Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,344 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
#-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2022, Anaconda, Inc., and Bokeh Contributors.
# All rights reserved.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
''' Provide a set of decorators useful for repeatedly updating a
a function parameter in a specified way each time the function is
called.
These decorators can be especially useful in conjunction with periodic
callbacks in a Bokeh server application.
Example:
As an example, consider the ``bounce`` forcing function, which
advances a sequence forwards and backwards:
.. code-block:: python
from bokeh.driving import bounce
@bounce([0, 1, 2])
def update(i):
print(i)
If this function is repeatedly called, it will print the following
sequence on standard out:
.. code-block:: none
0 1 2 2 1 0 0 1 2 2 1 ...
'''
#-----------------------------------------------------------------------------
# Boilerplate
#-----------------------------------------------------------------------------
from __future__ import annotations
import logging # isort:skip
log = logging.getLogger(__name__)
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# Standard library imports
from functools import partial
from typing import (
Any,
Callable,
Iterable,
Iterator,
Sequence,
TypeVar,
)
#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------
__all__ = (
'bounce',
'cosine',
'count',
'force',
'linear',
'repeat',
'sine',
)
#-----------------------------------------------------------------------------
# General API
#-----------------------------------------------------------------------------
def bounce(sequence: Sequence[int]) -> partial[Callable[[], None]]:
''' Return a driver function that can advance a "bounced" sequence
of values.
.. code-block:: none
seq = [0, 1, 2, 3]
# bounce(seq) => [0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, ...]
Args:
sequence (seq) : a sequence of values for the driver to bounce
'''
N = len(sequence)
def f(i: int) -> int:
div, mod = divmod(i, N)
if div % 2 == 0:
return sequence[mod]
else:
return sequence[N-mod-1]
return partial(force, sequence=_advance(f))
def cosine(w: float, A: float = 1, phi: float = 0, offset: float = 0) -> partial[Callable[[], None]]:
''' Return a driver function that can advance a sequence of cosine values.
.. code-block:: none
value = A * cos(w*i + phi) + offset
Args:
w (float) : a frequency for the cosine driver
A (float) : an amplitude for the cosine driver
phi (float) : a phase offset to start the cosine driver with
offset (float) : a global offset to add to the driver values
'''
from math import cos
def f(i: float) -> float:
return A * cos(w*i + phi) + offset
return partial(force, sequence=_advance(f))
def count() -> partial[Callable[[], None]]:
''' Return a driver function that can advance a simple count.
'''
return partial(force, sequence=_advance(lambda x: x))
def force(f: Callable[[Any], None], sequence: Iterator[Any]) -> Callable[[], None]:
''' Return a decorator that can "force" a function with an arbitrary
supplied generator
Args:
sequence (iterable) :
generator to drive f with
Returns:
decorator
'''
def wrapper() -> None:
f(next(sequence))
return wrapper
def linear(m: float = 1, b: float = 0) -> partial[Callable[[], None]]:
''' Return a driver function that can advance a sequence of linear values.
.. code-block:: none
value = m * i + b
Args:
m (float) : a slope for the linear driver
x (float) : an offset for the linear driver
'''
def f(i: float) -> float:
return m * i + b
return partial(force, sequence=_advance(f))
def repeat(sequence: Sequence[int]) -> partial[Callable[[], None]]:
''' Return a driver function that can advance a repeated of values.
.. code-block:: none
seq = [0, 1, 2, 3]
# repeat(seq) => [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, ...]
Args:
sequence (seq) : a sequence of values for the driver to bounce
'''
N = len(sequence)
def f(i: int) -> int:
return sequence[i%N]
return partial(force, sequence=_advance(f))
def sine(w: float, A: float = 1, phi: float = 0, offset: float = 0) -> partial[Callable[[], None]]:
''' Return a driver function that can advance a sequence of sine values.
.. code-block:: none
value = A * sin(w*i + phi) + offset
Args:
w (float) : a frequency for the sine driver
A (float) : an amplitude for the sine driver
phi (float) : a phase offset to start the sine driver with
offset (float) : a global offset to add to the driver values
'''
from math import sin
def f(i: float) -> float:
return A * sin(w*i + phi) + offset
return partial(force, sequence=_advance(f))
#-----------------------------------------------------------------------------
# Dev API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Private API
#-----------------------------------------------------------------------------
T = TypeVar("T")
def _advance(f: Callable[[int], T]) -> Iterable[T]:
''' Yield a sequence generated by calling a given function with
successively incremented integer values.
Args:
f (callable) :
The function to advance
Yields:
f(i) where i increases each call
'''
i = 0
while True:
yield f(i)
i += 1
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------
|