Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,184 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import ast
import fnmatch
import hashlib
import inspect
import io
import json
import logging
import os
import re
import shutil
import tarfile
import tempfile
from collections.abc import Mapping
from contextlib import contextmanager
from dataclasses import dataclass
from enum import Enum
from functools import partial
from hashlib import sha256
from os.path import basename, isdir, isfile, join
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Union
from zipfile import ZipFile, is_zipfile
import torch
import requests
from filelock import FileLock
from huggingface_hub import HfApi, HfFolder, snapshot_download
from huggingface_hub.file_download import http_get
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
hf_raise_for_status,
)
from requests.exceptions import HTTPError
from transformers.utils import http_user_agent, is_remote_url
from . import __version__
from .context import ForwardContext
logger = logging.getLogger(__name__)
CONFIG_NAME = "adapter_config.json"
WEIGHTS_NAME = "pytorch_adapter.bin"
SAFE_WEIGHTS_NAME = "adapter.safetensors"
HEAD_CONFIG_NAME = "head_config.json"
HEAD_WEIGHTS_NAME = "pytorch_model_head.bin"
SAFE_HEAD_WEIGHTS_NAME = "model_head.safetensors"
ADAPTERFUSION_CONFIG_NAME = "adapter_fusion_config.json"
ADAPTERFUSION_WEIGHTS_NAME = "pytorch_model_adapter_fusion.bin"
SAFE_ADAPTERFUSION_WEIGHTS_NAME = "model_adapter_fusion.safetensors"
EMBEDDING_FILE = "embedding.pt"
TOKENIZER_PATH = "tokenizer"
ADAPTER_HUB_URL = "https://raw.githubusercontent.com/Adapter-Hub/Hub/master/dist/v2/"
ADAPTER_HUB_INDEX_FILE = ADAPTER_HUB_URL + "index/{}.json"
ADAPTER_HUB_CONFIG_FILE = ADAPTER_HUB_URL + "architectures.json"
ADAPTER_HUB_ALL_FILE = ADAPTER_HUB_URL + "all.json"
ADAPTER_HUB_ADAPTER_ENTRY_JSON = ADAPTER_HUB_URL + "adapters/{}/{}.json"
# the download cache
torch_cache_home = os.getenv(
"TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", os.path.expanduser("~/.cache")), "torch")
)
ADAPTER_CACHE = join(torch_cache_home, "adapters")
# these keys are ignored when calculating the config hash
ADAPTER_CONFIG_HASH_IGNORE = []
# old: new
ACTIVATION_RENAME = {
"gelu": "gelu_new",
"gelu_orig": "gelu",
}
# HACK: To keep config hashs consistent with v2, remove default values of keys introduced in v3 from hash computation
ADAPTER_CONFIG_HASH_IGNORE_DEFAULT = {
"phm_layer": True,
"phm_dim": 4,
"factorized_phm_W": True,
"shared_W_phm": False,
"shared_phm_rule": True,
"factorized_phm_rule": False,
"phm_c_init": "normal",
"phm_init_range": 0.0001,
"learn_phm": True,
"hypercomplex_nonlinearity": "glorot-uniform",
"phm_rank": 1,
"phm_bias": True,
"init_weights": "bert",
"scaling": 1.0,
}
ADAPTER_CONFIG_STRING_PATTERN = re.compile(r"^(?P<name>[^\[\]\|\n]+)(?:\[(?P<kvs>.*)\])?$")
class AdapterType(str, Enum):
"""Models all currently available model adapter types."""
text_task = "text_task"
text_lang = "text_lang"
@classmethod
def has(cls, value):
return value in cls.__members__.values()
def __repr__(self):
return self.value
@dataclass
class AdapterInfo:
"""
Holds information about an adapter publicly available on the Hub. Returned by
:func:`list_adapters()`.
Args:
source (str): The source repository of this adapter. Always 'hf' for adapters available on HF Model Hub.
adapter_id (str): The unique identifier of this adapter.
model_name (str, optional): The identifier of the model this adapter was trained for.
task (str, optional): The task this adapter was trained for.
subtask (str, optional): The subtask or dataset this adapter was trained on.
username (str, optional): The username of author(s) of this adapter.
adapter_config (dict, optional): The configuration dictionary of this adapter.
"""
source: str
adapter_id: str
model_name: Optional[str] = None
task: Optional[str] = None
subtask: Optional[str] = None
username: Optional[str] = None
adapter_config: Optional[dict] = None
sha1_checksum: Optional[str] = None
def _minimize_dict(d):
if isinstance(d, Mapping):
return {k: _minimize_dict(v) for (k, v) in d.items() if v}
else:
return d
def get_adapter_config_hash(config, length=16, ignore_params=[]):
"""
Calculates the hash of a given adapter configuration which is used to identify this configuration.
Returns:
str: The resulting hash of the given config dict.
"""
minimized_config = _minimize_dict(
{k: v for (k, v) in config.items() if k not in ADAPTER_CONFIG_HASH_IGNORE + ignore_params}
)
# ensure hash is kept consistent to previous versions
for name, default in ADAPTER_CONFIG_HASH_IGNORE_DEFAULT.items():
if minimized_config.get(name, None) == default:
del minimized_config[name]
dict_str = json.dumps(minimized_config, sort_keys=True)
h = hashlib.sha1()
h.update(dict_str.encode(encoding="utf-8"))
return h.hexdigest()[:length]
def inherit_doc(cls):
for name, func in vars(cls).items():
if isinstance(func, Callable) and not func.__doc__:
for parent in cls.__bases__:
parfunc = getattr(parent, name, None)
if parfunc and getattr(parfunc, "__doc__", None):
func.__doc__ = parfunc.__doc__
break
return cls
def urljoin(*args):
return "/".join([s.strip("/") for s in args])
def remote_file_exists(url):
r = requests.head(url)
return r.status_code == 200
# Copied from here: https://github.com/huggingface/huggingface_hub/blob/v0.25.0/src/huggingface_hub/file_download.py#L266
def url_to_filename(url: str, etag: Optional[str] = None) -> str:
"""Generate a local filename from a url.
Convert `url` into a hashed filename in a reproducible way. If `etag` is
specified, append its hash to the url's, delimited by a period. If the url
ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can
identify it as a HDF5 file (see
https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
Args:
url (`str`):
The address to the file.
etag (`str`, *optional*):
The ETag of the file.
Returns:
The generated filename.
"""
url_bytes = url.encode("utf-8")
filename = sha256(url_bytes).hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
filename += "." + sha256(etag_bytes).hexdigest()
if url.endswith(".h5"):
filename += ".h5"
return filename
# Copied from last version of this method in HF codebase:
# https://github.com/huggingface/transformers/blob/9129fd0377e4d46cb2d0ea28dc1eb91a15f65b77/src/transformers/utils/hub.py#L460
def get_from_cache(
url: str,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=10,
resume_download=False,
user_agent: Union[Dict, str, None] = None,
use_auth_token: Union[bool, str, None] = None,
local_files_only=False,
) -> Optional[str]:
"""
Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the
path to the cached file.
Return:
Local path (string) of file or if networking is off, last version of file cached on disk.
Raises:
In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
"""
if cache_dir is None:
cache_dir = ADAPTER_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
headers = {"user-agent": http_user_agent(user_agent)}
if isinstance(use_auth_token, str):
headers["authorization"] = f"Bearer {use_auth_token}"
elif use_auth_token:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
headers["authorization"] = f"Bearer {token}"
url_to_download = url
etag = None
if not local_files_only:
try:
r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=etag_timeout)
hf_raise_for_status(r)
etag = r.headers.get("X-Linked-Etag") or r.headers.get("ETag")
# We favor a custom header indicating the etag of the linked resource, and
# we fallback to the regular etag header.
# If we don't have any of those, raise an error.
if etag is None:
raise OSError(
"Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility."
)
# In case of a redirect,
# save an extra redirect on the request.get call,
# and ensure we download the exact atomic version even if it changed
# between the HEAD and the GET (unlikely, but hey).
if 300 <= r.status_code <= 399:
url_to_download = r.headers["Location"]
except (
requests.exceptions.SSLError,
requests.exceptions.ProxyError,
RepositoryNotFoundError,
EntryNotFoundError,
RevisionNotFoundError,
):
# Actually raise for those subclasses of ConnectionError
# Also raise the custom errors coming from a non existing repo/branch/file as they are caught later on.
raise
except (HTTPError, requests.exceptions.ConnectionError, requests.exceptions.Timeout):
# Otherwise, our Internet connection is down.
# etag is None
pass
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# etag is None == we don't have a connection or we passed local_files_only.
# try to get the last downloaded one
if etag is None:
if os.path.exists(cache_path):
return cache_path
else:
matching_files = [
file
for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*")
if not file.endswith(".json") and not file.endswith(".lock")
]
if len(matching_files) > 0:
return os.path.join(cache_dir, matching_files[-1])
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
fname = url.split("/")[-1]
raise EntryNotFoundError(
f"Cannot find the requested file ({fname}) in the cached path and outgoing traffic has been"
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
" to False."
)
else:
raise ValueError(
"Connection error, and we cannot find the requested files in the cached path."
" Please try again or make sure your Internet connection is on."
)
# From now on, etag is not None.
if os.path.exists(cache_path) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with FileLock(lock_path):
# If the download just completed while the lock was activated.
if os.path.exists(cache_path) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
incomplete_path = cache_path + ".incomplete"
@contextmanager
def _resumable_file_manager() -> "io.BufferedWriter":
with open(incomplete_path, "ab") as f:
yield f
temp_file_manager = _resumable_file_manager
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
else:
resume_size = 0
else:
temp_file_manager = partial(tempfile.NamedTemporaryFile, mode="wb", dir=cache_dir, delete=False)
resume_size = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}")
http_get(
url_to_download,
temp_file,
proxies=proxies,
resume_size=resume_size,
headers=headers,
)
logger.info(f"storing {url} in cache at {cache_path}")
os.replace(temp_file.name, cache_path)
# NamedTemporaryFile creates a file with hardwired 0600 perms (ignoring umask), so fixing it.
umask = os.umask(0o666)
os.umask(umask)
os.chmod(cache_path, 0o666 & ~umask)
logger.info(f"creating metadata file for {cache_path}")
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
json.dump(meta, meta_file)
return cache_path
def download_cached(url, checksum=None, checksum_algo="sha1", cache_dir=None, force_extract=False, **kwargs):
"""
This method downloads a file and caches it.
For more information on why this is needed, refer to the explanation in this Pull Request: https://github.com/adapter-hub/adapters/pull/750
"""
if isinstance(url, Path):
url = str(url)
if is_remote_url(url):
output_path = get_from_cache(url, cache_dir=cache_dir, **kwargs)
else:
raise ValueError("Unable to parse '{}' as a URL".format(url))
if not output_path:
return None
# if checksum is given, verify it
if checksum and checksum_algo:
h = hashlib.new(checksum_algo)
with open(output_path, "rb") as f:
h.update(f.read())
calculated_checksum = h.hexdigest()
if calculated_checksum != checksum.lower():
raise EnvironmentError("Failed to verify checksum of '{}'".format(output_path))
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
output_dir, output_file = os.path.split(output_path)
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lock_path = output_path + ".lock"
with FileLock(lock_path):
shutil.rmtree(output_path_extracted, ignore_errors=True)
os.makedirs(output_path_extracted)
if is_zipfile(output_path):
with ZipFile(output_path, "r") as zip_file:
# we want to extract all files into a flat folder structure (i.e. no subfolders)
for file in zip_file.namelist():
# check if we have a valid file
if basename(file):
file_data = zip_file.read(file)
with open(join(output_path_extracted, basename(file)), "wb") as f:
f.write(file_data)
elif tarfile.is_tarfile(output_path):
tar_file = tarfile.open(output_path)
tar_file.extractall(output_path_extracted)
tar_file.close()
else:
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
return output_path_extracted
def parse_adapter_config_string(config_string: str) -> List[Tuple[str, dict]]:
"""
Parses an adapter configuration string into a list of tuples. Each tuple constists of an adapter config identifier
and dictionary.
"""
# First split by "|" into individual adapter configs
config_string_chunks = config_string.split("|")
# Now match each adapter config against the regex
adapter_configs = []
for config_string_chunk in config_string_chunks:
match = re.match(ADAPTER_CONFIG_STRING_PATTERN, config_string_chunk.strip())
if not match or not match.group("name"):
raise ValueError(f"Invalid adapter config string format: '{config_string_chunk}'.")
name = match.group("name")
if match.group("kvs"):
kvs = match.group("kvs")
# Replace "=" with ":" in key-value pairs for valid Python dict
kvs = re.sub(r"(\w+)=", r"'\1':", kvs)
else:
kvs = ""
# Now evaluate key-value pairs as Python dict
try:
config_kwargs = ast.literal_eval("{" + kvs + "}")
except Exception:
raise ValueError(f"Invalid adapter configguration '{kvs}' in '{name}'.")
adapter_configs.append((name, config_kwargs))
return adapter_configs
def resolve_adapter_config(config: Union[dict, str], local_map=None, **kwargs) -> dict:
"""
Resolves a given adapter configuration specifier to a full configuration dictionary.
Args:
config (Union[dict, str]): The configuration to resolve. Can be either:
- a dictionary: returned without further action
- an identifier string available in local_map
- the path to a file containing a full adapter configuration
Returns:
dict: The resolved adapter configuration dictionary.
"""
# already a dict, so we don't have to do anything
if isinstance(config, Mapping):
return config
# first, look in local map
if local_map and config in local_map:
return local_map[config]
# load from file system if it's a local file
if isfile(config):
with open(config, "r") as f:
loaded_config = json.load(f)
# search for nested config if the loaded dict has the form of a config saved with an adapter module
if "config" in loaded_config:
return loaded_config["config"]
else:
return loaded_config
# parse the config string
config_pairs = parse_adapter_config_string(config)
if len(config_pairs) > 0:
full_configs = []
for name, config_kwargs in config_pairs:
# first, look in local map
if local_map and name in local_map:
config_obj = local_map[name]
full_configs.append(config_obj.replace(**config_kwargs))
else:
raise ValueError("Could not identify '{}' as a valid adapter configuration.".format(name))
# Case 1: only one config, return it directly
if len(full_configs) == 1:
return full_configs[0]
# Case 2: multiple configs, return a config union
elif len(full_configs) > 1:
return {"architecture": "union", "configs": full_configs}
raise ValueError("Could not identify '{}' as a valid adapter configuration.".format(config))
def _split_identifier(identifier):
task, subtask, org_name = None, None, None
identifier = identifier.split("@")
if len(identifier) > 1:
org_name = identifier[1]
identifier = identifier[0].split("/")
if len(identifier) > 1:
subtask = identifier[1]
task = identifier[0]
return task, subtask, org_name
def _dict_extract(d, primary_key, secondary_key=None):
for k, v in d.items():
if k == primary_key:
if secondary_key:
if secondary_key in v.keys():
yield v[secondary_key]
else:
for k, v in v.items():
yield v
elif secondary_key is None:
for k, v in v.items():
if k == primary_key:
yield v
def find_in_index(
identifier: str,
model_name: str,
adapter_config: Optional[dict] = None,
strict: bool = False,
index_file: str = None,
) -> Optional[str]:
identifier = identifier.strip()
# identifiers of form "@<org>/<file>" are unique and can be retrieved directly
match = re.match(r"@(\S+)\/(\S+)", identifier)
if match:
return ADAPTER_HUB_ADAPTER_ENTRY_JSON.format(match.group(1), match.group(2))
if not index_file:
index_file = download_cached(ADAPTER_HUB_INDEX_FILE.format(model_name))
if not index_file:
raise EnvironmentError("Unable to load adapter hub index file. The file might be temporarily unavailable.")
with open(index_file, "r") as f:
adapter_index = json.load(f)
# split into <task>/<subtask>@<org>
task, subtask, org = _split_identifier(identifier)
# find all entries for this task and subtask
entries = list(_dict_extract(adapter_index, task, subtask))
if not entries:
# we found no matching entry
return None
elif len(entries) == 1:
index_entry = entries[0]
else:
# there are multiple possible options for this identifier
raise ValueError("Found multiple possible adapters matching '{}'.".format(identifier))
# go on with searching a matching adapter_config hash in the task entry
if adapter_config:
config_hash = get_adapter_config_hash(adapter_config)
if config_hash in index_entry:
# now match the org if given
hub_entry = _get_matching_version(index_entry[config_hash], org)
if hub_entry:
logger.info("Found matching adapter at: {}".format(hub_entry))
return hub_entry
# if we're here, no matching config is available or no config was given
if not adapter_config or not strict:
if "default" in index_entry:
logger.info("No exactly matching adapter config found for this specifier, falling back to default.")
return index_entry["default"]
# there's only one possible config and we allow matches with different configs
elif len(index_entry) == 1:
logger.info("Only one configuration available for this adapter, using default.")
config_entry = list(index_entry.values())[0]
return _get_matching_version(config_entry, org)
raise ValueError("No adapter '{}' found for the current model or configuration.".format(identifier))
def _get_matching_version(config_entry, org):
if org:
return config_entry["versions"].get(org, None)
elif len(config_entry["versions"]) == 1:
return list(config_entry["versions"].values())[0]
elif "default" in config_entry:
return config_entry["default"]
else:
raise ValueError("Multiple adapters with this name are available for this config.")
def pull_from_hub(
specifier: str,
model_name: str,
adapter_config: Optional[Union[dict, str]] = None,
version: str = None,
strict: bool = False,
**kwargs,
) -> str:
"""
Redirects loading from the archived Hub repository to HuggingFace Model Hub.
Args:
specifier (str): A string specifying the adapter to be loaded.
model_name (str): The identifier of the pre-trained model for which to load an adapter.
adapter_config (Union[dict, str], optional): The configuration of the adapter to be loaded.
version (str, optional): The version of the adapter to be loaded. Defaults to None.
strict (bool, optional):
If set to True, only allow adapters exactly matching the given config to be loaded. Defaults to False.
Returns:
str: The local path to which the adapter has been downloaded.
"""
if not model_name:
raise ValueError("Unable to resolve adapter without the name of a model. Please specify model_name.")
# resolve config if it's an identifier
if adapter_config:
adapter_config = resolve_adapter_config(adapter_config)
# search the correct entry in the index
hub_entry_url = find_in_index(specifier, model_name, adapter_config=adapter_config, strict=strict)
if not hub_entry_url:
raise EnvironmentError("No adapter with name '{}' was found in the adapter index.".format(specifier))
hf_hub_specifier = "AdapterHub/" + os.path.basename(hub_entry_url).split(".")[0]
logger.warning(
"Automatic redirect to HF Model Hub repo '{}'. Please switch to the new ID to remove this warning.".format(
hf_hub_specifier
)
)
return pull_from_hf_model_hub(hf_hub_specifier, version=version, **kwargs)
def pull_from_hf_model_hub(specifier: str, version: str = None, **kwargs) -> str:
download_path = snapshot_download(
specifier,
revision=version,
cache_dir=kwargs.pop("cache_dir", None),
library_name="adapters",
library_version=__version__,
)
return download_path
def resolve_adapter_path(
adapter_name_or_path,
model_name: str = None,
adapter_config: Union[dict, str] = None,
version: str = None,
**kwargs,
) -> str:
"""
Resolves the path to a pre-trained adapter module. Note: If attempting to resolve an adapter from the Hub,
adapter_config and model_name must be present.
Args:
adapter_name_or_path (str): Can be either:
- the path to a folder in the file system containing the adapter configuration and weights
- an url pointing to a zip folder containing the adapter configuration and weights
- a specifier matching a pre-trained adapter uploaded to Adapter-Hub
model_name (str, optional): The identifier of the pre-trained model for which to load an adapter.
adapter_config (Union[dict, str], optional): The configuration of the adapter to be loaded.
version (str, optional): The version of the adapter to be loaded. Defaults to None.
Returns:
str: The local path from where the adapter module can be loaded.
"""
# url of a folder containing pretrained adapters -> try to load from this url
if is_remote_url(adapter_name_or_path):
resolved_folder = download_cached(adapter_name_or_path, **kwargs)
if not resolved_folder:
raise EnvironmentError(
"Unable to load file from {}. The file might be unavailable.".format(resolved_folder)
)
return resolved_folder
# path to a local folder saved using save()
elif isdir(adapter_name_or_path):
if (
isfile(join(adapter_name_or_path, WEIGHTS_NAME)) or isfile(join(adapter_name_or_path, SAFE_WEIGHTS_NAME))
) and isfile(join(adapter_name_or_path, CONFIG_NAME)):
return adapter_name_or_path
else:
raise EnvironmentError(
"No file {} or no file {} found in directory {}".format(
WEIGHTS_NAME, CONFIG_NAME, adapter_name_or_path
)
)
else:
try:
logger.info("Attempting to load adapter from HF Model Hub...")
return pull_from_hf_model_hub(adapter_name_or_path, version=version, **kwargs)
except (EnvironmentError, ValueError) as ex:
logger.info(ex)
logger.info("Attempting to redirect from archived Hub repo...")
try:
return pull_from_hub(
adapter_name_or_path,
model_name,
adapter_config=adapter_config,
version=version,
redirect_to_hf_hub=True,
**kwargs,
)
except Exception as ex:
logger.info(ex)
raise EnvironmentError(
"Unable to load adapter {} from any source. Please check the name of the adapter or the source.".format(
adapter_name_or_path
)
)
def list_adapters(model_name: str = None) -> List[AdapterInfo]:
"""
Retrieves a list of all publicly available adapters on AdapterHub.ml or on huggingface.co.
Args:
model_name (str, optional): If specified, only returns adapters trained for the model with this identifier.
"""
adapters = []
if "fetch_config" in inspect.signature(HfApi.list_models).parameters:
kwargs = {"full": True, "fetch_config": True}
else:
logger.warning(
"Using old version of huggingface-hub package for fetching. Please upgrade to latest version for"
" accurate results."
)
kwargs = {"full": True}
all_hf_adapters_data = HfApi().list_models(filter="adapters", **kwargs)
for model_info in all_hf_adapters_data:
adapter_info = AdapterInfo(
source="hf",
adapter_id=model_info.modelId,
model_name=model_info.config.get("adapters", {}).get("model_name") if model_info.config else None,
username=model_info.modelId.split("/")[0],
sha1_checksum=model_info.sha,
)
adapters.append(adapter_info)
if model_name is not None:
adapters = [adapter for adapter in adapters if adapter.model_name == model_name]
return adapters
def get_adapter_info(adapter_id: str) -> Optional[AdapterInfo]:
"""
Retrieves information about a specific adapter.
Args:
adapter_id (str): The identifier of the adapter to retrieve.
Returns:
AdapterInfo: The adapter information or None if the adapter was not found.
"""
try:
model_info = HfApi().model_info(adapter_id)
return AdapterInfo(
source="hf",
adapter_id=model_info.modelId,
model_name=(
model_info.config.get("adapter_transformers", {}).get("model_name") if model_info.config else None
),
username=model_info.modelId.split("/")[0],
sha1_checksum=model_info.sha,
)
except requests.exceptions.HTTPError:
return None
def prefix_attention_mask(attention_mask, dim: Union[int, List[int]] = 3, prefix_value: int = 0):
"""
Adds a prefix to an attention mask. The length of the prefix is determined by the `prefix_attention_mask_length`
attribute in the ForwardContext.
Args:
attention_mask:
The attention mask to add the prefix to.
dim (int):
The dimension along which to concatenate the prefix_attention_mask. Defaults to 3.
prefix_value (int):
The value to use for the prefix_attention_mask. Defaults to 0, however some models, e.g. DistilBert, use
different values. BERT like models invert their extended_attention_mask, hence they use 0 as value for not
masked tokens. This inversion is usually done in the forward method of the model in 2 different ways:
1) by calling self.invert_attention_mask, as BERT does 2) by doing the inversion manually, e.g. ALBERT
does: `extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min`
"""
forward_context = ForwardContext.get_context()
if (
attention_mask is not None
and forward_context is not None
and getattr(forward_context, "prompt_tokens_length", None) is not None
):
if isinstance(dim, int):
dim = [dim]
for d in dim:
# Create a tensor of ones with the desired shape
ones_shape = list(attention_mask.shape)
ones_shape[d] = forward_context.prompt_tokens_length
prefix_attention_mask = torch.full(
ones_shape,
prefix_value,
dtype=attention_mask.dtype,
).to(attention_mask.device)
# Concatenate the prefix_attention_mask along the specified dimension
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=d)
return attention_mask
def patch_forward(module: torch.nn.Module):
# HF Accelerate's `add_hook_to_module()` replaces the module forward method with a wrapper
# and stores the original forward method in `_old_forward`. For this to work with Adapters' post-hook wrapping,
# we need to explicitly set to potentially overriden forward methods on adapter init.
# The `add_hook_to_module()` method is e.g. used for `device_map="auto"` in the `PreTrainedModel.from_pretrained()` method.
if hasattr(module, "_old_forward"):
module._old_forward = module.__class__.forward.__get__(module, module.__class__)
|