seed: Hashable,
        bind_to: Hashable = None,
    ) -> tuple[Layer, bool]:
        """Clone selected keys in the layer, as well as references to keys in other
        layers

        Parameters
        ----------
        keys
            Keys to be replaced. This never includes keys not listed by
            :meth:`get_output_keys`. It must also include any keys that are outside
            of this layer that may be referenced by it.
        seed
            Common hashable used to alter the keys; see :func:`dask.base.clone_key`
        bind_to
            Optional key to bind the leaf nodes to. A leaf node here is one that does
            not reference any replaced keys; in other words it's a node where the
            replacement graph traversal stops; it may still have dependencies on
            non-replaced nodes.
            A bound node will not be computed until after ``bind_to`` has been computed.

        Returns
        -------
        - New layer
        - True if the ``bind_to`` key was injected anywhere; False otherwise

        Notes
        -----
        This method should be overridden by subclasses to avoid materializing the layer.
        """
        from dask.graph_manipulation import chunks

        is_leaf: bool

        def clone_value(o):
            """Variant of distributed.utils_comm.subs_multiple, which allows injecting
            bind_to
            """
            nonlocal is_leaf

            typ = type(o)
            if typ is tuple and o and callable(o[0]):
                return (o[0],) + tuple(clone_value(i) for i in o[1:])
            elif typ is list:
                return [clone_value(i) for i in o]
            elif typ is dict:
                return {k: clone_value(v) for k, v in o.items()}
            else:
                try:
                    if o not in keys:
                        return o
                except TypeError:
                    return o
                is_leaf = False
                return clone_key(o, seed)

        dsk_new = {}
        bound = False

        for key, value in self.items():
            if key in keys:
                key = clone_key(key, seed)
                is_leaf = True
                value = clone_value(value)
                if bind_to is not None and is_leaf:
                    value = (chunks.bind, value, bind_to)
                    bound = True

            dsk_new[key] = value

        return MaterializedLayer(dsk_new), bound

    def __dask_distributed_pack__(
        self,
        all_hlg_keys: Iterable[Hashable],
        known_key_dependencies: Mapping[Hashable, Set],
        client,
        client_keys: Iterable[Hashable],
    ) -> Any:
        """Pack the layer for scheduler communication in Distributed

        This method should pack its current state and is called by the Client when
        communicating with the Scheduler.
        The Scheduler will then use .__dask_distributed_unpack__(data, ...) to unpack
        the state, materialize the layer, and merge it into the global task graph.

        The returned state must be compatible with Distributed's scheduler, which
        means it must obey the following:
          - Serializable by msgpack (notice, msgpack converts lists to tuples)
          - All remote data must be unpacked (see unpack_remotedata())
          - All keys must be converted to strings now or when unpacking
          - All tasks must be serialized (see dumps_task())

        The default implementation materialize the layer thus layers such as Blockwise
        and ShuffleLayer should implement a specialized pack and unpack function in
        order to avoid materialization.

        Parameters
        ----------
        all_hlg_keys: Iterable[Hashable]
            All keys in the high level graph
        known_key_dependencies: Mapping[Hashable, Set]
            Already known dependencies
        client: distributed.Client
            The client calling this function.
        client_keys : Iterable[Hashable]
            List of keys requested by the client.

        Returns
        -------
        state: Object serializable by msgpack
            Scheduler compatible state of the layer
        """
        from distributed.client import Future
        from distributed.utils import CancelledError
        from distributed.utils_comm import subs_multiple, unpack_remotedata
        from distributed.worker import dumps_task

        dsk = dict(self)

        # Find aliases not in `client_keys` and substitute all matching keys
        # with its Future
        future_aliases = {
            k: v
            for k, v in dsk.items()
            if isinstance(v, Future) and k not in client_keys
        }
        if future_aliases:
            dsk = subs_multiple(dsk, future_aliases)

        # Remove `Future` objects from graph and note any future dependencies
        dsk2 = {}
        fut_deps = {}
        for k, v in dsk.items():
            dsk2[k], futs = unpack_remotedata(v, byte_keys=True)
            if futs:
                fut_deps[k] = futs
        dsk = dsk2

        # Check that any collected futures are valid
        unpacked_futures = set.union(*fut_deps.values()) if fut_deps else set()
        for future in unpacked_futures:
            if future.client is not client:
                raise ValueError(
                    "Inputs contain futures that were created by another client."
                )
            if stringify(future.key) not in client.futures:
                raise CancelledError(stringify(future.key))

        # Calculate dependencies without re-calculating already known dependencies
        # - Start with known dependencies
        dependencies = ensure_dict(known_key_dependencies, copy=True)
        # - Remove aliases for any tasks that depend on both an alias and a future.
        #   These can only be found in the known_key_dependencies cache, since
        #   any dependencies computed in this method would have already had the
        #   aliases removed.
        if future_aliases:
            alias_keys = set(future_aliases)
            dependencies = {k: v - alias_keys for k, v in dependencies.items()}
        # - Add in deps for any missing keys
        missing_keys = dsk.keys() - dependencies.keys()

        dependencies.update(
            (k, keys_in_tasks(all_hlg_keys, [dsk[k]], as_list=False))
            for k in missing_keys
        )
        # - Add in deps for any tasks that depend on futures
        for k, futures in fut_deps.items():
            if futures:
                d = ensure_set(dependencies[k], copy=True)
                d.update(f.key for f in futures)
                dependencies[k] = d

        # The scheduler expect all keys to be strings
        dependencies = {
            stringify(k): {stringify(dep) for dep in deps}
            for k, deps in dependencies.items()
        }

        merged_hlg_keys = all_hlg_keys | dsk.keys()
        dsk = {
            stringify(k): stringify(v, exclusive=merged_hlg_keys)
            for k, v in dsk.items()
        }
        dsk = toolz.valmap(dumps_task, dsk)
        return {"dsk": dsk, "dependencies": dependencies}

    @classmethod
    def __dask_distributed_unpack__(
        cls,
        state: Any,
        dsk: Mapping[str, Any],
        dependencies: Mapping[str, set],
    ) -> dict:
        """Unpack the state of a layer previously packed by __dask_distributed_pack__()

        This method is called by the scheduler in Distributed in order to unpack
        the state of a layer and merge it into its global task graph. The method
        can use `dsk` and `dependencies`, which are the already materialized
        state of the preceding layers in the high level graph. The layers of the
        high level graph are unpacked in topological order.

        See Layer.__dask_distributed_pack__() for packing detail.

        Parameters
        ----------
        state: Any
            The state returned by Layer.__dask_distributed_pack__()
        dsk: Mapping, read-only
            The materialized low level graph of the already unpacked layers
        dependencies: Mapping, read-only
            The dependencies of each key in `dsk`

        Returns
        -------
        unpacked-layer: dict
            layer_dsk: Mapping[str, Any]
                Materialized (stringified) graph of the layer
            layer_deps: Mapping[str, set]
                Dependencies of each key in `layer_dsk`
        """
        return {"dsk": state["dsk"], "deps": state["dependencies"]}

    def __reduce__(self):
        """Default serialization implementation, which materializes the Layer"""
        return (MaterializedLayer, (dict(self),))

    def __copy__(self):
        """Default shallow copy implementation"""
        obj = type(self).__new__(self.__class__)
        obj.__dict__.update(self.__dict__)
        return obj

    def _repr_html_(self, layer_index="", highlevelgraph_key="", dependencies=()):
        if highlevelgraph_key != "":
            shortname = key_split(highlevelgraph_key)
        elif hasattr(self, "name"):
            shortname = key_split(self.name)
        else:
            shortname = self.__class__.__name__

        svg_repr = ""
        if (
            self.collection_annotations
            and self.collection_annotations.get("type") == "dask.array.core.Array"
        ):
            chunks = self.collection_annotations.get("chunks")
            if chunks:
                from dask.array.svg import svg

                svg_repr = svg(chunks)

        return get_template("highlevelgraph_layer.html.j2").render(
            materialized=self.is_materialized(),
            shortname=shortname,
            layer_index=layer_index,
            highlevelgraph_key=highlevelgraph_key,
            info=self.layer_info_dict(),
            dependencies=dependencies,
            svg_repr=svg_repr,
        )

    def layer_info_dict(self):
        info = {
            "layer_type": type(self).__name__,
            "is_materialized": self.is_materialized(),
            "number of outputs": f"{len(self.get_output_keys())}",
        }
        if self.annotations is not None:
            for key, val in self.annotations.items():
                info[key] = html.escape(str(val))
        if self.collection_annotations is not None:
            for key, val in self.collection_annotations.items():
                # Hide verbose chunk details from the HTML table
                if key != "chunks":
                    info[key] = html.escape(str(val))
        return info


class MaterializedLayer(Layer):
    """Fully materialized layer of `Layer`

    Parameters
    ----------
    mapping: Mapping
        The mapping between keys and tasks, typically a dask graph.
    """

    def __init__(self, mapping: Mapping, annotations=None):
        super().__init__(annotations=annotations)
        self.mapping = mapping

    def __contains__(self, k):
        return k in self.mapping

    def __getitem__(self, k):
        return self.mapping[k]

    def __iter__(self):
        return iter(self.mapping)

    def __len__(self):
        return len(self.mapping)

    def is_materialized(self):
        return True

    def get_output_keys(self):
        return self.keys()


class HighLevelGraph(Mapping):
    """Task graph composed of layers of dependent subgraphs

    This object encodes a Dask task graph that is composed of layers of
    dependent subgraphs, such as commonly occurs when building task graphs
    using high level collections like Dask array, bag, or dataframe.

    Typically each high level array, bag, or dataframe operation takes the task
    graphs of the input collections, merges them, and then adds one or more new
    layers of tasks for the new operation.  These layers typically have at
    least as many tasks as there are partitions or chunks in the collection.
    The HighLevelGraph object stores the subgraphs for each operation
    separately in sub-graphs, and also stores the dependency structure between
    them.

    Parameters
    ----------
    layers : Mapping[str, Mapping]
        The subgraph layers, keyed by a unique name
    dependencies : Mapping[str, set[str]]
        The set of layers on which each layer depends
    key_dependencies : Mapping[Hashable, set], optional
        Mapping (some) keys in the high level graph to their dependencies. If
        a key is missing, its dependencies will be calculated on-the-fly.

    Examples
    --------
    Here is an idealized example that shows the internal state of a
    HighLevelGraph

    >>> import dask.dataframe as dd

    >>> df = dd.read_csv('myfile.*.csv')  # doctest: +SKIP
    >>> df = df + 100  # doctest: +SKIP
    >>> df = df[df.name == 'Alice']  # doctest: +SKIP

    >>> graph = df.__dask_graph__()  # doctest: +SKIP
    >>> graph.layers  # doctest: +SKIP
    {
     'read-csv': {('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),
                  ('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
                  ('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
                  ('read-csv', 3): (pandas.read_csv, 'myfile.3.csv')},
     'add': {('add', 0): (operator.add, ('read-csv', 0), 100),
             ('add', 1): (operator.add, ('read-csv', 1), 100),
             ('add', 2): (operator.add, ('read-csv', 2), 100),
             ('add', 3): (operator.add, ('read-csv', 3), 100)}
     'filter': {('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
                ('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
                ('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
                ('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3))}
    }

    >>> graph.dependencies  # doctest: +SKIP
    {
     'read-csv': set(),
     'add': {'read-csv'},
     'filter': {'add'}
    }

    See Also
    --------
    HighLevelGraph.from_collections :
        typically used by developers to make new HighLevelGraphs
    """

    layers: Mapping[str, Layer]
    dependencies: Mapping[str, Set]
    key_dependencies: dict[Hashable, Set]
    _to_dict: dict
    _all_external_keys: set

    def __init__(
        self,
        layers: Mapping[str, Mapping],
        dependencies: Mapping[str, Set],
        key_dependencies: dict[Hashable, Set] | None = None,
    ):
        self.dependencies = dependencies
        self.key_dependencies = key_dependencies or {}
        # Makes sure that all layers are `Layer`
        self.layers = {
            k: v if isinstance(v, Layer) else MaterializedLayer(v)
            for k, v in layers.items()
        }

    @classmethod
    def _from_collection(cls, name, layer, collection):
        """`from_collections` optimized for a single collection"""
        if not is_dask_collection(collection):
            raise TypeError(type(collection))

        graph = collection.__dask_graph__()
        if isinstance(graph, HighLevelGraph):
            layers = ensure_dict(graph.layers, copy=True)
            layers[name] = layer
            deps = ensure_dict(graph.dependencies, copy=True)
            deps[name] = set(collection.__dask_layers__())
        else:
            key = _get_some_layer_name(collection)
            layers = {name: layer, key: graph}
            deps = {name: {key}, key: set()}

        return cls(layers, deps)

    @classmethod
    def from_collections(cls, name, layer, dependencies=()):
        """Construct a HighLevelGraph from a new layer and a set of collections

        This constructs a HighLevelGraph in the common case where we have a single
        new layer and a set of old collections on which we want to depend.

        This pulls out the ``__dask_layers__()`` method of the collections if
        they exist, and adds them to the dependencies for this new layer.  It
        also merges all of the layers from all of the dependent collections
        together into the new layers for this graph.

        Parameters
        ----------
        name : str
            The name of the new layer
        layer : Mapping
            The graph layer itself
        dependencies : List of Dask collections
            A list of other dask collections (like arrays or dataframes) that
            have graphs themselves

        Examples
        --------

        In typical usage we make a new task layer, and then pass that layer
        along with all dependent collections to this method.

        >>> def add(self, other):
        ...     name = 'add-' + tokenize(self, other)
        ...     layer = {(name, i): (add, input_key, other)
        ...              for i, input_key in enumerate(self.__dask_keys__())}
        ...     graph = HighLevelGraph.from_collections(name, layer, dependencies=[self])
        ...     return new_collection(name, graph)
        """
        if len(dependencies) == 1:
            return cls._from_collection(name, layer, dependencies[0])
        layers = {name: layer}
        deps = {name: set()}
        for collection in toolz.unique(dependencies, key=id):
            if is_dask_collection(collection):
                graph = collection.__dask_graph__()
                if isinstance(graph, HighLevelGraph):
                    layers.update(graph.layers)
                    deps.update(graph.dependencies)
                    deps[name] |= set(collection.__dask_layers__())
                else:
                    key = _get_some_layer_name(collection)
                    layers[key] = graph
                    deps[name].add(key)
                    deps[key] = set()
            else:
                raise TypeError(type(collection))

        return cls(layers, deps)

    def __getitem__(self, key):
        # Attempt O(1) direct access first, under the assumption that layer names match
        # either the keys (Scalar, Item, Delayed) or the first element of the key tuples
        # (Array, Bag, DataFrame, Series). This assumption is not always true.
        try:
            return self.layers[key][key]
        except KeyError:
            pass
        try:
            return self.layers[key[0]][key]
        except (KeyError, IndexError, TypeError):
            pass

        # Fall back to O(n) access
        for d in self.layers.values():
            try:
                return d[key]
            except KeyError:
                pass

        raise KeyError(key)

    def __len__(self) -> int:
        # NOTE: this will double-count keys that are duplicated between layers, so it's
        # possible that `len(hlg) > len(hlg.to_dict())`. However, duplicate keys should
        # not occur through normal use, and their existence would usually be a bug.
        # So we ignore this case in favor of better performance.
        # https://github.com/dask/dask/issues/7271
        return sum(len(layer) for layer in self.layers.values())

    def __iter__(self):
        return iter(self.to_dict())

    def to_dict(self) -> dict:
        """Efficiently convert to plain dict. This method is faster than dict(self)."""
        try:
            return self._to_dict
        except AttributeError:
            out = self._to_dict = ensure_dict(self)
            return out

    def keys(self) -> KeysView:
        """Get all keys of all the layers.

        This will in many cases materialize layers, which makes it a relatively
        expensive operation. See :meth:`get_all_external_keys` for a faster alternative.
        """
        return self.to_dict().keys()

    def get_all_external_keys(self) -> set:
        """Get all output keys of all layers

        This will in most cases _not_ materialize any layers, which makes
        it a relative cheap operation.

        Returns
        -------
        keys: set
            A set of all external keys
        """
        try:
            return self._all_external_keys
        except AttributeError:
            keys: set = set()
            for layer in self.layers.values():
                # Note: don't use `keys |= ...`, because the RHS is a
                # collections.abc.Set rather than a real set, and this will
                # cause a whole new set to be constructed.
                keys.update(layer.get_output_keys())
            self._all_external_keys = keys
            return keys

    def items(self):
        return self.to_dict().items()

    def values(self):
        return self.to_dict().values()

    def get_all_dependencies(self) -> dict[Hashable, Set]:
        """Get dependencies of all keys

        This will in most cases materialize all layers, which makes
        it an expensive operation.

        Returns
        -------
        map: Mapping
            A map that maps each key to its dependencies
        """
        all_keys = self.keys()
        missing_keys = all_keys - self.key_dependencies.keys()
        if missing_keys:
            for layer in self.layers.values():
                for k in missing_keys & layer.keys():
                    self.key_dependencies[k] = layer.get_dependencies(k, all_keys)
        return self.key_dependencies

    @property
    def dependents(self):
        return reverse_dict(self.dependencies)

    def copy(self):
        return HighLevelGraph(
            ensure_dict(self.layers, copy=True),
            ensure_dict(self.dependencies, copy=True),
            self.key_dependencies.copy(),
        )

    @classmethod
    def merge(cls, *graphs):
        layers = {}
        dependencies = {}
        for g in graphs:
            if isinstance(g, HighLevelGraph):
                layers.update(g.layers)
                dependencies.update(g.dependencies)
            elif isinstance(g, Mapping):
                layers[id(g)] = g
                dependencies[id(g)] = set()
            else:
                raise TypeError(g)
        return cls(layers, dependencies)

    def visualize(self, filename="dask-hlg.svg", format=None, **kwargs):
        """
        Visualize this dask high level graph.

        Requires ``graphviz`` to be installed.

        Parameters
        ----------
        filename : str or None, optional
            The name of the file to write to disk. If the provided `filename`
            doesn't include an extension, '.png' will be used by default.
            If `filename` is None, no file will be written, and the graph is
            rendered in the Jupyter notebook only.
        format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional
            Format in which to write output file. Default is 'svg'.
        color : {None, 'layer_type'}, optional (default: None)
            Options to color nodes.
            - None, no colors.
            - layer_type, color nodes based on the layer type.
        **kwargs
           Additional keyword arguments to forward to ``to_graphviz``.

        Examples
        --------
        >>> x.dask.visualize(filename='dask.svg')  # doctest: +SKIP
        >>> x.dask.visualize(filename='dask.svg', color='layer_type')  # doctest: +SKIP

        Returns
        -------
        result : IPython.diplay.Image, IPython.display.SVG, or None
            See dask.dot.dot_graph for more information.

        See Also
        --------
        dask.dot.dot_graph
        dask.base.visualize # low level variant
        """

        from dask.dot import graphviz_to_file

        g = to_graphviz(self, **kwargs)
        graphviz_to_file(g, filename, format)
        return g

    def _toposort_layers(self):
        """Sort the layers in a high level graph topologically

        Parameters
        ----------
        hlg : HighLevelGraph
            The high level graph's layers to sort

        Returns
        -------
        sorted: list
            List of layer names sorted topologically
        """
        degree = {k: len(v) for k, v in self.dependencies.items()}
        reverse_deps = {k: [] for k in self.dependencies}
        ready = []
        for k, v in self.dependencies.items():
            for dep in v:
                reverse_deps[dep].append(k)
            if not v:
                ready.append(k)
        ret = []
        while len(ready) > 0:
            layer = ready.pop()
            ret.append(layer)
            for rdep in reverse_deps[layer]:
                degree[rdep] -= 1
                if degree[rdep] == 0:
                    ready.append(rdep)
        return ret

    def cull(self, keys: Iterable) -> HighLevelGraph:
        """Return new HighLevelGraph with only the tasks required to calculate keys.

        In other words, remove unnecessary tasks from dask.

        Parameters
        ----------
        keys
            iterable of keys or nested list of keys such as the output of
            ``__dask_keys__()``

        Returns
        -------
        hlg: HighLevelGraph
            Culled high level graph
        """
        from dask.layers import Blockwise

        keys_set = set(flatten(keys))

        all_ext_keys = self.get_all_external_keys()
        ret_layers: dict = {}
        ret_key_deps: dict = {}
        for layer_name in reversed(self._toposort_layers()):
            layer = self.layers[layer_name]
            # Let's cull the layer to produce its part of `keys`.
            # Note: use .intersection rather than & because the RHS is
            # a collections.abc.Set rather than a real set, and using &
            # would take time proportional to the size of the LHS, which
            # if there is no culling can be much bigger than the RHS.
            output_keys = keys_set.intersection(layer.get_output_keys())
            if output_keys:
                culled_layer, culled_deps = layer.cull(output_keys, all_ext_keys)
                # Update `keys` with all layer's external key dependencies, which
                # are all the layer's dependencies (`culled_deps`) excluding
                # the layer's output keys.
                external_deps = set()
                for d in culled_deps.values():
                    external_deps |= d
                external_deps -= culled_layer.get_output_keys()
                keys_set |= external_deps

                # Save the culled layer and its key dependencies
                ret_layers[layer_name] = culled_layer
                if (
                    isinstance(layer, Blockwise)
                    or isinstance(layer, MaterializedLayer)
                    or (layer.is_materialized() and (len(layer) == len(culled_deps)))
                ):
                    # Don't use culled_deps to update ret_key_deps
                    # unless they are "direct" key dependencies.
                    #
                    # Note that `MaterializedLayer` is "safe", because
                    # its `cull` method will return a complete dict of
                    # direct dependencies for all keys in its subgraph.
                    # See: https://github.com/dask/dask/issues/9389
                    # for performance motivation
                    ret_key_deps.update(culled_deps)

        # Converting dict_keys to a real set lets Python optimise the set
        # intersection to iterate over the smaller of the two sets.
        ret_layers_keys = set(ret_layers.keys())
        ret_dependencies = {
            layer_name: self.dependencies[layer_name] & ret_layers_keys
            for layer_name in ret_layers
        }

        return HighLevelGraph(ret_layers, ret_dependencies, ret_key_deps)

    def cull_layers(self, layers: Iterable[str]) -> HighLevelGraph:
        """Return a new HighLevelGraph with only the given layers and their
        dependencies. Internally, layers are not modified.

        This is a variant of :meth:`HighLevelGraph.cull` which is much faster and does
        not risk creating a collision between two layers with the same name and
        different content when two culled graphs are merged later on.

        Returns
        -------
        hlg: HighLevelGraph
            Culled high level graph
        """
        to_visit = set(layers)
        ret_layers = {}
        ret_dependencies = {}
        while to_visit:
            k = to_visit.pop()
            ret_layers[k] = self.layers[k]
            ret_dependencies[k] = self.dependencies[k]
            to_visit |= ret_dependencies[k] - ret_dependencies.keys()

        return HighLevelGraph(ret_layers, ret_dependencies)

    def validate(self):
        # Check dependencies
        for layer_name, deps in self.dependencies.items():
            if layer_name not in self.layers:
                raise ValueError(
                    f"dependencies[{repr(layer_name)}] not found in layers"
                )
            for dep in deps:
                if dep not in self.dependencies:
                    raise ValueError(f"{repr(dep)} not found in dependencies")

        for layer in self.layers.values():
            assert hasattr(layer, "annotations")

        # Re-calculate all layer dependencies
        dependencies = compute_layer_dependencies(self.layers)

        # Check keys
        dep_key1 = self.dependencies.keys()
        dep_key2 = dependencies.keys()
        if dep_key1 != dep_key2:
            raise ValueError(
                f"incorrect dependencies keys {set(dep_key1)!r} "
                f"expected {set(dep_key2)!r}"
            )

        # Check values
        for k in dep_key1:
            if self.dependencies[k] != dependencies[k]:
                raise ValueError(
                    f"incorrect dependencies[{repr(k)}]: {repr(self.dependencies[k])} "
                    f"expected {repr(dependencies[k])}"
                )

    def __dask_distributed_pack__(
        self,
        client,
        client_keys: Iterable[Hashable],
        annotations: Mapping[str, Any] | None = None,
    ) -> dict:
        """Pack the high level graph for Scheduler -> Worker communication

        The approach is to delegate the packaging to each layer in the high level graph
        by calling .__dask_distributed_pack__() and .__dask_distributed_annotations_pack__()
        on each layer.

        Parameters
        ----------
        client : distributed.Client
            The client calling this function.
        client_keys : Iterable[Hashable]
            List of keys requested by the client.
        annotations : Mapping[str, Any], optional
            A top-level annotations.

        Returns
        -------
        data: dict
            Packed high level graph layers
        """
        # Dump each layer (in topological order)
        layers = []
        for layer in (self.layers[name] for name in self._toposort_layers()):
            layers.append(
                {
                    "__module__": layer.__module__,
                    "__name__": type(layer).__name__,
                    "state": layer.__dask_distributed_pack__(
                        self.get_all_external_keys(),
                        self.key_dependencies,
                        client,
                        client_keys,
                    ),
                    "annotations": layer.__dask_distributed_annotations_pack__(
                        annotations
                    ),
                }
            )
        return {"layers": layers}

    @staticmethod
    def __dask_distributed_unpack__(hlg: dict) -> dict:
        """Unpack the high level graph for Scheduler -> Worker communication

        The approach is to delegate the unpackaging to each layer in the high level graph
        by calling ..._unpack__() and ..._annotations_unpack__()
        on each layer.

        Parameters
        ----------
        hlg: dict
            Packed high level graph layers

        Returns
        -------
        unpacked-graph: dict
            dsk: dict[str, Any]
                Materialized (stringified) graph of all nodes in the high level graph
            deps: dict[str, set]
                Dependencies of each key in `dsk`
            annotations: dict[str, Any]
                Annotations for `dsk`
        """
        from distributed.protocol.serialize import import_allowed_module

        dsk: dict = {}
        deps: dict = {}
        anno: dict = {}

        # Unpack each layer (in topological order)
        for layer in hlg["layers"]:
            # Find the unpack functions
            if layer["__module__"] is None:  # Default implementation
                unpack_state = Layer.__dask_distributed_unpack__
                unpack_anno = Layer.__dask_distributed_annotations_unpack__
            else:
                mod = import_allowed_module(layer["__module__"])
                cls = getattr(mod, layer["__name__"])
                unpack_state = cls.__dask_distributed_unpack__
                unpack_anno = cls.__dask_distributed_annotations_unpack__

            # Unpack state into a graph and key dependencies
            unpacked_layer = unpack_state(layer["state"], dsk, deps)
            dsk.update(unpacked_layer["dsk"])
            for k, v in unpacked_layer["deps"].items():
                deps[k] = deps.get(k, set()) | v

            # Unpack the annotations
            unpack_anno(anno, layer["annotations"], unpacked_layer["dsk"].keys())
        return {"dsk": dsk, "deps": deps, "annotations": anno}

    def __repr__(self) -> str:
        representation = f"{type(self).__name__} with {len(self.layers)} layers.\n"
        representation += f"<{self.__class__.__module__}.{self.__class__.__name__} object at {hex(id(self))}>\n"
        for i, layerkey in enumerate(self._toposort_layers()):
            representation += f" {i}. {layerkey}\n"
        return representation

    def _repr_html_(self):
        return get_template("highlevelgraph.html.j2").render(
            type=type(self).__name__,
            layers=self.layers,
            toposort=self._toposort_layers(),
            layer_dependencies=self.dependencies,
            n_outputs=len(self.get_all_external_keys()),
        )


def to_graphviz(
    hg,
    data_attributes=None,
    function_attributes=None,
    rankdir="BT",
    graph_attr=None,
    node_attr=None,
    edge_attr=None,
    **kwargs,
):
    from dask.dot import label, name

    graphviz = import_required(
        "graphviz",
        "Drawing dask graphs with the graphviz visualization engine requires the `graphviz` "
        "python library and the `graphviz` system library.\n\n"
        "Please either conda or pip install as follows:\n\n"
        "  conda install python-graphviz     # either conda install\n"
        "  python -m pip install graphviz    # or pip install and follow installation instructions",
    )

    data_attributes = data_attributes or {}
    function_attributes = function_attributes or {}
    graph_attr = graph_attr or {}
    node_attr = node_attr or {}
    edge_attr = edge_attr or {}

    graph_attr["rankdir"] = rankdir
    node_attr["shape"] = "box"
    node_attr["fontname"] = "helvetica"

    graph_attr.update(kwargs)
    g = graphviz.Digraph(
        graph_attr=graph_attr, node_attr=node_attr, edge_attr=edge_attr
    )

    n_tasks = {}
    for layer in hg.dependencies:
        n_tasks[layer] = len(hg.layers[layer])

    min_tasks = min(n_tasks.values())
    max_tasks = max(n_tasks.values())

    cache = {}

    color = kwargs.get("color")
    if color == "layer_type":
        layer_colors = {
            "DataFrameIOLayer": ["#CCC7F9", False],  # purple
            "ShuffleLayer": ["#F9CCC7", False],  # rose
            "SimpleShuffleLayer": ["#F9CCC7", False],  # rose
            "ArrayOverlayLayer": ["#FFD9F2", False],  # pink
            "BroadcastJoinLayer": ["#D9F2FF", False],  # blue
            "Blockwise": ["#D9FFE6", False],  # green
            "BlockwiseLayer": ["#D9FFE6", False],  # green
            "MaterializedLayer": ["#DBDEE5", False],  # gray
        }

    for layer in hg.dependencies:
        layer_name = name(layer)
        attrs = data_attributes.get(layer, {})

        node_label = label(layer, cache=cache)
        node_size = (
            20
            if max_tasks == min_tasks
            else int(20 + ((n_tasks[layer] - min_tasks) / (max_tasks - min_tasks)) * 20)
        )

        layer_type = str(type(hg.layers[layer]).__name__)
        node_tooltips = (
            f"A {layer_type.replace('Layer', '')} Layer with {n_tasks[layer]} Tasks.\n"
        )

        layer_ca = hg.layers[layer].collection_annotations
        if layer_ca:
            if layer_ca.get("type") == "dask.array.core.Array":
                node_tooltips += (
                    f"Array Shape: {layer_ca.get('shape')}\n"
                    f"Data Type: {layer_ca.get('dtype')}\n"
                    f"Chunk Size: {layer_ca.get('chunksize')}\n"
                    f"Chunk Type: {layer_ca.get('chunk_type')}\n"
                )

            if layer_ca.get("type") == "dask.dataframe.core.DataFrame":
                dftype = {"pandas.core.frame.DataFrame": "pandas"}
                cols = layer_ca.get("columns")

                node_tooltips += (
                    f"Number of Partitions: {layer_ca.get('npartitions')}\n"
                    f"DataFrame Type: {dftype.get(layer_ca.get('dataframe_type'))}\n"
                    f"{len(cols)} DataFrame Columns: {str(cols) if len(str(cols)) <= 40 else '[...]'}\n"
                )

        attrs.setdefault("label", str(node_label))
        attrs.setdefault("fontsize", str(node_size))
        attrs.setdefault("tooltip", str(node_tooltips))

        if color == "layer_type":
            node_color = layer_colors.get(layer_type)[0]
            layer_colors.get(layer_type)[1] = True

            attrs.setdefault("fillcolor", str(node_color))
            attrs.setdefault("style", "filled")

        g.node(layer_name, **attrs)

    for layer, deps in hg.dependencies.items():
        layer_name = name(layer)
        for dep in deps:
            dep_name = name(dep)
            g.edge(dep_name, layer_name)

    if color == "layer_type":
        legend_title = "Key"

        legend_label = (
            '<<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" CELLPADDING="5">'
            "<TR><TD><B>Legend: Layer types</B></TD></TR>"
        )

        for layer_type, color in layer_colors.items():
            if color[1]:
                legend_label += f'<TR><TD BGCOLOR="{color[0]}">{layer_type}</TD></TR>'

        legend_label += "</TABLE>>"

        attrs = data_attributes.get(legend_title, {})
        attrs.setdefault("label", str(legend_label))
        attrs.setdefault("fontsize", "20")
        attrs.setdefault("margin", "0")

        g.node(legend_title, **attrs)

    return g


def _get_some_layer_name(collection) -> str:
    """Somehow get a unique name for a Layer from a non-HighLevelGraph dask mapping"""
    try:
        (name,) = collection.__dask_layers__()
        return name
    except (AttributeError, ValueError):
        # collection does not define the optional __dask_layers__ method
        # or it spuriously returns more than one layer
        return str(id(collection))