Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,587 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
from __future__ import annotations
import os
import re
from functools import partial
from dask.core import get_dependencies, ishashable, istask
from dask.utils import apply, funcname, import_required, key_split
def task_label(task):
"""Label for a task on a dot graph.
Examples
--------
>>> from operator import add
>>> task_label((add, 1, 2))
'add'
>>> task_label((add, (add, 1, 2), 3))
'add(...)'
"""
func = task[0]
if func is apply:
func = task[1]
if hasattr(func, "funcs"):
if len(func.funcs) > 1:
return f"{funcname(func.funcs[0])}(...)"
else:
head = funcname(func.funcs[0])
else:
head = funcname(func)
if any(has_sub_tasks(i) for i in task[1:]):
return f"{head}(...)"
else:
return head
def has_sub_tasks(task):
"""Returns True if the task has sub tasks"""
if istask(task):
return True
elif isinstance(task, list):
return any(has_sub_tasks(i) for i in task)
else:
return False
def name(x):
try:
return str(hash(x))
except TypeError:
return str(hash(str(x)))
_HASHPAT = re.compile("([0-9a-z]{32})")
_UUIDPAT = re.compile("([0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12})")
def label(x, cache=None):
"""
>>> label('x')
'x'
>>> label(('x', 1))
"('x', 1)"
>>> from hashlib import md5
>>> x = 'x-%s-hello' % md5(b'1234').hexdigest()
>>> x
'x-81dc9bdb52d04dc20036dbd8313ed055-hello'
>>> label(x)
'x-#-hello'
>>> from uuid import uuid1
>>> x = 'x-%s-hello' % uuid1()
>>> x # doctest: +SKIP
'x-4c1a3d7e-0b45-11e6-8334-54ee75105593-hello'
>>> label(x)
'x-#-hello'
"""
s = str(x)
for pattern in (_HASHPAT, _UUIDPAT):
m = re.search(pattern, s)
if m is not None:
for h in m.groups():
if cache is not None:
n = cache.get(h, len(cache))
label = f"#{n}"
# cache will be overwritten destructively
cache[h] = n
else:
label = "#"
s = s.replace(h, label)
return s
def box_label(key, verbose=False):
"""Label boxes in graph by chunk index
>>> box_label(('x', 1, 2, 3))
'(1, 2, 3)'
>>> box_label(('x', 123))
'123'
>>> box_label('x')
''
"""
if isinstance(key, tuple):
key = key[1:]
if len(key) == 1:
[key] = key
return str(key)
elif verbose:
return str(key)
else:
return ""
def to_graphviz(
dsk,
data_attributes=None,
function_attributes=None,
rankdir="BT",
graph_attr=None,
node_attr=None,
edge_attr=None,
collapse_outputs=False,
verbose=False,
**kwargs,
):
graphviz = import_required(
"graphviz",
"Drawing dask graphs with the graphviz engine requires the `graphviz` "
"python library and the `graphviz` system library.\n\n"
"Please either conda or pip install as follows:\n\n"
" conda install python-graphviz # either conda install\n"
" python -m pip install graphviz # or pip install and follow installation instructions",
)
data_attributes = data_attributes or {}
function_attributes = function_attributes or {}
graph_attr = graph_attr or {}
node_attr = node_attr or {}
edge_attr = edge_attr or {}
graph_attr["rankdir"] = rankdir
node_attr["fontname"] = "helvetica"
graph_attr.update(kwargs)
g = graphviz.Digraph(
graph_attr=graph_attr, node_attr=node_attr, edge_attr=edge_attr
)
seen = set()
connected = set()
for k, v in dsk.items():
k_name = name(k)
if istask(v):
func_name = name((k, "function")) if not collapse_outputs else k_name
if collapse_outputs or func_name not in seen:
seen.add(func_name)
attrs = function_attributes.get(k, {}).copy()
attrs.setdefault("label", key_split(k))
attrs.setdefault("shape", "circle")
g.node(func_name, **attrs)
if not collapse_outputs:
g.edge(func_name, k_name)
connected.add(func_name)
connected.add(k_name)
for dep in get_dependencies(dsk, k):
dep_name = name(dep)
if dep_name not in seen:
seen.add(dep_name)
attrs = data_attributes.get(dep, {}).copy()
attrs.setdefault("label", box_label(dep, verbose))
attrs.setdefault("shape", "box")
g.node(dep_name, **attrs)
g.edge(dep_name, func_name)
connected.add(dep_name)
connected.add(func_name)
elif ishashable(v) and v in dsk:
v_name = name(v)
g.edge(v_name, k_name)
connected.add(v_name)
connected.add(k_name)
if (not collapse_outputs or k_name in connected) and k_name not in seen:
seen.add(k_name)
attrs = data_attributes.get(k, {}).copy()
attrs.setdefault("label", box_label(k, verbose))
attrs.setdefault("shape", "box")
g.node(k_name, **attrs)
return g
IPYTHON_IMAGE_FORMATS = frozenset(["jpeg", "png"])
IPYTHON_NO_DISPLAY_FORMATS = frozenset(["dot", "pdf"])
def _get_display_cls(format):
"""
Get the appropriate IPython display class for `format`.
Returns `IPython.display.SVG` if format=='svg', otherwise
`IPython.display.Image`.
If IPython is not importable, return dummy function that swallows its
arguments and returns None.
"""
dummy = lambda *args, **kwargs: None
try:
import IPython.display as display
except ImportError:
# Can't return a display object if no IPython.
return dummy
if format in IPYTHON_NO_DISPLAY_FORMATS:
# IPython can't display this format natively, so just return None.
return dummy
elif format in IPYTHON_IMAGE_FORMATS:
# Partially apply `format` so that `Image` and `SVG` supply a uniform
# interface to the caller.
return partial(display.Image, format=format)
elif format == "svg":
return display.SVG
else:
raise ValueError("Unknown format '%s' passed to `dot_graph`" % format)
def dot_graph(dsk, filename="mydask", format=None, **kwargs):
"""
Render a task graph using dot.
If `filename` is not None, write a file to disk with the specified name and extension.
If no extension is specified, '.png' will be used by default.
Parameters
----------
dsk : dict
The graph to display.
filename : str or None, optional
The name of the file to write to disk. If the provided `filename`
doesn't include an extension, '.png' will be used by default.
If `filename` is None, no file will be written, and we communicate
with dot using only pipes. Default is 'mydask'.
format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional
Format in which to write output file. Default is 'png'.
**kwargs
Additional keyword arguments to forward to `to_graphviz`.
Returns
-------
result : None or IPython.display.Image or IPython.display.SVG (See below.)
Notes
-----
If IPython is installed, we return an IPython.display object in the
requested format. If IPython is not installed, we just return None.
We always return None if format is 'pdf' or 'dot', because IPython can't
display these formats natively. Passing these formats with filename=None
will not produce any useful output.
See Also
--------
dask.dot.to_graphviz
"""
g = to_graphviz(dsk, **kwargs)
return graphviz_to_file(g, filename, format)
def graphviz_to_file(g, filename, format):
fmts = [".png", ".pdf", ".dot", ".svg", ".jpeg", ".jpg"]
if (
format is None
and filename is not None
and any(filename.lower().endswith(fmt) for fmt in fmts)
):
filename, format = os.path.splitext(filename)
format = format[1:].lower()
if format is None:
format = "png"
data = g.pipe(format=format)
if not data:
raise RuntimeError(
"Graphviz failed to properly produce an image. "
"This probably means your installation of graphviz "
"is missing png support. See: "
"https://github.com/ContinuumIO/anaconda-issues/"
"issues/485 for more information."
)
display_cls = _get_display_cls(format)
if filename is None:
return display_cls(data=data)
full_filename = ".".join([filename, format])
with open(full_filename, "wb") as f:
f.write(data)
return display_cls(filename=full_filename)
def _to_cytoscape_json(
dsk,
data_attributes=None,
function_attributes=None,
collapse_outputs=False,
verbose=False,
**kwargs,
):
"""
Convert a dask graph to Cytoscape JSON:
https://js.cytoscape.org/#notation/elements-json
"""
nodes = []
edges = []
data = {"nodes": nodes, "edges": edges}
data_attributes = data_attributes or {}
function_attributes = function_attributes or {}
seen = set()
connected = set()
for k, v in dsk.items():
k_name = name(k)
if istask(v):
func_name = name((k, "function")) if not collapse_outputs else k_name
if collapse_outputs or func_name not in seen:
seen.add(func_name)
attrs = function_attributes.get(k, {}).copy()
nodes.append(
{
"data": {
"id": func_name,
"label": key_split(k),
"shape": "ellipse",
"color": "gray",
**attrs,
}
}
)
if not collapse_outputs:
edges.append({"data": {"source": func_name, "target": k_name}})
connected.add(func_name)
connected.add(k_name)
for dep in get_dependencies(dsk, k):
dep_name = name(dep)
if dep_name not in seen:
seen.add(dep_name)
attrs = data_attributes.get(dep, {}).copy()
nodes.append(
{
"data": {
"id": dep_name,
"label": box_label(dep, verbose),
"shape": "rectangle",
"color": "gray",
**attrs,
}
}
)
edges.append(
{
"data": {
"source": dep_name,
"target": func_name,
}
}
)
connected.add(dep_name)
connected.add(func_name)
elif ishashable(v) and v in dsk:
v_name = name(v)
edges.append(
{
"data": {
"source": v_name,
"target": k_name,
}
}
)
connected.add(v_name)
connected.add(k_name)
if (not collapse_outputs or k_name in connected) and k_name not in seen:
seen.add(k_name)
attrs = data_attributes.get(k, {}).copy()
nodes.append(
{
"data": {
"id": k_name,
"label": box_label(k, verbose),
"shape": "rectangle",
"color": "gray",
**attrs,
}
}
)
return data
def cytoscape_graph(
dsk,
filename: str | None = "mydask",
format: str | None = None,
*,
rankdir: str = "BT",
node_sep: float = 10,
edge_sep: float = 10,
spacing_factor: float = 1,
node_style: dict[str, str] | None = None,
edge_style: dict[str, str] | None = None,
**kwargs,
):
"""
Create an ipycytoscape widget for a dask graph.
If `filename` is not None, write an HTML file to disk with the specified name.
This uses the Cytoscape dagre layout algorithm. Options for that are documented here:
https://github.com/cytoscape/cytoscape.js-dagre#api
Parameters
----------
dsk : dict
The graph to display.
filename : str or None, optional
The name of the HTML file to write to disk.
format : str, optional
Not used in this engine.
rankdir: str
The direction in which to orient the visualization.
node_sep: float
The separation (in px) between nodes in the DAG layout.
edge_sep: float
The separation (in px) between edges in the DAG layout.
spacing_factor: float
An overall scaling factor to increase (>1) or decrease (<1) the spacing
of the layout.
node_style: dict[str, str], optional
A dictionary of style attributes for nodes (refer to Cytoscape JSON docs
for available options: https://js.cytoscape.org/#notation/elements-json)
edge_style: dict[str, str], optional
A dictionary of style attributes for edges (refer to Cytoscape JSON docs
for available options: https://js.cytoscape.org/#notation/elements-json)
**kwargs
Additional keyword arguments to forward to `_to_cytoscape_json`.
Returns
-------
result : ipycytoscape.CytoscapeWidget
"""
ipycytoscape = import_required(
"ipycytoscape",
"Drawing dask graphs with the cytoscape engine requires the `ipycytoscape` "
"python library.\n\n"
"Please either conda or pip install as follows:\n\n"
" conda install ipycytoscape # either conda install\n"
" python -m pip install ipycytoscape # or pip install",
)
node_style = node_style or {}
edge_style = edge_style or {}
data = _to_cytoscape_json(dsk, **kwargs)
# TODO: it's not easy to programmatically increase the height of the widget.
# Ideally we would make it a bit bigger, but that will probably require upstreaming
# some fixes.
g = ipycytoscape.CytoscapeWidget(
layout={"height": "400px"},
)
g.set_layout(
name="dagre",
rankDir=rankdir,
nodeSep=node_sep,
edgeSep=edge_sep,
spacingFactor=spacing_factor,
nodeDimensionsIncludeLabels=True,
)
g.graph.add_graph_from_json(
data,
directed=True,
)
g.set_style(
[
{
"selector": "node",
"style": {
"font-family": "helvetica",
"font-size": "24px",
"font-weight": "bold",
"color": "black",
"background-color": "#eee",
"border-color": "data(color)",
"border-width": 4,
"opacity": "1.0",
"text-valign": "center",
"text-halign": "center",
"label": "data(label)",
"shape": "data(shape)",
"width": 64,
"height": 64,
**node_style,
},
},
{
"selector": "edge",
"style": {
"width": 8,
"line-color": "gray",
"target-arrow-shape": "triangle",
"target-arrow-color": "gray",
"curve-style": "bezier",
**edge_style,
},
},
],
)
# Tweak the zoom sensitivity
z = g.zoom
g.max_zoom = z * 2.0
g.min_zoom = z / 10.0
g.wheel_sensitivity = 0.1
if filename is not None:
from ipywidgets.embed import embed_minimal_html
filename = filename if filename.endswith(".html") else filename + ".html"
embed_minimal_html(filename, views=[g], title="Dask task graph")
return g
|