Spaces:
Running
on
Zero
Running
on
Zero
File size: 189,095 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 |
from __future__ import annotations
import asyncio
import atexit
import copy
import inspect
import json
import logging
import os
import pickle
import re
import sys
import threading
import traceback
import uuid
import warnings
import weakref
from collections import defaultdict
from collections.abc import Collection, Iterator
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures._base import DoneAndNotDoneFutures
from contextlib import asynccontextmanager, contextmanager, suppress
from contextvars import ContextVar
from functools import partial
from importlib.metadata import PackageNotFoundError, version
from numbers import Number
from queue import Queue as pyQueue
from typing import Any, ClassVar, Coroutine, Literal, Sequence, TypedDict
from packaging.version import parse as parse_version
from tlz import first, groupby, keymap, merge, partition_all, valmap
import dask
from dask.base import collections_to_dsk, normalize_token, tokenize
from dask.core import flatten
from dask.highlevelgraph import HighLevelGraph
from dask.optimization import SubgraphCallable
from dask.utils import (
apply,
ensure_dict,
format_bytes,
funcname,
parse_timedelta,
stringify,
typename,
)
from dask.widgets import get_template
try:
from dask.delayed import single_key
except ImportError:
single_key = first
from tornado import gen
from tornado.ioloop import IOLoop
import distributed.utils
from distributed import cluster_dump, preloading
from distributed import versions as version_module
from distributed.batched import BatchedSend
from distributed.cfexecutor import ClientExecutor
from distributed.compatibility import PeriodicCallback
from distributed.core import (
CommClosedError,
ConnectionPool,
PooledRPCCall,
Status,
clean_exception,
connect,
rpc,
)
from distributed.diagnostics.plugin import (
NannyPlugin,
UploadFile,
WorkerPlugin,
_get_plugin_name,
)
from distributed.metrics import time
from distributed.objects import HasWhat, SchedulerInfo, WhoHas
from distributed.protocol import to_serialize
from distributed.protocol.pickle import dumps, loads
from distributed.publish import Datasets
from distributed.pubsub import PubSubClientExtension
from distributed.security import Security
from distributed.sizeof import sizeof
from distributed.threadpoolexecutor import rejoin
from distributed.utils import (
CancelledError,
LoopRunner,
NoOpAwaitable,
SyncMethodMixin,
TimeoutError,
format_dashboard_link,
has_keyword,
import_term,
is_python_shutting_down,
log_errors,
no_default,
sync,
thread_state,
)
from distributed.utils_comm import (
WrappedKey,
gather_from_workers,
pack_data,
retry_operation,
scatter_to_workers,
unpack_remotedata,
)
from distributed.worker import get_client, get_worker, secede
logger = logging.getLogger(__name__)
_global_clients: weakref.WeakValueDictionary[
int, Client
] = weakref.WeakValueDictionary()
_global_client_index = [0]
_current_client: ContextVar[Client | None] = ContextVar("_current_client", default=None)
DEFAULT_EXTENSIONS = {
"pubsub": PubSubClientExtension,
}
def _get_global_client() -> Client | None:
c = _current_client.get()
if c:
return c
L = sorted(list(_global_clients), reverse=True)
for k in L:
c = _global_clients[k]
if c.status != "closed":
return c
else:
del _global_clients[k]
return None
def _set_global_client(c: Client | None) -> None:
if c is not None:
_global_clients[_global_client_index[0]] = c
_global_client_index[0] += 1
def _del_global_client(c: Client) -> None:
for k in list(_global_clients):
try:
if _global_clients[k] is c:
del _global_clients[k]
except KeyError: # pragma: no cover
pass
class Future(WrappedKey):
"""A remotely running computation
A Future is a local proxy to a result running on a remote worker. A user
manages future objects in the local Python process to determine what
happens in the larger cluster.
Parameters
----------
key: str, or tuple
Key of remote data to which this future refers
client: Client
Client that should own this future. Defaults to _get_global_client()
inform: bool
Do we inform the scheduler that we need an update on this future
state: FutureState
The state of the future
Examples
--------
Futures typically emerge from Client computations
>>> my_future = client.submit(add, 1, 2) # doctest: +SKIP
We can track the progress and results of a future
>>> my_future # doctest: +SKIP
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfee188e>
We can get the result or the exception and traceback from the future
>>> my_future.result() # doctest: +SKIP
See Also
--------
Client: Creates futures
"""
_cb_executor = None
_cb_executor_pid = None
def __init__(self, key, client=None, inform=True, state=None):
self.key = key
self._cleared = False
tkey = stringify(key)
self.client = client or Client.current()
self.client._inc_ref(tkey)
self._generation = self.client.generation
if tkey in self.client.futures:
self._state = self.client.futures[tkey]
else:
self._state = self.client.futures[tkey] = FutureState()
if inform:
self.client._send_to_scheduler(
{
"op": "client-desires-keys",
"keys": [stringify(key)],
"client": self.client.id,
}
)
if state is not None:
try:
handler = self.client._state_handlers[state]
except KeyError:
pass
else:
handler(key=key)
@property
def executor(self):
"""Returns the executor, which is the client.
Returns
-------
Client
The executor
"""
return self.client
@property
def status(self):
"""Returns the status
Returns
-------
str
The status
"""
return self._state.status
def done(self):
"""Returns whether or not the computation completed.
Returns
-------
bool
True if the computation is complete, otherwise False
"""
return self._state.done()
def result(self, timeout=None):
"""Wait until computation completes, gather result to local process.
Parameters
----------
timeout : number, optional
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
Raises
------
dask.distributed.TimeoutError
If *timeout* seconds are elapsed before returning, a
``dask.distributed.TimeoutError`` is raised.
Returns
-------
result
The result of the computation. Or a coroutine if the client is asynchronous.
"""
if self.client.asynchronous:
return self.client.sync(self._result, callback_timeout=timeout)
# shorten error traceback
result = self.client.sync(self._result, callback_timeout=timeout, raiseit=False)
if self.status == "error":
typ, exc, tb = result
raise exc.with_traceback(tb)
elif self.status == "cancelled":
raise result
else:
return result
async def _result(self, raiseit=True):
await self._state.wait()
if self.status == "error":
exc = clean_exception(self._state.exception, self._state.traceback)
if raiseit:
typ, exc, tb = exc
raise exc.with_traceback(tb)
else:
return exc
elif self.status == "cancelled":
exception = CancelledError(self.key)
if raiseit:
raise exception
else:
return exception
else:
result = await self.client._gather([self])
return result[0]
async def _exception(self):
await self._state.wait()
if self.status == "error":
return self._state.exception
else:
return None
def exception(self, timeout=None, **kwargs):
"""Return the exception of a failed task
Parameters
----------
timeout : number, optional
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
**kwargs : dict
Optional keyword arguments for the function
Returns
-------
Exception
The exception that was raised
If *timeout* seconds are elapsed before returning, a
``dask.distributed.TimeoutError`` is raised.
See Also
--------
Future.traceback
"""
return self.client.sync(self._exception, callback_timeout=timeout, **kwargs)
def add_done_callback(self, fn):
"""Call callback on future when callback has finished
The callback ``fn`` should take the future as its only argument. This
will be called regardless of if the future completes successfully,
errs, or is cancelled
The callback is executed in a separate thread.
Parameters
----------
fn : callable
The method or function to be called
"""
cls = Future
if cls._cb_executor is None or cls._cb_executor_pid != os.getpid():
try:
cls._cb_executor = ThreadPoolExecutor(
1, thread_name_prefix="Dask-Callback-Thread"
)
except TypeError:
cls._cb_executor = ThreadPoolExecutor(1)
cls._cb_executor_pid = os.getpid()
def execute_callback(fut):
try:
fn(fut)
except BaseException:
logger.exception("Error in callback %s of %s:", fn, fut)
self.client.loop.add_callback(
done_callback, self, partial(cls._cb_executor.submit, execute_callback)
)
def cancel(self, **kwargs):
"""Cancel the request to run this future
See Also
--------
Client.cancel
"""
return self.client.cancel([self], **kwargs)
def retry(self, **kwargs):
"""Retry this future if it has failed
See Also
--------
Client.retry
"""
return self.client.retry([self], **kwargs)
def cancelled(self):
"""Returns True if the future has been cancelled
Returns
-------
bool
True if the future was 'cancelled', otherwise False
"""
return self._state.status == "cancelled"
async def _traceback(self):
await self._state.wait()
if self.status == "error":
return self._state.traceback
else:
return None
def traceback(self, timeout=None, **kwargs):
"""Return the traceback of a failed task
This returns a traceback object. You can inspect this object using the
``traceback`` module. Alternatively if you call ``future.result()``
this traceback will accompany the raised exception.
Parameters
----------
timeout : number, optional
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
If *timeout* seconds are elapsed before returning, a
``dask.distributed.TimeoutError`` is raised.
Examples
--------
>>> import traceback # doctest: +SKIP
>>> tb = future.traceback() # doctest: +SKIP
>>> traceback.format_tb(tb) # doctest: +SKIP
[...]
Returns
-------
traceback
The traceback object. Or a coroutine if the client is asynchronous.
See Also
--------
Future.exception
"""
return self.client.sync(self._traceback, callback_timeout=timeout, **kwargs)
@property
def type(self):
"""Returns the type"""
return self._state.type
def release(self):
"""
Notes
-----
This method can be called from different threads
(see e.g. Client.get() or Future.__del__())
"""
if not self._cleared and self.client.generation == self._generation:
self._cleared = True
try:
self.client.loop.add_callback(self.client._dec_ref, stringify(self.key))
except TypeError: # pragma: no cover
pass # Shutting down, add_callback may be None
def __getstate__(self):
return self.key, self.client.scheduler.address
def __setstate__(self, state):
key, address = state
try:
c = Client.current(allow_global=False)
except ValueError:
c = get_client(address)
self.__init__(key, c)
c._send_to_scheduler(
{
"op": "update-graph",
"tasks": {},
"keys": [stringify(self.key)],
"client": c.id,
}
)
def __del__(self):
try:
self.release()
except AttributeError:
# Occasionally we see this error when shutting down the client
# https://github.com/dask/distributed/issues/4305
if not sys.is_finalizing():
raise
except RuntimeError: # closed event loop
pass
def __repr__(self):
if self.type:
return (
f"<Future: {self.status}, type: {typename(self.type)}, key: {self.key}>"
)
else:
return f"<Future: {self.status}, key: {self.key}>"
def _repr_html_(self):
return get_template("future.html.j2").render(
key=str(self.key),
type=typename(self.type),
status=self.status,
)
def __await__(self):
return self.result().__await__()
class FutureState:
"""A Future's internal state.
This is shared between all Futures with the same key and client.
"""
__slots__ = ("_event", "status", "type", "exception", "traceback")
def __init__(self):
self._event = None
self.status = "pending"
self.type = None
def _get_event(self):
# Can't create Event eagerly in constructor as it can fetch
# its IOLoop from the wrong thread
# (https://github.com/tornadoweb/tornado/issues/2189)
event = self._event
if event is None:
event = self._event = asyncio.Event()
return event
def cancel(self):
"""Cancels the operation"""
self.status = "cancelled"
self.exception = CancelledError()
self._get_event().set()
def finish(self, type=None):
"""Sets the status to 'finished' and sets the event
Parameters
----------
type : any
The type
"""
self.status = "finished"
self._get_event().set()
if type is not None:
self.type = type
def lose(self):
"""Sets the status to 'lost' and clears the event"""
self.status = "lost"
self._get_event().clear()
def retry(self):
"""Sets the status to 'pending' and clears the event"""
self.status = "pending"
self._get_event().clear()
def set_error(self, exception, traceback):
"""Sets the error data
Sets the status to 'error'. Sets the exception, the traceback,
and the event
Parameters
----------
exception: Exception
The exception
traceback: Exception
The traceback
"""
_, exception, traceback = clean_exception(exception, traceback)
self.status = "error"
self.exception = exception
self.traceback = traceback
self._get_event().set()
def done(self):
"""Returns 'True' if the event is not None and the event is set"""
return self._event is not None and self._event.is_set()
def reset(self):
"""Sets the status to 'pending' and clears the event"""
self.status = "pending"
if self._event is not None:
self._event.clear()
async def wait(self, timeout=None):
"""Wait for the awaitable to complete with a timeout.
Parameters
----------
timeout : number, optional
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
"""
await asyncio.wait_for(self._get_event().wait(), timeout)
def __repr__(self):
return f"<{self.__class__.__name__}: {self.status}>"
async def done_callback(future, callback):
"""Coroutine that waits on the future, then calls the callback
Parameters
----------
future : asyncio.Future
The future
callback : callable
The callback
"""
while future.status == "pending":
await future._state.wait()
callback(future)
@partial(normalize_token.register, Future)
def normalize_future(f):
"""Returns the key and the type as a list
Parameters
----------
list
The key and the type
"""
return [f.key, type(f)]
class AllExit(Exception):
"""Custom exception class to exit All(...) early."""
def _handle_print(event):
_, msg = event
if not isinstance(msg, dict):
# someone must have manually logged a print event with a hand-crafted
# payload, rather than by calling worker.print(). In that case simply
# print the payload and hope it works.
print(msg)
return
args = msg.get("args")
if not isinstance(args, tuple):
# worker.print() will always send us a tuple of args, even if it's an
# empty tuple.
raise TypeError(
f"_handle_print: client received non-tuple print args: {args!r}"
)
file = msg.get("file")
if file == 1:
file = sys.stdout
elif file == 2:
file = sys.stderr
elif file is not None:
raise TypeError(
f"_handle_print: client received unsupported file kwarg: {file!r}"
)
print(
*args, sep=msg.get("sep"), end=msg.get("end"), file=file, flush=msg.get("flush")
)
def _handle_warn(event):
_, msg = event
if not isinstance(msg, dict):
# someone must have manually logged a warn event with a hand-crafted
# payload, rather than by calling worker.warn(). In that case simply
# warn the payload and hope it works.
warnings.warn(msg)
else:
if "message" not in msg:
# TypeError makes sense here because it's analogous to calling a
# function without a required positional argument
raise TypeError(
"_handle_warn: client received a warn event missing the required "
'"message" argument.'
)
if "category" in msg:
category = pickle.loads(msg["category"])
else:
category = None
warnings.warn(
pickle.loads(msg["message"]),
category=category,
)
def _maybe_call_security_loader(address):
security_loader_term = dask.config.get("distributed.client.security-loader")
if security_loader_term:
try:
security_loader = import_term(security_loader_term)
except Exception as exc:
raise ImportError(
f"Failed to import `{security_loader_term}` configured at "
f"`distributed.client.security-loader` - is this module "
f"installed?"
) from exc
return security_loader({"address": address})
return None
class VersionsDict(TypedDict):
scheduler: dict[str, dict[str, Any]]
workers: dict[str, dict[str, dict[str, Any]]]
client: dict[str, dict[str, Any]]
class Client(SyncMethodMixin):
"""Connect to and submit computation to a Dask cluster
The Client connects users to a Dask cluster. It provides an asynchronous
user interface around functions and futures. This class resembles
executors in ``concurrent.futures`` but also allows ``Future`` objects
within ``submit/map`` calls. When a Client is instantiated it takes over
all ``dask.compute`` and ``dask.persist`` calls by default.
It is also common to create a Client without specifying the scheduler
address , like ``Client()``. In this case the Client creates a
:class:`LocalCluster` in the background and connects to that. Any extra
keywords are passed from Client to LocalCluster in this case. See the
LocalCluster documentation for more information.
Parameters
----------
address: string, or Cluster
This can be the address of a ``Scheduler`` server like a string
``'127.0.0.1:8786'`` or a cluster object like ``LocalCluster()``
loop
The event loop
timeout: int (defaults to configuration ``distributed.comm.timeouts.connect``)
Timeout duration for initial connection to the scheduler
set_as_default: bool (True)
Use this Client as the global dask scheduler
scheduler_file: string (optional)
Path to a file with scheduler information if available
security: Security or bool, optional
Optional security information. If creating a local cluster can also
pass in ``True``, in which case temporary self-signed credentials will
be created automatically.
asynchronous: bool (False by default)
Set to True if using this client within async/await functions or within
Tornado gen.coroutines. Otherwise this should remain False for normal
use.
name: string (optional)
Gives the client a name that will be included in logs generated on
the scheduler for matters relating to this client
heartbeat_interval: int (optional)
Time in milliseconds between heartbeats to scheduler
serializers
Iterable of approaches to use when serializing the object.
See :ref:`serialization` for more.
deserializers
Iterable of approaches to use when deserializing the object.
See :ref:`serialization` for more.
extensions : list
The extensions
direct_to_workers: bool (optional)
Whether or not to connect directly to the workers, or to ask
the scheduler to serve as intermediary.
connection_limit : int
The number of open comms to maintain at once in the connection pool
**kwargs:
If you do not pass a scheduler address, Client will create a
``LocalCluster`` object, passing any extra keyword arguments.
Examples
--------
Provide cluster's scheduler node address on initialization:
>>> client = Client('127.0.0.1:8786') # doctest: +SKIP
Use ``submit`` method to send individual computations to the cluster
>>> a = client.submit(add, 1, 2) # doctest: +SKIP
>>> b = client.submit(add, 10, 20) # doctest: +SKIP
Continue using submit or map on results to build up larger computations
>>> c = client.submit(add, a, b) # doctest: +SKIP
Gather results with the ``gather`` method.
>>> client.gather(c) # doctest: +SKIP
33
You can also call Client with no arguments in order to create your own
local cluster.
>>> client = Client() # makes your own local "cluster" # doctest: +SKIP
Extra keywords will be passed directly to LocalCluster
>>> client = Client(n_workers=2, threads_per_worker=4) # doctest: +SKIP
See Also
--------
distributed.scheduler.Scheduler: Internal scheduler
distributed.LocalCluster:
"""
_instances: ClassVar[weakref.WeakSet[Client]] = weakref.WeakSet()
_default_event_handlers = {"print": _handle_print, "warn": _handle_warn}
preloads: list[preloading.Preload]
__loop: IOLoop | None = None
def __init__(
self,
address=None,
loop=None,
timeout=no_default,
set_as_default=True,
scheduler_file=None,
security=None,
asynchronous=False,
name=None,
heartbeat_interval=None,
serializers=None,
deserializers=None,
extensions=DEFAULT_EXTENSIONS,
direct_to_workers=None,
connection_limit=512,
**kwargs,
):
if timeout == no_default:
timeout = dask.config.get("distributed.comm.timeouts.connect")
if timeout is not None:
timeout = parse_timedelta(timeout, "s")
self._timeout = timeout
self.futures = dict()
self.refcount = defaultdict(lambda: 0)
self._handle_report_task = None
if name is None:
name = dask.config.get("client-name", None)
self.id = (
type(self).__name__
+ ("-" + name + "-" if name else "-")
+ str(uuid.uuid1(clock_seq=os.getpid()))
)
self.generation = 0
self.status = "newly-created"
self._pending_msg_buffer = []
self.extensions = {}
self.scheduler_file = scheduler_file
self._startup_kwargs = kwargs
self.cluster = None
self.scheduler = None
self._scheduler_identity = {}
# A reentrant-lock on the refcounts for futures associated with this
# client. Should be held by individual operations modifying refcounts,
# or any bulk operation that needs to ensure the set of futures doesn't
# change during operation.
self._refcount_lock = threading.RLock()
self.datasets = Datasets(self)
self._serializers = serializers
if deserializers is None:
deserializers = serializers
self._deserializers = deserializers
self.direct_to_workers = direct_to_workers
# Communication
self.scheduler_comm = None
if address is None:
address = dask.config.get("scheduler-address", None)
if address:
logger.info("Config value `scheduler-address` found: %s", address)
if address is not None and kwargs:
raise ValueError(f"Unexpected keyword arguments: {sorted(kwargs)}")
if isinstance(address, (rpc, PooledRPCCall)):
self.scheduler = address
elif isinstance(getattr(address, "scheduler_address", None), str):
# It's a LocalCluster or LocalCluster-compatible object
self.cluster = address
status = self.cluster.status
if status in (Status.closed, Status.closing):
raise RuntimeError(
f"Trying to connect to an already closed or closing Cluster {self.cluster}."
)
with suppress(AttributeError):
loop = address.loop
if security is None:
security = getattr(self.cluster, "security", None)
elif address is not None and not isinstance(address, str):
raise TypeError(
"Scheduler address must be a string or a Cluster instance, got {}".format(
type(address)
)
)
# If connecting to an address and no explicit security is configured, attempt
# to load security credentials with a security loader (if configured).
if security is None and isinstance(address, str):
security = _maybe_call_security_loader(address)
if security is None:
security = Security()
elif isinstance(security, dict):
security = Security(**security)
elif security is True:
security = Security.temporary()
self._startup_kwargs["security"] = security
elif not isinstance(security, Security): # pragma: no cover
raise TypeError("security must be a Security object")
self.security = security
if name == "worker":
self.connection_args = self.security.get_connection_args("worker")
else:
self.connection_args = self.security.get_connection_args("client")
self._asynchronous = asynchronous
self._loop_runner = LoopRunner(loop=loop, asynchronous=asynchronous)
self._connecting_to_scheduler = False
self._gather_keys = None
self._gather_future = None
if heartbeat_interval is None:
heartbeat_interval = dask.config.get("distributed.client.heartbeat")
heartbeat_interval = parse_timedelta(heartbeat_interval, default="ms")
scheduler_info_interval = parse_timedelta(
dask.config.get("distributed.client.scheduler-info-interval", default="ms")
)
self._periodic_callbacks = dict()
self._periodic_callbacks["scheduler-info"] = PeriodicCallback(
self._update_scheduler_info, scheduler_info_interval * 1000
)
self._periodic_callbacks["heartbeat"] = PeriodicCallback(
self._heartbeat, heartbeat_interval * 1000
)
self._start_arg = address
self._set_as_default = set_as_default
self._event_handlers = {}
self._stream_handlers = {
"key-in-memory": self._handle_key_in_memory,
"lost-data": self._handle_lost_data,
"cancelled-key": self._handle_cancelled_key,
"task-retried": self._handle_retried_key,
"task-erred": self._handle_task_erred,
"restart": self._handle_restart,
"error": self._handle_error,
"event": self._handle_event,
}
self._state_handlers = {
"memory": self._handle_key_in_memory,
"lost": self._handle_lost_data,
"erred": self._handle_task_erred,
}
self.rpc = ConnectionPool(
limit=connection_limit,
serializers=serializers,
deserializers=deserializers,
deserialize=True,
connection_args=self.connection_args,
timeout=timeout,
server=self,
)
self.extensions = {
name: extension(self) for name, extension in extensions.items()
}
preload = dask.config.get("distributed.client.preload")
preload_argv = dask.config.get("distributed.client.preload-argv")
self.preloads = preloading.process_preloads(self, preload, preload_argv)
self.start(timeout=timeout)
Client._instances.add(self)
from distributed.recreate_tasks import ReplayTaskClient
ReplayTaskClient(self)
@property
def io_loop(self) -> IOLoop | None:
warnings.warn(
"The io_loop property is deprecated", DeprecationWarning, stacklevel=2
)
return self.loop
@io_loop.setter
def io_loop(self, value: IOLoop) -> None:
warnings.warn(
"The io_loop property is deprecated", DeprecationWarning, stacklevel=2
)
self.loop = value
@property
def loop(self) -> IOLoop | None:
loop = self.__loop
if loop is None:
# If the loop is not running when this is called, the LoopRunner.loop
# property will raise a DeprecationWarning
# However subsequent calls might occur - eg atexit, where a stopped
# loop is still acceptable - so we cache access to the loop.
self.__loop = loop = self._loop_runner.loop
return loop
@loop.setter
def loop(self, value: IOLoop) -> None:
warnings.warn(
"setting the loop property is deprecated", DeprecationWarning, stacklevel=2
)
self.__loop = value
@contextmanager
def as_current(self):
"""Thread-local, Task-local context manager that causes the Client.current
class method to return self. Any Future objects deserialized inside this
context manager will be automatically attached to this Client.
"""
tok = _current_client.set(self)
try:
yield
finally:
_current_client.reset(tok)
@classmethod
def current(cls, allow_global=True):
"""When running within the context of `as_client`, return the context-local
current client. Otherwise, return the latest initialised Client.
If no Client instances exist, raise ValueError.
If allow_global is set to False, raise ValueError if running outside of
the `as_client` context manager.
Parameters
----------
allow_global : bool
If True returns the default client
Returns
-------
Client
The current client
Raises
------
ValueError
If there is no client set, a ValueError is raised
"""
out = _current_client.get()
if out:
return out
if allow_global:
return default_client()
raise ValueError("Not running inside the `as_current` context manager")
@property
def dashboard_link(self):
"""Link to the scheduler's dashboard.
Returns
-------
str
Dashboard URL.
Examples
--------
Opening the dashboard in your default web browser:
>>> import webbrowser
>>> from distributed import Client
>>> client = Client()
>>> webbrowser.open(client.dashboard_link)
"""
try:
return self.cluster.dashboard_link
except AttributeError:
scheduler, info = self._get_scheduler_info()
if scheduler is None:
return None
else:
protocol, rest = scheduler.address.split("://")
port = info["services"]["dashboard"]
if protocol == "inproc":
host = "localhost"
else:
host = rest.split(":")[0]
return format_dashboard_link(host, port)
def _get_scheduler_info(self):
from distributed.scheduler import Scheduler
if (
self.cluster
and hasattr(self.cluster, "scheduler")
and isinstance(self.cluster.scheduler, Scheduler)
):
info = self.cluster.scheduler.identity()
scheduler = self.cluster.scheduler
elif (
self._loop_runner.is_started() and self.scheduler and not self.asynchronous
):
info = sync(self.loop, self.scheduler.identity)
scheduler = self.scheduler
else:
info = self._scheduler_identity
scheduler = self.scheduler
return scheduler, SchedulerInfo(info)
def __repr__(self):
# Note: avoid doing I/O here...
info = self._scheduler_identity
addr = info.get("address")
if addr:
workers = info.get("workers", {})
nworkers = len(workers)
nthreads = sum(w["nthreads"] for w in workers.values())
text = "<%s: %r processes=%d threads=%d" % (
self.__class__.__name__,
addr,
nworkers,
nthreads,
)
memory = [w["memory_limit"] for w in workers.values()]
if all(memory):
text += ", memory=" + format_bytes(sum(memory))
text += ">"
return text
elif self.scheduler is not None:
return "<{}: scheduler={!r}>".format(
self.__class__.__name__,
self.scheduler.address,
)
else:
return f"<{self.__class__.__name__}: No scheduler connected>"
def _repr_html_(self):
try:
dle_version = parse_version(version("dask-labextension"))
JUPYTERLAB = False if dle_version < parse_version("6.0.0") else True
except PackageNotFoundError:
JUPYTERLAB = False
scheduler, info = self._get_scheduler_info()
return get_template("client.html.j2").render(
id=self.id,
scheduler=scheduler,
info=info,
cluster=self.cluster,
scheduler_file=self.scheduler_file,
dashboard_link=self.dashboard_link,
jupyterlab=JUPYTERLAB,
)
def start(self, **kwargs):
"""Start scheduler running in separate thread"""
if self.status != "newly-created":
return
self._loop_runner.start()
if self._set_as_default:
_set_global_client(self)
if self.asynchronous:
self._started = asyncio.ensure_future(self._start(**kwargs))
else:
sync(self.loop, self._start, **kwargs)
def __await__(self):
if hasattr(self, "_started"):
return self._started.__await__()
else:
async def _():
return self
return _().__await__()
def _send_to_scheduler_safe(self, msg):
if self.status in ("running", "closing"):
try:
self.scheduler_comm.send(msg)
except (CommClosedError, AttributeError):
if self.status == "running":
raise
elif self.status in ("connecting", "newly-created"):
self._pending_msg_buffer.append(msg)
def _send_to_scheduler(self, msg):
if self.status in ("running", "closing", "connecting", "newly-created"):
self.loop.add_callback(self._send_to_scheduler_safe, msg)
else:
raise Exception(
"Tried sending message after closing. Status: %s\n"
"Message: %s" % (self.status, msg)
)
async def _start(self, timeout=no_default, **kwargs):
self.status = "connecting"
await self.rpc.start()
if timeout == no_default:
timeout = self._timeout
if timeout is not None:
timeout = parse_timedelta(timeout, "s")
address = self._start_arg
if self.cluster is not None:
# Ensure the cluster is started (no-op if already running)
try:
await self.cluster
except Exception:
logger.info(
"Tried to start cluster and received an error. Proceeding.",
exc_info=True,
)
address = self.cluster.scheduler_address
elif self.scheduler_file is not None:
while not os.path.exists(self.scheduler_file):
await asyncio.sleep(0.01)
for _ in range(10):
try:
with open(self.scheduler_file) as f:
cfg = json.load(f)
address = cfg["address"]
break
except (ValueError, KeyError): # JSON file not yet flushed
await asyncio.sleep(0.01)
elif self._start_arg is None:
from distributed.deploy import LocalCluster
self.cluster = await LocalCluster(
loop=self.loop,
asynchronous=self._asynchronous,
**self._startup_kwargs,
)
address = self.cluster.scheduler_address
self._gather_semaphore = asyncio.Semaphore(5)
if self.scheduler is None:
self.scheduler = self.rpc(address)
self.scheduler_comm = None
try:
await self._ensure_connected(timeout=timeout)
except (OSError, ImportError):
await self._close()
raise
for pc in self._periodic_callbacks.values():
pc.start()
for topic, handler in Client._default_event_handlers.items():
self.subscribe_topic(topic, handler)
for preload in self.preloads:
await preload.start()
self._handle_report_task = asyncio.create_task(self._handle_report())
return self
@log_errors
async def _reconnect(self):
assert self.scheduler_comm.comm.closed()
self.status = "connecting"
self.scheduler_comm = None
for st in self.futures.values():
st.cancel()
self.futures.clear()
timeout = self._timeout
deadline = time() + timeout
while timeout > 0 and self.status == "connecting":
try:
await self._ensure_connected(timeout=timeout)
break
except OSError:
# Wait a bit before retrying
await asyncio.sleep(0.1)
timeout = deadline - time()
except ImportError:
await self._close()
break
else:
logger.error(
"Failed to reconnect to scheduler after %.2f "
"seconds, closing client",
self._timeout,
)
await self._close()
async def _ensure_connected(self, timeout=None):
if (
self.scheduler_comm
and not self.scheduler_comm.closed()
or self._connecting_to_scheduler
or self.scheduler is None
):
return
self._connecting_to_scheduler = True
try:
comm = await connect(
self.scheduler.address, timeout=timeout, **self.connection_args
)
comm.name = "Client->Scheduler"
if timeout is not None:
await asyncio.wait_for(self._update_scheduler_info(), timeout)
else:
await self._update_scheduler_info()
await comm.write(
{
"op": "register-client",
"client": self.id,
"reply": False,
"versions": version_module.get_versions(),
}
)
except Exception:
if self.status == "closed":
return
else:
raise
finally:
self._connecting_to_scheduler = False
if timeout is not None:
msg = await asyncio.wait_for(comm.read(), timeout)
else:
msg = await comm.read()
assert len(msg) == 1
assert msg[0]["op"] == "stream-start"
if msg[0].get("error"):
raise ImportError(msg[0]["error"])
if msg[0].get("warning"):
warnings.warn(version_module.VersionMismatchWarning(msg[0]["warning"]))
bcomm = BatchedSend(interval="10ms", loop=self.loop)
bcomm.start(comm)
self.scheduler_comm = bcomm
if self._set_as_default:
_set_global_client(self)
self.status = "running"
for msg in self._pending_msg_buffer:
self._send_to_scheduler(msg)
del self._pending_msg_buffer[:]
logger.debug("Started scheduling coroutines. Synchronized")
async def _update_scheduler_info(self):
if self.status not in ("running", "connecting") or self.scheduler is None:
return
try:
self._scheduler_identity = SchedulerInfo(await self.scheduler.identity())
except OSError:
logger.debug("Not able to query scheduler for identity")
async def _wait_for_workers(
self, n_workers: int, timeout: float | None = None
) -> None:
info = await self.scheduler.identity()
self._scheduler_identity = SchedulerInfo(info)
if timeout:
deadline = time() + parse_timedelta(timeout)
else:
deadline = None
def running_workers(info):
return len(
[
ws
for ws in info["workers"].values()
if ws["status"] == Status.running.name
]
)
while running_workers(info) < n_workers:
if deadline and time() > deadline:
raise TimeoutError(
"Only %d/%d workers arrived after %s"
% (running_workers(info), n_workers, timeout)
)
await asyncio.sleep(0.1)
info = await self.scheduler.identity()
self._scheduler_identity = SchedulerInfo(info)
def wait_for_workers(
self,
n_workers: int | str = no_default,
timeout: float | None = None,
) -> None:
"""Blocking call to wait for n workers before continuing
Parameters
----------
n_workers : int
The number of workers
timeout : number, optional
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
"""
if n_workers is no_default:
warnings.warn(
"Please specify the `n_workers` argument when using `Client.wait_for_workers`. Not specifying `n_workers` will no longer be supported in future versions.",
FutureWarning,
)
n_workers = 0
elif not isinstance(n_workers, int) or n_workers < 1:
raise ValueError(
f"`n_workers` must be a positive integer. Instead got {n_workers}."
)
return self.sync(self._wait_for_workers, n_workers, timeout=timeout)
def _heartbeat(self):
# Don't send heartbeat if scheduler comm or cluster are already closed
if (self.scheduler_comm and not self.scheduler_comm.comm.closed()) or (
self.cluster and self.cluster.status not in (Status.closed, Status.closing)
):
self.scheduler_comm.send({"op": "heartbeat-client"})
def __enter__(self):
if not self._loop_runner.is_started():
self.start()
return self
async def __aenter__(self):
await self
return self
async def __aexit__(self, exc_type, exc_value, traceback):
await self._close(
# if we're handling an exception, we assume that it's more
# important to deliver that exception than shutdown gracefully.
fast=exc_type
is not None
)
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def __del__(self):
# If the loop never got assigned, we failed early in the constructor,
# nothing to do
if self.__loop is not None:
self.close()
def _inc_ref(self, key):
with self._refcount_lock:
self.refcount[key] += 1
def _dec_ref(self, key):
with self._refcount_lock:
self.refcount[key] -= 1
if self.refcount[key] == 0:
del self.refcount[key]
self._release_key(key)
def _release_key(self, key):
"""Release key from distributed memory"""
logger.debug("Release key %s", key)
st = self.futures.pop(key, None)
if st is not None:
st.cancel()
if self.status != "closed":
self._send_to_scheduler(
{"op": "client-releases-keys", "keys": [key], "client": self.id}
)
@log_errors
async def _handle_report(self):
"""Listen to scheduler"""
try:
while True:
if self.scheduler_comm is None:
break
try:
msgs = await self.scheduler_comm.comm.read()
except CommClosedError:
if is_python_shutting_down():
return
if self.status == "running":
if self.cluster and self.cluster.status in (
Status.closed,
Status.closing,
):
# Don't attempt to reconnect if cluster are already closed.
# Instead close down the client.
await self._close()
return
logger.info("Client report stream closed to scheduler")
logger.info("Reconnecting...")
self.status = "connecting"
await self._reconnect()
continue
else:
break
if not isinstance(msgs, (list, tuple)):
msgs = (msgs,)
breakout = False
for msg in msgs:
logger.debug("Client receives message %s", msg)
if "status" in msg and "error" in msg["status"]:
typ, exc, tb = clean_exception(**msg)
raise exc.with_traceback(tb)
op = msg.pop("op")
if op == "close" or op == "stream-closed":
breakout = True
break
try:
handler = self._stream_handlers[op]
result = handler(**msg)
if inspect.isawaitable(result):
await result
except Exception as e:
logger.exception(e)
if breakout:
break
except (CancelledError, asyncio.CancelledError):
pass
def _handle_key_in_memory(self, key=None, type=None, workers=None):
state = self.futures.get(key)
if state is not None:
if type and not state.type: # Type exists and not yet set
try:
type = loads(type)
except Exception:
type = None
# Here, `type` may be a str if actual type failed
# serializing in Worker
else:
type = None
state.finish(type)
def _handle_lost_data(self, key=None):
state = self.futures.get(key)
if state is not None:
state.lose()
def _handle_cancelled_key(self, key=None):
state = self.futures.get(key)
if state is not None:
state.cancel()
def _handle_retried_key(self, key=None):
state = self.futures.get(key)
if state is not None:
state.retry()
def _handle_task_erred(self, key=None, exception=None, traceback=None):
state = self.futures.get(key)
if state is not None:
state.set_error(exception, traceback)
def _handle_restart(self):
logger.info("Receive restart signal from scheduler")
for state in self.futures.values():
state.cancel()
self.futures.clear()
self.generation += 1
with self._refcount_lock:
self.refcount.clear()
def _handle_error(self, exception=None):
logger.warning("Scheduler exception:")
logger.exception(exception)
@asynccontextmanager
async def _wait_for_handle_report_task(self, fast=False):
current_task = asyncio.current_task()
handle_report_task = self._handle_report_task
# Give the scheduler 'stream-closed' message 100ms to come through
# This makes the shutdown slightly smoother and quieter
should_wait = (
handle_report_task is not None and handle_report_task is not current_task
)
if should_wait:
with suppress(asyncio.CancelledError, TimeoutError):
await asyncio.wait_for(asyncio.shield(handle_report_task), 0.1)
yield
if should_wait:
with suppress(TimeoutError, asyncio.CancelledError):
await asyncio.wait_for(handle_report_task, 0 if fast else 2)
async def _close(self, fast=False):
"""
Send close signal and wait until scheduler completes
If fast is True, the client will close forcefully, by cancelling tasks
the background _handle_report_task.
"""
# TODO: aclose more forcefully by aborting the RPC and cancelling all
# background tasks.
# see https://trio.readthedocs.io/en/stable/reference-io.html#trio.aclose_forcefully
if self.status == "closed":
return
self.status = "closing"
for preload in self.preloads:
await preload.teardown()
with suppress(AttributeError):
for pc in self._periodic_callbacks.values():
pc.stop()
with log_errors():
_del_global_client(self)
self._scheduler_identity = {}
if self.get == dask.config.get("get", None):
del dask.config.config["get"]
if (
self.scheduler_comm
and self.scheduler_comm.comm
and not self.scheduler_comm.comm.closed()
):
self._send_to_scheduler({"op": "close-client"})
self._send_to_scheduler({"op": "close-stream"})
async with self._wait_for_handle_report_task(fast=fast):
if (
self.scheduler_comm
and self.scheduler_comm.comm
and not self.scheduler_comm.comm.closed()
):
await self.scheduler_comm.close()
for key in list(self.futures):
self._release_key(key=key)
if self._start_arg is None:
with suppress(AttributeError):
await self.cluster.close()
await self.rpc.close()
self.status = "closed"
if _get_global_client() is self:
_set_global_client(None)
with suppress(AttributeError):
await self.scheduler.close_rpc()
self.scheduler = None
self.status = "closed"
def close(self, timeout=no_default):
"""Close this client
Clients will also close automatically when your Python session ends
If you started a client without arguments like ``Client()`` then this
will also close the local cluster that was started at the same time.
Parameters
----------
timeout : number
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
See Also
--------
Client.restart
"""
if timeout == no_default:
timeout = self._timeout * 2
# XXX handling of self.status here is not thread-safe
if self.status in ["closed", "newly-created"]:
if self.asynchronous:
return NoOpAwaitable()
return
self.status = "closing"
with suppress(AttributeError):
for pc in self._periodic_callbacks.values():
pc.stop()
if self.asynchronous:
coro = self._close()
if timeout:
coro = asyncio.wait_for(coro, timeout)
return coro
if self._start_arg is None:
with suppress(AttributeError):
f = self.cluster.close()
if asyncio.iscoroutine(f):
async def _():
await f
self.sync(_)
sync(self.loop, self._close, fast=True, callback_timeout=timeout)
assert self.status == "closed"
if not sys.is_finalizing():
self._loop_runner.stop()
async def _shutdown(self):
logger.info("Shutting down scheduler from Client")
self.status = "closing"
for pc in self._periodic_callbacks.values():
pc.stop()
async with self._wait_for_handle_report_task():
if self.cluster:
await self.cluster.close()
else:
with suppress(CommClosedError):
await self.scheduler.terminate()
await self._close()
def shutdown(self):
"""Shut down the connected scheduler and workers
Note, this may disrupt other clients that may be using the same
scheduler and workers.
See Also
--------
Client.close : close only this client
"""
return self.sync(self._shutdown)
def get_executor(self, **kwargs):
"""
Return a concurrent.futures Executor for submitting tasks on this
Client
Parameters
----------
**kwargs
Any submit()- or map()- compatible arguments, such as
`workers` or `resources`.
Returns
-------
ClientExecutor
An Executor object that's fully compatible with the
concurrent.futures API.
"""
return ClientExecutor(self, **kwargs)
def submit(
self,
func,
*args,
key=None,
workers=None,
resources=None,
retries=None,
priority=0,
fifo_timeout="100 ms",
allow_other_workers=False,
actor=False,
actors=False,
pure=None,
**kwargs,
):
"""Submit a function application to the scheduler
Parameters
----------
func : callable
Callable to be scheduled as ``func(*args **kwargs)``. If ``func`` returns a
coroutine, it will be run on the main event loop of a worker. Otherwise
``func`` will be run in a worker's task executor pool (see
``Worker.executors`` for more information.)
*args : tuple
Optional positional arguments
key : str
Unique identifier for the task. Defaults to function-name and hash
workers : string or iterable of strings
A set of worker addresses or hostnames on which computations may be
performed. Leave empty to default to all workers (common case)
resources : dict (defaults to {})
Defines the ``resources`` each instance of this mapped task
requires on the worker; e.g. ``{'GPU': 2}``.
See :doc:`worker resources <resources>` for details on defining
resources.
retries : int (default to 0)
Number of allowed automatic retries if the task fails
priority : Number
Optional prioritization of task. Zero is default.
Higher priorities take precedence
fifo_timeout : str timedelta (default '100ms')
Allowed amount of time between calls to consider the same priority
allow_other_workers : bool (defaults to False)
Used with ``workers``. Indicates whether or not the computations
may be performed on workers that are not in the `workers` set(s).
actor : bool (default False)
Whether this task should exist on the worker as a stateful actor.
See :doc:`actors` for additional details.
actors : bool (default False)
Alias for `actor`
pure : bool (defaults to True)
Whether or not the function is pure. Set ``pure=False`` for
impure functions like ``np.random.random``.
See :ref:`pure functions` for more details.
**kwargs
Examples
--------
>>> c = client.submit(add, a, b) # doctest: +SKIP
Returns
-------
Future
If running in asynchronous mode, returns the future. Otherwise
returns the concrete value
Raises
------
TypeError
If 'func' is not callable, a TypeError is raised
ValueError
If 'allow_other_workers'is True and 'workers' is None, a
ValueError is raised
See Also
--------
Client.map : Submit on many arguments at once
"""
if not callable(func):
raise TypeError("First input to submit must be a callable function")
actor = actor or actors
if pure is None:
pure = not actor
if allow_other_workers not in (True, False, None):
raise TypeError("allow_other_workers= must be True or False")
if key is None:
if pure:
key = funcname(func) + "-" + tokenize(func, kwargs, *args)
else:
key = funcname(func) + "-" + str(uuid.uuid4())
skey = stringify(key)
with self._refcount_lock:
if skey in self.futures:
return Future(key, self, inform=False)
if allow_other_workers and workers is None:
raise ValueError("Only use allow_other_workers= if using workers=")
if isinstance(workers, (str, Number)):
workers = [workers]
if kwargs:
dsk = {skey: (apply, func, list(args), kwargs)}
else:
dsk = {skey: (func,) + tuple(args)}
futures = self._graph_to_futures(
dsk,
[skey],
workers=workers,
allow_other_workers=allow_other_workers,
priority={skey: 0},
user_priority=priority,
resources=resources,
retries=retries,
fifo_timeout=fifo_timeout,
actors=actor,
)
logger.debug("Submit %s(...), %s", funcname(func), key)
return futures[skey]
def map(
self,
func,
*iterables,
key=None,
workers=None,
retries=None,
resources=None,
priority=0,
allow_other_workers=False,
fifo_timeout="100 ms",
actor=False,
actors=False,
pure=None,
batch_size=None,
**kwargs,
):
"""Map a function on a sequence of arguments
Arguments can be normal objects or Futures
Parameters
----------
func : callable
Callable to be scheduled for execution. If ``func`` returns a coroutine, it
will be run on the main event loop of a worker. Otherwise ``func`` will be
run in a worker's task executor pool (see ``Worker.executors`` for more
information.)
iterables : Iterables
List-like objects to map over. They should have the same length.
key : str, list
Prefix for task names if string. Explicit names if list.
workers : string or iterable of strings
A set of worker hostnames on which computations may be performed.
Leave empty to default to all workers (common case)
retries : int (default to 0)
Number of allowed automatic retries if a task fails
resources : dict (defaults to {})
Defines the `resources` each instance of this mapped task requires
on the worker; e.g. ``{'GPU': 2}``.
See :doc:`worker resources <resources>` for details on defining
resources.
priority : Number
Optional prioritization of task. Zero is default.
Higher priorities take precedence
allow_other_workers : bool (defaults to False)
Used with `workers`. Indicates whether or not the computations
may be performed on workers that are not in the `workers` set(s).
fifo_timeout : str timedelta (default '100ms')
Allowed amount of time between calls to consider the same priority
actor : bool (default False)
Whether these tasks should exist on the worker as stateful actors.
See :doc:`actors` for additional details.
actors : bool (default False)
Alias for `actor`
pure : bool (defaults to True)
Whether or not the function is pure. Set ``pure=False`` for
impure functions like ``np.random.random``.
See :ref:`pure functions` for more details.
batch_size : int, optional
Submit tasks to the scheduler in batches of (at most)
``batch_size``.
Larger batch sizes can be useful for very large ``iterables``,
as the cluster can start processing tasks while later ones are
submitted asynchronously.
**kwargs : dict
Extra keyword arguments to send to the function.
Large values will be included explicitly in the task graph.
Examples
--------
>>> L = client.map(func, sequence) # doctest: +SKIP
Returns
-------
List, iterator, or Queue of futures, depending on the type of the
inputs.
See Also
--------
Client.submit : Submit a single function
"""
if not callable(func):
raise TypeError("First input to map must be a callable function")
if all(isinstance(it, pyQueue) for it in iterables) or all(
isinstance(i, Iterator) for i in iterables
):
raise TypeError(
"Dask no longer supports mapping over Iterators or Queues."
"Consider using a normal for loop and Client.submit"
)
total_length = sum(len(x) for x in iterables)
if batch_size and batch_size > 1 and total_length > batch_size:
batches = list(
zip(*(partition_all(batch_size, iterable) for iterable in iterables))
)
if isinstance(key, list):
keys = [list(element) for element in partition_all(batch_size, key)]
else:
keys = [key for _ in range(len(batches))]
return sum(
(
self.map(
func,
*batch,
key=key,
workers=workers,
retries=retries,
priority=priority,
allow_other_workers=allow_other_workers,
fifo_timeout=fifo_timeout,
resources=resources,
actor=actor,
actors=actors,
pure=pure,
**kwargs,
)
for key, batch in zip(keys, batches)
),
[],
)
key = key or funcname(func)
actor = actor or actors
if pure is None:
pure = not actor
if allow_other_workers and workers is None:
raise ValueError("Only use allow_other_workers= if using workers=")
iterables = list(zip(*zip(*iterables)))
if isinstance(key, list):
keys = key
else:
if pure:
keys = [
key + "-" + tokenize(func, kwargs, *args)
for args in zip(*iterables)
]
else:
uid = str(uuid.uuid4())
keys = (
[
key + "-" + uid + "-" + str(i)
for i in range(min(map(len, iterables)))
]
if iterables
else []
)
if not kwargs:
dsk = {key: (func,) + args for key, args in zip(keys, zip(*iterables))}
else:
kwargs2 = {}
dsk = {}
for k, v in kwargs.items():
if sizeof(v) > 1e5:
vv = dask.delayed(v)
kwargs2[k] = vv._key
dsk.update(vv.dask)
else:
kwargs2[k] = v
dsk.update(
{
key: (apply, func, (tuple, list(args)), kwargs2)
for key, args in zip(keys, zip(*iterables))
}
)
if isinstance(workers, (str, Number)):
workers = [workers]
if workers is not None and not isinstance(workers, (list, set)):
raise TypeError("Workers must be a list or set of workers or None")
internal_priority = dict(zip(keys, range(len(keys))))
futures = self._graph_to_futures(
dsk,
keys,
workers=workers,
allow_other_workers=allow_other_workers,
priority=internal_priority,
resources=resources,
retries=retries,
user_priority=priority,
fifo_timeout=fifo_timeout,
actors=actor,
)
logger.debug("map(%s, ...)", funcname(func))
return [futures[stringify(k)] for k in keys]
async def _gather(self, futures, errors="raise", direct=None, local_worker=None):
unpacked, future_set = unpack_remotedata(futures, byte_keys=True)
mismatched_futures = [f for f in future_set if f.client is not self]
if mismatched_futures:
raise ValueError(
"Cannot gather Futures created by another client. "
f"These are the {len(mismatched_futures)} (out of {len(futures)}) mismatched Futures and their client IDs "
f"(this client is {self.id}): "
f"{ {f: f.client.id for f in mismatched_futures} }"
)
keys = [stringify(future.key) for future in future_set]
bad_data = dict()
data = {}
if direct is None:
direct = self.direct_to_workers
if direct is None:
try:
w = get_worker()
except Exception:
direct = False
else:
if w.scheduler.address == self.scheduler.address:
direct = True
async def wait(k):
"""Want to stop the All(...) early if we find an error"""
try:
st = self.futures[k]
except KeyError:
raise AllExit()
else:
await st.wait()
if st.status != "finished" and errors == "raise":
raise AllExit()
while True:
logger.debug("Waiting on futures to clear before gather")
with suppress(AllExit):
await distributed.utils.All(
[wait(key) for key in keys if key in self.futures],
quiet_exceptions=AllExit,
)
failed = ("error", "cancelled")
exceptions = set()
bad_keys = set()
for key in keys:
if key not in self.futures or self.futures[key].status in failed:
exceptions.add(key)
if errors == "raise":
try:
st = self.futures[key]
exception = st.exception
traceback = st.traceback
except (KeyError, AttributeError):
exc = CancelledError(key)
else:
raise exception.with_traceback(traceback)
raise exc
if errors == "skip":
bad_keys.add(key)
bad_data[key] = None
else: # pragma: no cover
raise ValueError("Bad value, `errors=%s`" % errors)
keys = [k for k in keys if k not in bad_keys and k not in data]
if local_worker: # look inside local worker
data.update(
{k: local_worker.data[k] for k in keys if k in local_worker.data}
)
keys = [k for k in keys if k not in data]
# We now do an actual remote communication with workers or scheduler
if self._gather_future: # attach onto another pending gather request
self._gather_keys |= set(keys)
response = await self._gather_future
else: # no one waiting, go ahead
self._gather_keys = set(keys)
future = asyncio.ensure_future(
self._gather_remote(direct, local_worker)
)
if self._gather_keys is None:
self._gather_future = None
else:
self._gather_future = future
response = await future
if response["status"] == "error":
log = logger.warning if errors == "raise" else logger.debug
log(
"Couldn't gather %s keys, rescheduling %s",
len(response["keys"]),
response["keys"],
)
for key in response["keys"]:
self._send_to_scheduler({"op": "report-key", "key": key})
for key in response["keys"]:
try:
self.futures[key].reset()
except KeyError: # TODO: verify that this is safe
pass
else: # pragma: no cover
break
if bad_data and errors == "skip" and isinstance(unpacked, list):
unpacked = [f for f in unpacked if f not in bad_data]
data.update(response["data"])
result = pack_data(unpacked, merge(data, bad_data))
return result
async def _gather_remote(self, direct, local_worker):
"""Perform gather with workers or scheduler
This method exists to limit and batch many concurrent gathers into a
few. In controls access using a Tornado semaphore, and picks up keys
from other requests made recently.
"""
async with self._gather_semaphore:
keys = list(self._gather_keys)
self._gather_keys = None # clear state, these keys are being sent off
self._gather_future = None
if direct or local_worker: # gather directly from workers
who_has = await retry_operation(self.scheduler.who_has, keys=keys)
data2, missing_keys, missing_workers = await gather_from_workers(
who_has, rpc=self.rpc, close=False
)
response = {"status": "OK", "data": data2}
if missing_keys:
keys2 = [key for key in keys if key not in data2]
response = await retry_operation(self.scheduler.gather, keys=keys2)
if response["status"] == "OK":
response["data"].update(data2)
else: # ask scheduler to gather data for us
response = await retry_operation(self.scheduler.gather, keys=keys)
return response
def gather(self, futures, errors="raise", direct=None, asynchronous=None):
"""Gather futures from distributed memory
Accepts a future, nested container of futures, iterator, or queue.
The return type will match the input type.
Parameters
----------
futures : Collection of futures
This can be a possibly nested collection of Future objects.
Collections can be lists, sets, or dictionaries
errors : string
Either 'raise' or 'skip' if we should raise if a future has erred
or skip its inclusion in the output collection
direct : boolean
Whether or not to connect directly to the workers, or to ask
the scheduler to serve as intermediary. This can also be set when
creating the Client.
asynchronous: bool
If True the client is in asynchronous mode
Returns
-------
results: a collection of the same type as the input, but now with
gathered results rather than futures
Examples
--------
>>> from operator import add # doctest: +SKIP
>>> c = Client('127.0.0.1:8787') # doctest: +SKIP
>>> x = c.submit(add, 1, 2) # doctest: +SKIP
>>> c.gather(x) # doctest: +SKIP
3
>>> c.gather([x, [x], x]) # support lists and dicts # doctest: +SKIP
[3, [3], 3]
See Also
--------
Client.scatter : Send data out to cluster
"""
if isinstance(futures, pyQueue):
raise TypeError(
"Dask no longer supports gathering over Iterators and Queues. "
"Consider using a normal for loop and Client.submit/gather"
)
elif isinstance(futures, Iterator):
return (self.gather(f, errors=errors, direct=direct) for f in futures)
else:
if hasattr(thread_state, "execution_state"): # within worker task
local_worker = thread_state.execution_state["worker"]
else:
local_worker = None
return self.sync(
self._gather,
futures,
errors=errors,
direct=direct,
local_worker=local_worker,
asynchronous=asynchronous,
)
async def _scatter(
self,
data,
workers=None,
broadcast=False,
direct=None,
local_worker=None,
timeout=no_default,
hash=True,
):
if timeout == no_default:
timeout = self._timeout
if isinstance(workers, (str, Number)):
workers = [workers]
if isinstance(data, dict) and not all(
isinstance(k, (bytes, str)) for k in data
):
d = await self._scatter(keymap(stringify, data), workers, broadcast)
return {k: d[stringify(k)] for k in data}
if isinstance(data, type(range(0))):
data = list(data)
input_type = type(data)
names = False
unpack = False
if isinstance(data, Iterator):
data = list(data)
if isinstance(data, (set, frozenset)):
data = list(data)
if not isinstance(data, (dict, list, tuple, set, frozenset)):
unpack = True
data = [data]
if isinstance(data, (list, tuple)):
if hash:
names = [type(x).__name__ + "-" + tokenize(x) for x in data]
else:
names = [type(x).__name__ + "-" + uuid.uuid4().hex for x in data]
data = dict(zip(names, data))
assert isinstance(data, dict)
types = valmap(type, data)
if direct is None:
direct = self.direct_to_workers
if direct is None:
try:
w = get_worker()
except Exception:
direct = False
else:
if w.scheduler.address == self.scheduler.address:
direct = True
if local_worker: # running within task
local_worker.update_data(data=data)
await self.scheduler.update_data(
who_has={key: [local_worker.address] for key in data},
nbytes=valmap(sizeof, data),
client=self.id,
)
else:
data2 = valmap(to_serialize, data)
if direct:
nthreads = None
start = time()
while not nthreads:
if nthreads is not None:
await asyncio.sleep(0.1)
if time() > start + timeout:
raise TimeoutError("No valid workers found")
# Exclude paused and closing_gracefully workers
nthreads = await self.scheduler.ncores_running(workers=workers)
if not nthreads: # pragma: no cover
raise ValueError("No valid workers found")
_, who_has, nbytes = await scatter_to_workers(
nthreads, data2, rpc=self.rpc
)
await self.scheduler.update_data(
who_has=who_has, nbytes=nbytes, client=self.id
)
else:
await self.scheduler.scatter(
data=data2,
workers=workers,
client=self.id,
broadcast=broadcast,
timeout=timeout,
)
out = {k: Future(k, self, inform=False) for k in data}
for key, typ in types.items():
self.futures[key].finish(type=typ)
if direct and broadcast:
n = None if broadcast is True else broadcast
await self._replicate(list(out.values()), workers=workers, n=n)
if issubclass(input_type, (list, tuple, set, frozenset)):
out = input_type(out[k] for k in names)
if unpack:
assert len(out) == 1
out = list(out.values())[0]
return out
def scatter(
self,
data,
workers=None,
broadcast=False,
direct=None,
hash=True,
timeout=no_default,
asynchronous=None,
):
"""Scatter data into distributed memory
This moves data from the local client process into the workers of the
distributed scheduler. Note that it is often better to submit jobs to
your workers to have them load the data rather than loading data
locally and then scattering it out to them.
Parameters
----------
data : list, dict, or object
Data to scatter out to workers. Output type matches input type.
workers : list of tuples (optional)
Optionally constrain locations of data.
Specify workers as hostname/port pairs, e.g.
``('127.0.0.1', 8787)``.
broadcast : bool (defaults to False)
Whether to send each data element to all workers.
By default we round-robin based on number of cores.
.. note::
Setting this flag to True is incompatible with the Active Memory
Manager's :ref:`ReduceReplicas` policy. If you wish to use it, you must
first disable the policy or disable the AMM entirely.
direct : bool (defaults to automatically check)
Whether or not to connect directly to the workers, or to ask
the scheduler to serve as intermediary. This can also be set when
creating the Client.
hash : bool (optional)
Whether or not to hash data to determine key.
If False then this uses a random key
timeout : number, optional
Time in seconds after which to raise a
``dask.distributed.TimeoutError``
asynchronous: bool
If True the client is in asynchronous mode
Returns
-------
List, dict, iterator, or queue of futures matching the type of input.
Examples
--------
>>> c = Client('127.0.0.1:8787') # doctest: +SKIP
>>> c.scatter(1) # doctest: +SKIP
<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>
>>> c.scatter([1, 2, 3]) # doctest: +SKIP
[<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>,
<Future: status: finished, key: 58e78e1b34eb49a68c65b54815d1b158>,
<Future: status: finished, key: d3395e15f605bc35ab1bac6341a285e2>]
>>> c.scatter({'x': 1, 'y': 2, 'z': 3}) # doctest: +SKIP
{'x': <Future: status: finished, key: x>,
'y': <Future: status: finished, key: y>,
'z': <Future: status: finished, key: z>}
Constrain location of data to subset of workers
>>> c.scatter([1, 2, 3], workers=[('hostname', 8788)]) # doctest: +SKIP
Broadcast data to all workers
>>> [future] = c.scatter([element], broadcast=True) # doctest: +SKIP
Send scattered data to parallelized function using client futures
interface
>>> data = c.scatter(data, broadcast=True) # doctest: +SKIP
>>> res = [c.submit(func, data, i) for i in range(100)]
See Also
--------
Client.gather : Gather data back to local process
"""
if timeout == no_default:
timeout = self._timeout
if isinstance(data, pyQueue) or isinstance(data, Iterator):
raise TypeError(
"Dask no longer supports mapping over Iterators or Queues."
"Consider using a normal for loop and Client.submit"
)
if hasattr(thread_state, "execution_state"): # within worker task
local_worker = thread_state.execution_state["worker"]
else:
local_worker = None
return self.sync(
self._scatter,
data,
workers=workers,
broadcast=broadcast,
direct=direct,
local_worker=local_worker,
timeout=timeout,
asynchronous=asynchronous,
hash=hash,
)
async def _cancel(self, futures, force=False):
keys = list({stringify(f.key) for f in futures_of(futures)})
await self.scheduler.cancel(keys=keys, client=self.id, force=force)
for k in keys:
st = self.futures.pop(k, None)
if st is not None:
st.cancel()
def cancel(self, futures, asynchronous=None, force=False):
"""
Cancel running futures
This stops future tasks from being scheduled if they have not yet run
and deletes them if they have already run. After calling, this result
and all dependent results will no longer be accessible
Parameters
----------
futures : List[Future]
The list of Futures
asynchronous: bool
If True the client is in asynchronous mode
force : boolean (False)
Cancel this future even if other clients desire it
"""
return self.sync(self._cancel, futures, asynchronous=asynchronous, force=force)
async def _retry(self, futures):
keys = list({stringify(f.key) for f in futures_of(futures)})
response = await self.scheduler.retry(keys=keys, client=self.id)
for key in response:
st = self.futures[key]
st.retry()
def retry(self, futures, asynchronous=None):
"""
Retry failed futures
Parameters
----------
futures : list of Futures
The list of Futures
asynchronous: bool
If True the client is in asynchronous mode
"""
return self.sync(self._retry, futures, asynchronous=asynchronous)
@log_errors
async def _publish_dataset(self, *args, name=None, override=False, **kwargs):
coroutines = []
def add_coro(name, data):
keys = [stringify(f.key) for f in futures_of(data)]
coroutines.append(
self.scheduler.publish_put(
keys=keys,
name=name,
data=to_serialize(data),
override=override,
client=self.id,
)
)
if name:
if len(args) == 0:
raise ValueError(
"If name is provided, expecting call signature like"
" publish_dataset(df, name='ds')"
)
# in case this is a singleton, collapse it
elif len(args) == 1:
args = args[0]
add_coro(name, args)
for name, data in kwargs.items():
add_coro(name, data)
await asyncio.gather(*coroutines)
def publish_dataset(self, *args, **kwargs):
"""
Publish named datasets to scheduler
This stores a named reference to a dask collection or list of futures
on the scheduler. These references are available to other Clients
which can download the collection or futures with ``get_dataset``.
Datasets are not immediately computed. You may wish to call
``Client.persist`` prior to publishing a dataset.
Parameters
----------
args : list of objects to publish as name
kwargs : dict
named collections to publish on the scheduler
Examples
--------
Publishing client:
>>> df = dd.read_csv('s3://...') # doctest: +SKIP
>>> df = c.persist(df) # doctest: +SKIP
>>> c.publish_dataset(my_dataset=df) # doctest: +SKIP
Alternative invocation
>>> c.publish_dataset(df, name='my_dataset')
Receiving client:
>>> c.list_datasets() # doctest: +SKIP
['my_dataset']
>>> df2 = c.get_dataset('my_dataset') # doctest: +SKIP
Returns
-------
None
See Also
--------
Client.list_datasets
Client.get_dataset
Client.unpublish_dataset
Client.persist
"""
return self.sync(self._publish_dataset, *args, **kwargs)
def unpublish_dataset(self, name, **kwargs):
"""
Remove named datasets from scheduler
Parameters
----------
name : str
The name of the dataset to unpublish
Examples
--------
>>> c.list_datasets() # doctest: +SKIP
['my_dataset']
>>> c.unpublish_dataset('my_dataset') # doctest: +SKIP
>>> c.list_datasets() # doctest: +SKIP
[]
See Also
--------
Client.publish_dataset
"""
return self.sync(self.scheduler.publish_delete, name=name, **kwargs)
def list_datasets(self, **kwargs):
"""
List named datasets available on the scheduler
See Also
--------
Client.publish_dataset
Client.get_dataset
"""
return self.sync(self.scheduler.publish_list, **kwargs)
async def _get_dataset(self, name, default=no_default):
with self.as_current():
out = await self.scheduler.publish_get(name=name, client=self.id)
if out is None:
if default is no_default:
raise KeyError(f"Dataset '{name}' not found")
else:
return default
return out["data"]
def get_dataset(self, name, default=no_default, **kwargs):
"""
Get named dataset from the scheduler if present.
Return the default or raise a KeyError if not present.
Parameters
----------
name : str
name of the dataset to retrieve
default : str
optional, not set by default
If set, do not raise a KeyError if the name is not present but
return this default
kwargs : dict
additional keyword arguments to _get_dataset
Returns
-------
The dataset from the scheduler, if present
See Also
--------
Client.publish_dataset
Client.list_datasets
"""
return self.sync(self._get_dataset, name, default=default, **kwargs)
async def _run_on_scheduler(self, function, *args, wait=True, **kwargs):
response = await self.scheduler.run_function(
function=dumps(function),
args=dumps(args),
kwargs=dumps(kwargs),
wait=wait,
)
if response["status"] == "error":
typ, exc, tb = clean_exception(**response)
raise exc.with_traceback(tb)
else:
return response["result"]
def run_on_scheduler(self, function, *args, **kwargs):
"""Run a function on the scheduler process
This is typically used for live debugging. The function should take a
keyword argument ``dask_scheduler=``, which will be given the scheduler
object itself.
Parameters
----------
function : callable
The function to run on the scheduler process
*args : tuple
Optional arguments for the function
**kwargs : dict
Optional keyword arguments for the function
Examples
--------
>>> def get_number_of_tasks(dask_scheduler=None):
... return len(dask_scheduler.tasks)
>>> client.run_on_scheduler(get_number_of_tasks) # doctest: +SKIP
100
Run asynchronous functions in the background:
>>> async def print_state(dask_scheduler): # doctest: +SKIP
... while True:
... print(dask_scheduler.status)
... await asyncio.sleep(1)
>>> c.run(print_state, wait=False) # doctest: +SKIP
See Also
--------
Client.run : Run a function on all workers
"""
return self.sync(self._run_on_scheduler, function, *args, **kwargs)
async def _run(
self,
function,
*args,
nanny: bool = False,
workers: list[str] | None = None,
wait: bool = True,
on_error: Literal["raise", "return", "ignore"] = "raise",
**kwargs,
):
responses = await self.scheduler.broadcast(
msg=dict(
op="run",
function=dumps(function),
args=dumps(args),
wait=wait,
kwargs=dumps(kwargs),
),
workers=workers,
nanny=nanny,
on_error="return_pickle",
)
results = {}
for key, resp in responses.items():
if isinstance(resp, bytes):
# Pickled RPC exception
exc = loads(resp)
assert isinstance(exc, Exception)
elif resp["status"] == "error":
# Exception raised by the remote function
_, exc, tb = clean_exception(**resp)
exc = exc.with_traceback(tb)
else:
assert resp["status"] == "OK"
results[key] = resp["result"]
continue
if on_error == "raise":
raise exc
elif on_error == "return":
results[key] = exc
elif on_error != "ignore":
raise ValueError(
"on_error must be 'raise', 'return', or 'ignore'; "
f"got {on_error!r}"
)
if wait:
return results
def run(
self,
function,
*args,
workers: list[str] | None = None,
wait: bool = True,
nanny: bool = False,
on_error: Literal["raise", "return", "ignore"] = "raise",
**kwargs,
):
"""
Run a function on all workers outside of task scheduling system
This calls a function on all currently known workers immediately,
blocks until those results come back, and returns the results
asynchronously as a dictionary keyed by worker address. This method
is generally used for side effects such as collecting diagnostic
information or installing libraries.
If your function takes an input argument named ``dask_worker`` then
that variable will be populated with the worker itself.
Parameters
----------
function : callable
The function to run
*args : tuple
Optional arguments for the remote function
**kwargs : dict
Optional keyword arguments for the remote function
workers : list
Workers on which to run the function. Defaults to all known
workers.
wait : boolean (optional)
If the function is asynchronous whether or not to wait until that
function finishes.
nanny : bool, default False
Whether to run ``function`` on the nanny. By default, the function
is run on the worker process. If specified, the addresses in
``workers`` should still be the worker addresses, not the nanny addresses.
on_error: "raise" | "return" | "ignore"
If the function raises an error on a worker:
raise
(default) Re-raise the exception on the client.
The output from other workers will be lost.
return
Return the Exception object instead of the function output for
the worker
ignore
Ignore the exception and remove the worker from the result dict
Examples
--------
>>> c.run(os.getpid) # doctest: +SKIP
{'192.168.0.100:9000': 1234,
'192.168.0.101:9000': 4321,
'192.168.0.102:9000': 5555}
Restrict computation to particular workers with the ``workers=``
keyword argument.
>>> c.run(os.getpid, workers=['192.168.0.100:9000',
... '192.168.0.101:9000']) # doctest: +SKIP
{'192.168.0.100:9000': 1234,
'192.168.0.101:9000': 4321}
>>> def get_status(dask_worker):
... return dask_worker.status
>>> c.run(get_status) # doctest: +SKIP
{'192.168.0.100:9000': 'running',
'192.168.0.101:9000': 'running}
Run asynchronous functions in the background:
>>> async def print_state(dask_worker): # doctest: +SKIP
... while True:
... print(dask_worker.status)
... await asyncio.sleep(1)
>>> c.run(print_state, wait=False) # doctest: +SKIP
"""
return self.sync(
self._run,
function,
*args,
workers=workers,
wait=wait,
nanny=nanny,
on_error=on_error,
**kwargs,
)
@staticmethod
def _get_computation_code(stacklevel: int | None = None) -> str:
"""Walk up the stack to the user code and extract the code surrounding
the compute/submit/persist call. All modules encountered which are
ignored through the option
`distributed.diagnostics.computations.ignore-modules` will be ignored.
This can be used to exclude commonly used libraries which wrap
dask/distributed compute calls.
``stacklevel`` may be used to explicitly indicate from which frame on
the stack to get the source code.
"""
ignore_modules = dask.config.get(
"distributed.diagnostics.computations.ignore-modules"
)
if not isinstance(ignore_modules, list):
raise TypeError(
"Ignored modules must be a list. Instead got "
f"({type(ignore_modules)}, {ignore_modules})"
)
if stacklevel is None:
pattern: re.Pattern | None
if ignore_modules:
pattern = re.compile("|".join([f"(?:{mod})" for mod in ignore_modules]))
else:
pattern = None
else:
# stacklevel 0 or less - shows dask internals which likely isn't helpful
stacklevel = stacklevel if stacklevel > 0 else 1
for i, (fr, _) in enumerate(traceback.walk_stack(sys._getframe().f_back), 1):
if stacklevel is not None:
if i != stacklevel:
continue
elif pattern is not None and (
pattern.match(fr.f_globals.get("__name__", ""))
or fr.f_code.co_name in ("<listcomp>", "<dictcomp>")
):
continue
try:
return inspect.getsource(fr)
except OSError:
# Try to fine the source if we are in %%time or %%timeit magic.
if (
fr.f_code.co_filename in {"<timed exec>", "<magic-timeit>"}
and "IPython" in sys.modules
):
from IPython import get_ipython
ip = get_ipython()
if ip is not None:
# The current cell
return ip.history_manager._i00
break
return "<Code not available>"
def _graph_to_futures(
self,
dsk,
keys,
workers=None,
allow_other_workers=None,
priority=None,
user_priority=0,
resources=None,
retries=None,
fifo_timeout=0,
actors=None,
):
with self._refcount_lock:
if actors is not None and actors is not True and actors is not False:
actors = list(self._expand_key(actors))
# Make sure `dsk` is a high level graph
if not isinstance(dsk, HighLevelGraph):
dsk = HighLevelGraph.from_collections(id(dsk), dsk, dependencies=())
annotations = {}
if user_priority:
annotations["priority"] = user_priority
if workers:
if not isinstance(workers, (list, tuple, set)):
workers = [workers]
annotations["workers"] = workers
if retries:
annotations["retries"] = retries
if allow_other_workers not in (True, False, None):
raise TypeError("allow_other_workers= must be True, False, or None")
if allow_other_workers:
annotations["allow_other_workers"] = allow_other_workers
if resources:
annotations["resources"] = resources
# Merge global and local annotations
annotations = merge(dask.config.get("annotations", {}), annotations)
# Pack the high level graph before sending it to the scheduler
keyset = set(keys)
dsk = dsk.__dask_distributed_pack__(self, keyset, annotations)
# Create futures before sending graph (helps avoid contention)
futures = {key: Future(key, self, inform=False) for key in keyset}
self._send_to_scheduler(
{
"op": "update-graph-hlg",
"hlg": dsk,
"keys": list(map(stringify, keys)),
"priority": priority,
"submitting_task": getattr(thread_state, "key", None),
"fifo_timeout": fifo_timeout,
"actors": actors,
"code": self._get_computation_code(),
}
)
return futures
def get(
self,
dsk,
keys,
workers=None,
allow_other_workers=None,
resources=None,
sync=True,
asynchronous=None,
direct=None,
retries=None,
priority=0,
fifo_timeout="60s",
actors=None,
**kwargs,
):
"""Compute dask graph
Parameters
----------
dsk : dict
keys : object, or nested lists of objects
workers : string or iterable of strings
A set of worker addresses or hostnames on which computations may be
performed. Leave empty to default to all workers (common case)
allow_other_workers : bool (defaults to False)
Used with ``workers``. Indicates whether or not the computations
may be performed on workers that are not in the `workers` set(s).
resources : dict (defaults to {})
Defines the ``resources`` each instance of this mapped task
requires on the worker; e.g. ``{'GPU': 2}``.
See :doc:`worker resources <resources>` for details on defining
resources.
sync : bool (optional)
Returns Futures if False or concrete values if True (default).
asynchronous: bool
If True the client is in asynchronous mode
direct : bool
Whether or not to connect directly to the workers, or to ask
the scheduler to serve as intermediary. This can also be set when
creating the Client.
retries : int (default to 0)
Number of allowed automatic retries if computing a result fails
priority : Number
Optional prioritization of task. Zero is default.
Higher priorities take precedence
fifo_timeout : timedelta str (defaults to '60s')
Allowed amount of time between calls to consider the same priority
actors : bool or dict (default None)
Whether these tasks should exist on the worker as stateful actors.
Specified on a global (True/False) or per-task (``{'x': True,
'y': False}``) basis. See :doc:`actors` for additional details.
Returns
-------
results
If 'sync' is True, returns the results. Otherwise, returns the
known data packed
If 'sync' is False, returns the known data. Otherwise, returns
the results
Examples
--------
>>> from operator import add # doctest: +SKIP
>>> c = Client('127.0.0.1:8787') # doctest: +SKIP
>>> c.get({'x': (add, 1, 2)}, 'x') # doctest: +SKIP
3
See Also
--------
Client.compute : Compute asynchronous collections
"""
futures = self._graph_to_futures(
dsk,
keys=set(flatten([keys])),
workers=workers,
allow_other_workers=allow_other_workers,
resources=resources,
fifo_timeout=fifo_timeout,
retries=retries,
user_priority=priority,
actors=actors,
)
packed = pack_data(keys, futures)
if sync:
if getattr(thread_state, "key", False):
try:
secede()
should_rejoin = True
except Exception:
should_rejoin = False
try:
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
finally:
for f in futures.values():
f.release()
if getattr(thread_state, "key", False) and should_rejoin:
rejoin()
return results
return packed
def _optimize_insert_futures(self, dsk, keys):
"""Replace known keys in dask graph with Futures
When given a Dask graph that might have overlapping keys with our known
results we replace the values of that graph with futures. This can be
used as an optimization to avoid recomputation.
This returns the same graph if unchanged but a new graph if any changes
were necessary.
"""
with self._refcount_lock:
changed = False
for key in list(dsk):
if stringify(key) in self.futures:
if not changed:
changed = True
dsk = ensure_dict(dsk)
dsk[key] = Future(key, self, inform=False)
if changed:
dsk, _ = dask.optimization.cull(dsk, keys)
return dsk
def normalize_collection(self, collection):
"""
Replace collection's tasks by already existing futures if they exist
This normalizes the tasks within a collections task graph against the
known futures within the scheduler. It returns a copy of the
collection with a task graph that includes the overlapping futures.
Parameters
----------
collection : dask object
Collection like dask.array or dataframe or dask.value objects
Returns
-------
collection : dask object
Collection with its tasks replaced with any existing futures.
Examples
--------
>>> len(x.__dask_graph__()) # x is a dask collection with 100 tasks # doctest: +SKIP
100
>>> set(client.futures).intersection(x.__dask_graph__()) # some overlap exists # doctest: +SKIP
10
>>> x = client.normalize_collection(x) # doctest: +SKIP
>>> len(x.__dask_graph__()) # smaller computational graph # doctest: +SKIP
20
See Also
--------
Client.persist : trigger computation of collection's tasks
"""
dsk_orig = collection.__dask_graph__()
dsk = self._optimize_insert_futures(dsk_orig, collection.__dask_keys__())
if dsk is dsk_orig:
return collection
else:
return redict_collection(collection, dsk)
def compute(
self,
collections,
sync=False,
optimize_graph=True,
workers=None,
allow_other_workers=False,
resources=None,
retries=0,
priority=0,
fifo_timeout="60s",
actors=None,
traverse=True,
**kwargs,
):
"""Compute dask collections on cluster
Parameters
----------
collections : iterable of dask objects or single dask object
Collections like dask.array or dataframe or dask.value objects
sync : bool (optional)
Returns Futures if False (default) or concrete values if True
optimize_graph : bool
Whether or not to optimize the underlying graphs
workers : string or iterable of strings
A set of worker hostnames on which computations may be performed.
Leave empty to default to all workers (common case)
allow_other_workers : bool (defaults to False)
Used with `workers`. Indicates whether or not the computations
may be performed on workers that are not in the `workers` set(s).
retries : int (default to 0)
Number of allowed automatic retries if computing a result fails
priority : Number
Optional prioritization of task. Zero is default.
Higher priorities take precedence
fifo_timeout : timedelta str (defaults to '60s')
Allowed amount of time between calls to consider the same priority
traverse : bool (defaults to True)
By default dask traverses builtin python collections looking for
dask objects passed to ``compute``. For large collections this can
be expensive. If none of the arguments contain any dask objects,
set ``traverse=False`` to avoid doing this traversal.
resources : dict (defaults to {})
Defines the `resources` each instance of this mapped task requires
on the worker; e.g. ``{'GPU': 2}``.
See :doc:`worker resources <resources>` for details on defining
resources.
actors : bool or dict (default None)
Whether these tasks should exist on the worker as stateful actors.
Specified on a global (True/False) or per-task (``{'x': True,
'y': False}``) basis. See :doc:`actors` for additional details.
**kwargs
Options to pass to the graph optimize calls
Returns
-------
List of Futures if input is a sequence, or a single future otherwise
Examples
--------
>>> from dask import delayed
>>> from operator import add
>>> x = delayed(add)(1, 2)
>>> y = delayed(add)(x, x)
>>> xx, yy = client.compute([x, y]) # doctest: +SKIP
>>> xx # doctest: +SKIP
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfee188e>
>>> xx.result() # doctest: +SKIP
3
>>> yy.result() # doctest: +SKIP
6
Also support single arguments
>>> xx = client.compute(x) # doctest: +SKIP
See Also
--------
Client.get : Normal synchronous dask.get function
"""
if isinstance(collections, (list, tuple, set, frozenset)):
singleton = False
else:
collections = [collections]
singleton = True
if traverse:
collections = tuple(
dask.delayed(a)
if isinstance(a, (list, set, tuple, dict, Iterator))
else a
for a in collections
)
variables = [a for a in collections if dask.is_dask_collection(a)]
dsk = self.collections_to_dsk(variables, optimize_graph, **kwargs)
names = ["finalize-%s" % tokenize(v) for v in variables]
dsk2 = {}
for i, (name, v) in enumerate(zip(names, variables)):
func, extra_args = v.__dask_postcompute__()
keys = v.__dask_keys__()
if func is single_key and len(keys) == 1 and not extra_args:
names[i] = keys[0]
else:
dsk2[name] = (func, keys) + extra_args
if not isinstance(dsk, HighLevelGraph):
dsk = HighLevelGraph.from_collections(id(dsk), dsk, dependencies=())
# Let's append the finalize graph to dsk
finalize_name = tokenize(names)
layers = {finalize_name: dsk2}
layers.update(dsk.layers)
dependencies = {finalize_name: set(dsk.layers.keys())}
dependencies.update(dsk.dependencies)
dsk = HighLevelGraph(layers, dependencies)
futures_dict = self._graph_to_futures(
dsk,
names,
workers=workers,
allow_other_workers=allow_other_workers,
resources=resources,
retries=retries,
user_priority=priority,
fifo_timeout=fifo_timeout,
actors=actors,
)
i = 0
futures = []
for arg in collections:
if dask.is_dask_collection(arg):
futures.append(futures_dict[names[i]])
i += 1
else:
futures.append(arg)
if sync:
result = self.gather(futures)
else:
result = futures
if singleton:
return first(result)
else:
return result
def persist(
self,
collections,
optimize_graph=True,
workers=None,
allow_other_workers=None,
resources=None,
retries=None,
priority=0,
fifo_timeout="60s",
actors=None,
**kwargs,
):
"""Persist dask collections on cluster
Starts computation of the collection on the cluster in the background.
Provides a new dask collection that is semantically identical to the
previous one, but now based off of futures currently in execution.
Parameters
----------
collections : sequence or single dask object
Collections like dask.array or dataframe or dask.value objects
optimize_graph : bool
Whether or not to optimize the underlying graphs
workers : string or iterable of strings
A set of worker hostnames on which computations may be performed.
Leave empty to default to all workers (common case)
allow_other_workers : bool (defaults to False)
Used with `workers`. Indicates whether or not the computations
may be performed on workers that are not in the `workers` set(s).
retries : int (default to 0)
Number of allowed automatic retries if computing a result fails
priority : Number
Optional prioritization of task. Zero is default.
Higher priorities take precedence
fifo_timeout : timedelta str (defaults to '60s')
Allowed amount of time between calls to consider the same priority
resources : dict (defaults to {})
Defines the `resources` each instance of this mapped task requires
on the worker; e.g. ``{'GPU': 2}``.
See :doc:`worker resources <resources>` for details on defining
resources.
actors : bool or dict (default None)
Whether these tasks should exist on the worker as stateful actors.
Specified on a global (True/False) or per-task (``{'x': True,
'y': False}``) basis. See :doc:`actors` for additional details.
**kwargs
Options to pass to the graph optimize calls
Returns
-------
List of collections, or single collection, depending on type of input.
Examples
--------
>>> xx = client.persist(x) # doctest: +SKIP
>>> xx, yy = client.persist([x, y]) # doctest: +SKIP
See Also
--------
Client.compute
"""
if isinstance(collections, (tuple, list, set, frozenset)):
singleton = False
else:
singleton = True
collections = [collections]
assert all(map(dask.is_dask_collection, collections))
dsk = self.collections_to_dsk(collections, optimize_graph, **kwargs)
names = {k for c in collections for k in flatten(c.__dask_keys__())}
futures = self._graph_to_futures(
dsk,
names,
workers=workers,
allow_other_workers=allow_other_workers,
resources=resources,
retries=retries,
user_priority=priority,
fifo_timeout=fifo_timeout,
actors=actors,
)
postpersists = [c.__dask_postpersist__() for c in collections]
result = [
func({k: futures[k] for k in flatten(c.__dask_keys__())}, *args)
for (func, args), c in zip(postpersists, collections)
]
if singleton:
return first(result)
else:
return result
async def _restart(self, timeout=no_default, wait_for_workers=True):
if timeout == no_default:
timeout = self._timeout * 4
if timeout is not None:
timeout = parse_timedelta(timeout, "s")
await self.scheduler.restart(timeout=timeout, wait_for_workers=wait_for_workers)
return self
def restart(self, timeout=no_default, wait_for_workers=True):
"""
Restart all workers. Reset local state. Optionally wait for workers to return.
Workers without nannies are shut down, hoping an external deployment system
will restart them. Therefore, if not using nannies and your deployment system
does not automatically restart workers, ``restart`` will just shut down all
workers, then time out!
After ``restart``, all connected workers are new, regardless of whether ``TimeoutError``
was raised. Any workers that failed to shut down in time are removed, and
may or may not shut down on their own in the future.
Parameters
----------
timeout:
How long to wait for workers to shut down and come back, if ``wait_for_workers``
is True, otherwise just how long to wait for workers to shut down.
Raises ``asyncio.TimeoutError`` if this is exceeded.
wait_for_workers:
Whether to wait for all workers to reconnect, or just for them to shut down
(default True). Use ``restart(wait_for_workers=False)`` combined with
:meth:`Client.wait_for_workers` for granular control over how many workers to
wait for.
See also
--------
Scheduler.restart
Client.restart_workers
"""
return self.sync(
self._restart, timeout=timeout, wait_for_workers=wait_for_workers
)
async def _restart_workers(
self, workers: list[str], timeout: int | float | None = None
):
results = await self.scheduler.broadcast(
msg={"op": "restart", "timeout": timeout}, workers=workers, nanny=True
)
timeout_workers = {
key: value for key, value in results.items() if value == "timed out"
}
if timeout_workers:
raise TimeoutError(
f"The following workers failed to restart with {timeout} seconds: {list(timeout_workers.keys())}"
)
def restart_workers(self, workers: list[str], timeout: int | float | None = None):
"""Restart a specified set of workers
.. note::
Only workers being monitored by a :class:`distributed.Nanny` can be restarted.
See ``Nanny.restart`` for more details.
Parameters
----------
workers : list[str]
Workers to restart.
timeout : int | float | None
Number of seconds to wait
Notes
-----
This method differs from :meth:`Client.restart` in that this method
simply restarts the specified set of workers, while ``Client.restart``
will restart all workers and also reset local state on the cluster
(e.g. all keys are released).
Additionally, this method does not gracefully handle tasks that are
being executed when a worker is restarted. These tasks may fail or have
their suspicious count incremented.
Examples
--------
You can get information about active workers using the following:
>>> workers = client.scheduler_info()['workers']
From that list you may want to select some workers to restart
>>> client.restart_workers(workers=['tcp://address:port', ...])
See Also
--------
Client.restart
"""
info = self.scheduler_info()
for worker in workers:
if info["workers"][worker]["nanny"] is None:
raise ValueError(
f"Restarting workers requires a nanny to be used. Worker {worker} has type {info['workers'][worker]['type']}."
)
return self.sync(
self._restart_workers,
workers=workers,
timeout=timeout,
)
async def _upload_large_file(self, local_filename, remote_filename=None):
if remote_filename is None:
remote_filename = os.path.split(local_filename)[1]
with open(local_filename, "rb") as f:
data = f.read()
[future] = await self._scatter([data])
key = future.key
await self._replicate(future)
def dump_to_file(dask_worker=None):
if not os.path.isabs(remote_filename):
fn = os.path.join(dask_worker.local_directory, remote_filename)
else:
fn = remote_filename
with open(fn, "wb") as f:
f.write(dask_worker.data[key])
return len(dask_worker.data[key])
response = await self._run(dump_to_file)
assert all(len(data) == v for v in response.values())
def upload_file(self, filename, **kwargs):
"""Upload local package to workers
This sends a local file up to all worker nodes. This file is placed
into the working directory of the running worker, see config option
``temporary-directory`` (defaults to :py:func:`tempfile.gettempdir`).
This directory will be added to the Python's system path so any .py,
.egg or .zip files will be importable.
Parameters
----------
filename : string
Filename of .py, .egg or .zip file to send to workers
**kwargs : dict
Optional keyword arguments for the function
Examples
--------
>>> client.upload_file('mylibrary.egg') # doctest: +SKIP
>>> from mylibrary import myfunc # doctest: +SKIP
>>> L = client.map(myfunc, seq) # doctest: +SKIP
"""
return self.register_worker_plugin(
UploadFile(filename),
name=filename + str(uuid.uuid4()),
)
async def _rebalance(self, futures=None, workers=None):
if futures is not None:
await _wait(futures)
keys = list({stringify(f.key) for f in self.futures_of(futures)})
else:
keys = None
result = await self.scheduler.rebalance(keys=keys, workers=workers)
if result["status"] == "partial-fail":
raise KeyError(f"Could not rebalance keys: {result['keys']}")
assert result["status"] == "OK", result
def rebalance(self, futures=None, workers=None, **kwargs):
"""Rebalance data within network
Move data between workers to roughly balance memory burden. This
either affects a subset of the keys/workers or the entire network,
depending on keyword arguments.
For details on the algorithm and configuration options, refer to the matching
scheduler-side method :meth:`~distributed.scheduler.Scheduler.rebalance`.
.. warning::
This operation is generally not well tested against normal operation of the
scheduler. It is not recommended to use it while waiting on computations.
Parameters
----------
futures : list, optional
A list of futures to balance, defaults all data
workers : list, optional
A list of workers on which to balance, defaults to all workers
**kwargs : dict
Optional keyword arguments for the function
"""
return self.sync(self._rebalance, futures, workers, **kwargs)
async def _replicate(self, futures, n=None, workers=None, branching_factor=2):
futures = self.futures_of(futures)
await _wait(futures)
keys = {stringify(f.key) for f in futures}
await self.scheduler.replicate(
keys=list(keys), n=n, workers=workers, branching_factor=branching_factor
)
def replicate(self, futures, n=None, workers=None, branching_factor=2, **kwargs):
"""Set replication of futures within network
Copy data onto many workers. This helps to broadcast frequently
accessed data and can improve resilience.
This performs a tree copy of the data throughout the network
individually on each piece of data. This operation blocks until
complete. It does not guarantee replication of data to future workers.
.. note::
This method is incompatible with the Active Memory Manager's
:ref:`ReduceReplicas` policy. If you wish to use it, you must first disable
the policy or disable the AMM entirely.
Parameters
----------
futures : list of futures
Futures we wish to replicate
n : int, optional
Number of processes on the cluster on which to replicate the data.
Defaults to all.
workers : list of worker addresses
Workers on which we want to restrict the replication.
Defaults to all.
branching_factor : int, optional
The number of workers that can copy data in each generation
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
>>> x = c.submit(func, *args) # doctest: +SKIP
>>> c.replicate([x]) # send to all workers # doctest: +SKIP
>>> c.replicate([x], n=3) # send to three workers # doctest: +SKIP
>>> c.replicate([x], workers=['alice', 'bob']) # send to specific # doctest: +SKIP
>>> c.replicate([x], n=1, workers=['alice', 'bob']) # send to one of specific workers # doctest: +SKIP
>>> c.replicate([x], n=1) # reduce replications # doctest: +SKIP
See Also
--------
Client.rebalance
"""
return self.sync(
self._replicate,
futures,
n=n,
workers=workers,
branching_factor=branching_factor,
**kwargs,
)
def nthreads(self, workers=None, **kwargs):
"""The number of threads/cores available on each worker node
Parameters
----------
workers : list (optional)
A list of workers that we care about specifically.
Leave empty to receive information about all workers.
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
>>> c.nthreads() # doctest: +SKIP
{'192.168.1.141:46784': 8,
'192.167.1.142:47548': 8,
'192.167.1.143:47329': 8,
'192.167.1.144:37297': 8}
See Also
--------
Client.who_has
Client.has_what
"""
if isinstance(workers, tuple) and all(
isinstance(i, (str, tuple)) for i in workers
):
workers = list(workers)
if workers is not None and not isinstance(workers, (tuple, list, set)):
workers = [workers]
return self.sync(self.scheduler.ncores, workers=workers, **kwargs)
ncores = nthreads
def who_has(self, futures=None, **kwargs):
"""The workers storing each future's data
Parameters
----------
futures : list (optional)
A list of futures, defaults to all data
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> wait([x, y, z]) # doctest: +SKIP
>>> c.who_has() # doctest: +SKIP
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784'],
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': ['192.168.1.141:46784']}
>>> c.who_has([x, y]) # doctest: +SKIP
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784']}
See Also
--------
Client.has_what
Client.nthreads
"""
if futures is not None:
futures = self.futures_of(futures)
keys = list(map(stringify, {f.key for f in futures}))
else:
keys = None
async def _():
return WhoHas(await self.scheduler.who_has(keys=keys, **kwargs))
return self.sync(_)
def has_what(self, workers=None, **kwargs):
"""Which keys are held by which workers
This returns the keys of the data that are held in each worker's
memory.
Parameters
----------
workers : list (optional)
A list of worker addresses, defaults to all
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> wait([x, y, z]) # doctest: +SKIP
>>> c.has_what() # doctest: +SKIP
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}
See Also
--------
Client.who_has
Client.nthreads
Client.processing
"""
if isinstance(workers, tuple) and all(
isinstance(i, (str, tuple)) for i in workers
):
workers = list(workers)
if workers is not None and not isinstance(workers, (tuple, list, set)):
workers = [workers]
async def _():
return HasWhat(await self.scheduler.has_what(workers=workers, **kwargs))
return self.sync(_)
def processing(self, workers=None):
"""The tasks currently running on each worker
Parameters
----------
workers : list (optional)
A list of worker addresses, defaults to all
Examples
--------
>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> c.processing() # doctest: +SKIP
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}
See Also
--------
Client.who_has
Client.has_what
Client.nthreads
"""
if isinstance(workers, tuple) and all(
isinstance(i, (str, tuple)) for i in workers
):
workers = list(workers)
if workers is not None and not isinstance(workers, (tuple, list, set)):
workers = [workers]
return self.sync(self.scheduler.processing, workers=workers)
def nbytes(self, keys=None, summary=True, **kwargs):
"""The bytes taken up by each key on the cluster
This is as measured by ``sys.getsizeof`` which may not accurately
reflect the true cost.
Parameters
----------
keys : list (optional)
A list of keys, defaults to all keys
summary : boolean, (optional)
Summarize keys into key types
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> c.nbytes(summary=False) # doctest: +SKIP
{'inc-1c8dd6be1c21646c71f76c16d09304ea': 28,
'inc-1e297fc27658d7b67b3a758f16bcf47a': 28,
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': 28}
>>> c.nbytes(summary=True) # doctest: +SKIP
{'inc': 84}
See Also
--------
Client.who_has
"""
return self.sync(self.scheduler.nbytes, keys=keys, summary=summary, **kwargs)
def call_stack(self, futures=None, keys=None):
"""The actively running call stack of all relevant keys
You can specify data of interest either by providing futures or
collections in the ``futures=`` keyword or a list of explicit keys in
the ``keys=`` keyword. If neither are provided then all call stacks
will be returned.
Parameters
----------
futures : list (optional)
List of futures, defaults to all data
keys : list (optional)
List of key names, defaults to all data
Examples
--------
>>> df = dd.read_parquet(...).persist() # doctest: +SKIP
>>> client.call_stack(df) # call on collections
>>> client.call_stack() # Or call with no arguments for all activity # doctest: +SKIP
"""
keys = keys or []
if futures is not None:
futures = self.futures_of(futures)
keys += list(map(stringify, {f.key for f in futures}))
return self.sync(self.scheduler.call_stack, keys=keys or None)
def profile(
self,
key=None,
start=None,
stop=None,
workers=None,
merge_workers=True,
plot=False,
filename=None,
server=False,
scheduler=False,
):
"""Collect statistical profiling information about recent work
Parameters
----------
key : str
Key prefix to select, this is typically a function name like 'inc'
Leave as None to collect all data
start : time
stop : time
workers : list
List of workers to restrict profile information
server : bool
If true, return the profile of the worker's administrative thread
rather than the worker threads.
This is useful when profiling Dask itself, rather than user code.
scheduler : bool
If true, return the profile information from the scheduler's
administrative thread rather than the workers.
This is useful when profiling Dask's scheduling itself.
plot : boolean or string
Whether or not to return a plot object
filename : str
Filename to save the plot
Examples
--------
>>> client.profile() # call on collections
>>> client.profile(filename='dask-profile.html') # save to html file
"""
return self.sync(
self._profile,
key=key,
workers=workers,
merge_workers=merge_workers,
start=start,
stop=stop,
plot=plot,
filename=filename,
server=server,
scheduler=scheduler,
)
async def _profile(
self,
key=None,
start=None,
stop=None,
workers=None,
merge_workers=True,
plot=False,
filename=None,
server=False,
scheduler=False,
):
if isinstance(workers, (str, Number)):
workers = [workers]
state = await self.scheduler.profile(
key=key,
workers=workers,
merge_workers=merge_workers,
start=start,
stop=stop,
server=server,
scheduler=scheduler,
)
if filename:
plot = True
if plot:
from distributed import profile
data = profile.plot_data(state)
figure, source = profile.plot_figure(data, sizing_mode="stretch_both")
if plot == "save" and not filename:
filename = "dask-profile.html"
if filename:
from bokeh.plotting import output_file, save
output_file(filename=filename, title="Dask Profile")
save(figure, filename=filename)
return (state, figure)
else:
return state
def scheduler_info(self, **kwargs):
"""Basic information about the workers in the cluster
Parameters
----------
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
>>> c.scheduler_info() # doctest: +SKIP
{'id': '2de2b6da-69ee-11e6-ab6a-e82aea155996',
'services': {},
'type': 'Scheduler',
'workers': {'127.0.0.1:40575': {'active': 0,
'last-seen': 1472038237.4845693,
'name': '127.0.0.1:40575',
'services': {},
'stored': 0,
'time-delay': 0.0061032772064208984}}}
"""
if not self.asynchronous:
self.sync(self._update_scheduler_info)
return self._scheduler_identity
def dump_cluster_state(
self,
filename: str = "dask-cluster-dump",
write_from_scheduler: bool | None = None,
exclude: Collection[str] = ("run_spec",),
format: Literal["msgpack", "yaml"] = "msgpack",
**storage_options,
):
"""Extract a dump of the entire cluster state and persist to disk or a URL.
This is intended for debugging purposes only.
Warning: Memory usage on the scheduler (and client, if writing the dump locally)
can be large. On a large or long-running cluster, this can take several minutes.
The scheduler may be unresponsive while the dump is processed.
Results will be stored in a dict::
{
"scheduler": {...}, # scheduler state
"workers": {
worker_addr: {...}, # worker state
...
}
"versions": {
"scheduler": {...},
"workers": {
worker_addr: {...},
...
}
}
}
Parameters
----------
filename:
The path or URL to write to. The appropriate file suffix (``.msgpack.gz`` or
``.yaml``) will be appended automatically.
Must be a path supported by :func:`fsspec.open` (like ``s3://my-bucket/cluster-dump``,
or ``cluster-dumps/dump``). See ``write_from_scheduler`` to control whether
the dump is written directly to ``filename`` from the scheduler, or sent
back to the client over the network, then written locally.
write_from_scheduler:
If None (default), infer based on whether ``filename`` looks like a URL
or a local path: True if the filename contains ``://`` (like
``s3://my-bucket/cluster-dump``), False otherwise (like ``local_dir/cluster-dump``).
If True, write cluster state directly to ``filename`` from the scheduler.
If ``filename`` is a local path, the dump will be written to that
path on the *scheduler's* filesystem, so be careful if the scheduler is running
on ephemeral hardware. Useful when the scheduler is attached to a network
filesystem or persistent disk, or for writing to buckets.
If False, transfer cluster state from the scheduler back to the client
over the network, then write it to ``filename``. This is much less
efficient for large dumps, but useful when the scheduler doesn't have
access to any persistent storage.
exclude:
A collection of attribute names which are supposed to be excluded
from the dump, e.g. to exclude code, tracebacks, logs, etc.
Defaults to exclude ``run_spec``, which is the serialized user code.
This is typically not required for debugging. To allow serialization
of this, pass an empty tuple.
format:
Either ``"msgpack"`` or ``"yaml"``. If msgpack is used (default),
the output will be stored in a gzipped file as msgpack.
To read::
import gzip, msgpack
with gzip.open("filename") as fd:
state = msgpack.unpack(fd)
or::
import yaml
try:
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader
with open("filename") as fd:
state = yaml.load(fd, Loader=Loader)
**storage_options:
Any additional arguments to :func:`fsspec.open` when writing to a URL.
"""
return self.sync(
self._dump_cluster_state,
filename=filename,
write_from_scheduler=write_from_scheduler,
exclude=exclude,
format=format,
**storage_options,
)
async def _dump_cluster_state(
self,
filename: str = "dask-cluster-dump",
write_from_scheduler: bool | None = None,
exclude: Collection[str] = cluster_dump.DEFAULT_CLUSTER_DUMP_EXCLUDE,
format: Literal["msgpack", "yaml"] = cluster_dump.DEFAULT_CLUSTER_DUMP_FORMAT,
**storage_options,
):
filename = str(filename)
if write_from_scheduler is None:
write_from_scheduler = "://" in filename
if write_from_scheduler:
await self.scheduler.dump_cluster_state_to_url(
url=filename,
exclude=exclude,
format=format,
**storage_options,
)
else:
await cluster_dump.write_state(
partial(self.scheduler.get_cluster_state, exclude=exclude),
filename,
format,
**storage_options,
)
def write_scheduler_file(self, scheduler_file):
"""Write the scheduler information to a json file.
This facilitates easy sharing of scheduler information using a file
system. The scheduler file can be used to instantiate a second Client
using the same scheduler.
Parameters
----------
scheduler_file : str
Path to a write the scheduler file.
Examples
--------
>>> client = Client() # doctest: +SKIP
>>> client.write_scheduler_file('scheduler.json') # doctest: +SKIP
# connect to previous client's scheduler
>>> client2 = Client(scheduler_file='scheduler.json') # doctest: +SKIP
"""
if self.scheduler_file:
raise ValueError("Scheduler file already set")
else:
self.scheduler_file = scheduler_file
with open(self.scheduler_file, "w") as f:
json.dump(self.scheduler_info(), f, indent=2)
def get_metadata(self, keys, default=no_default):
"""Get arbitrary metadata from scheduler
See set_metadata for the full docstring with examples
Parameters
----------
keys : key or list
Key to access. If a list then gets within a nested collection
default : optional
If the key does not exist then return this value instead.
If not provided then this raises a KeyError if the key is not
present
See Also
--------
Client.set_metadata
"""
if not isinstance(keys, (list, tuple)):
keys = (keys,)
return self.sync(self.scheduler.get_metadata, keys=keys, default=default)
def get_scheduler_logs(self, n=None):
"""Get logs from scheduler
Parameters
----------
n : int
Number of logs to retrieve. Maxes out at 10000 by default,
configurable via the ``distributed.admin.log-length``
configuration value.
Returns
-------
Logs in reversed order (newest first)
"""
return self.sync(self.scheduler.logs, n=n)
def get_worker_logs(self, n=None, workers=None, nanny=False):
"""Get logs from workers
Parameters
----------
n : int
Number of logs to retrieve. Maxes out at 10000 by default,
configurable via the ``distributed.admin.log-length``
configuration value.
workers : iterable
List of worker addresses to retrieve. Gets all workers by default.
nanny : bool, default False
Whether to get the logs from the workers (False) or the nannies
(True). If specified, the addresses in `workers` should still be
the worker addresses, not the nanny addresses.
Returns
-------
Dictionary mapping worker address to logs.
Logs are returned in reversed order (newest first)
"""
return self.sync(self.scheduler.worker_logs, n=n, workers=workers, nanny=nanny)
def benchmark_hardware(self) -> dict:
"""
Run a benchmark on the workers for memory, disk, and network bandwidths
Returns
-------
result: dict
A dictionary mapping the names "disk", "memory", and "network" to
dictionaries mapping sizes to bandwidths. These bandwidths are
averaged over many workers running computations across the cluster.
"""
return self.sync(self.scheduler.benchmark_hardware)
def log_event(self, topic: str | Collection[str], msg: Any):
"""Log an event under a given topic
Parameters
----------
topic : str, list[str]
Name of the topic under which to log an event. To log the same
event under multiple topics, pass a list of topic names.
msg
Event message to log. Note this must be msgpack serializable.
Examples
--------
>>> from time import time
>>> client.log_event("current-time", time())
"""
return self.sync(self.scheduler.log_event, topic=topic, msg=msg)
def get_events(self, topic: str | None = None):
"""Retrieve structured topic logs
Parameters
----------
topic : str, optional
Name of topic log to retrieve events for. If no ``topic`` is
provided, then logs for all topics will be returned.
"""
return self.sync(self.scheduler.events, topic=topic)
async def _handle_event(self, topic, event):
if topic not in self._event_handlers:
self.unsubscribe_topic(topic)
return
handler = self._event_handlers[topic]
ret = handler(event)
if inspect.isawaitable(ret):
await ret
def subscribe_topic(self, topic, handler):
"""Subscribe to a topic and execute a handler for every received event
Parameters
----------
topic: str
The topic name
handler: callable or coroutine function
A handler called for every received event. The handler must accept a
single argument `event` which is a tuple `(timestamp, msg)` where
timestamp refers to the clock on the scheduler.
Examples
--------
>>> import logging
>>> logger = logging.getLogger("myLogger") # Log config not shown
>>> client.subscribe_topic("topic-name", lambda: logger.info)
See Also
--------
dask.distributed.Client.unsubscribe_topic
dask.distributed.Client.get_events
dask.distributed.Client.log_event
"""
if topic in self._event_handlers:
logger.info("Handler for %s already set. Overwriting.", topic)
self._event_handlers[topic] = handler
msg = {"op": "subscribe-topic", "topic": topic, "client": self.id}
self._send_to_scheduler(msg)
def unsubscribe_topic(self, topic):
"""Unsubscribe from a topic and remove event handler
See Also
--------
dask.distributed.Client.subscribe_topic
dask.distributed.Client.get_events
dask.distributed.Client.log_event
"""
if topic in self._event_handlers:
msg = {"op": "unsubscribe-topic", "topic": topic, "client": self.id}
self._send_to_scheduler(msg)
else:
raise ValueError(f"No event handler known for topic {topic}.")
def retire_workers(
self, workers: list[str] | None = None, close_workers: bool = True, **kwargs
):
"""Retire certain workers on the scheduler
See :meth:`distributed.Scheduler.retire_workers` for the full docstring.
Parameters
----------
workers
close_workers
**kwargs : dict
Optional keyword arguments for the remote function
Examples
--------
You can get information about active workers using the following:
>>> workers = client.scheduler_info()['workers']
From that list you may want to select some workers to close
>>> client.retire_workers(workers=['tcp://address:port', ...])
See Also
--------
dask.distributed.Scheduler.retire_workers
"""
return self.sync(
self.scheduler.retire_workers,
workers=workers,
close_workers=close_workers,
**kwargs,
)
def set_metadata(self, key, value):
"""Set arbitrary metadata in the scheduler
This allows you to store small amounts of data on the central scheduler
process for administrative purposes. Data should be msgpack
serializable (ints, strings, lists, dicts)
If the key corresponds to a task then that key will be cleaned up when
the task is forgotten by the scheduler.
If the key is a list then it will be assumed that you want to index
into a nested dictionary structure using those keys. For example if
you call the following::
>>> client.set_metadata(['a', 'b', 'c'], 123)
Then this is the same as setting
>>> scheduler.task_metadata['a']['b']['c'] = 123
The lower level dictionaries will be created on demand.
Examples
--------
>>> client.set_metadata('x', 123) # doctest: +SKIP
>>> client.get_metadata('x') # doctest: +SKIP
123
>>> client.set_metadata(['x', 'y'], 123) # doctest: +SKIP
>>> client.get_metadata('x') # doctest: +SKIP
{'y': 123}
>>> client.set_metadata(['x', 'w', 'z'], 456) # doctest: +SKIP
>>> client.get_metadata('x') # doctest: +SKIP
{'y': 123, 'w': {'z': 456}}
>>> client.get_metadata(['x', 'w']) # doctest: +SKIP
{'z': 456}
See Also
--------
get_metadata
"""
if not isinstance(key, list):
key = (key,)
return self.sync(self.scheduler.set_metadata, keys=key, value=value)
def get_versions(
self, check: bool = False, packages: Sequence[str] | None = None
) -> VersionsDict | Coroutine[Any, Any, VersionsDict]:
"""Return version info for the scheduler, all workers and myself
Parameters
----------
check
raise ValueError if all required & optional packages
do not match
packages
Extra package names to check
Examples
--------
>>> c.get_versions() # doctest: +SKIP
>>> c.get_versions(packages=['sklearn', 'geopandas']) # doctest: +SKIP
"""
return self.sync(self._get_versions, check=check, packages=packages or [])
async def _get_versions(
self, check: bool = False, packages: Sequence[str] | None = None
) -> VersionsDict:
packages = packages or []
client = version_module.get_versions(packages=packages)
scheduler = await self.scheduler.versions(packages=packages)
workers = await self.scheduler.broadcast(
msg={"op": "versions", "packages": packages},
on_error="ignore",
)
result = VersionsDict(scheduler=scheduler, workers=workers, client=client)
if check:
msg = version_module.error_message(scheduler, workers, client)
if msg["warning"]:
warnings.warn(msg["warning"])
if msg["error"]:
raise ValueError(msg["error"])
return result
def futures_of(self, futures):
"""Wrapper method of futures_of
Parameters
----------
futures : tuple
The futures
"""
return futures_of(futures, client=self)
@classmethod
def _expand_key(cls, k):
"""
Expand a user-provided task key specification, e.g. in a resources
or retries dictionary.
"""
if not isinstance(k, tuple):
k = (k,)
for kk in k:
if dask.is_dask_collection(kk):
for kkk in kk.__dask_keys__():
yield stringify(kkk)
else:
yield stringify(kk)
@staticmethod
def collections_to_dsk(collections, *args, **kwargs):
"""Convert many collections into a single dask graph, after optimization"""
return collections_to_dsk(collections, *args, **kwargs)
async def _story(self, *keys_or_stimuli: str, on_error="raise"):
assert on_error in ("raise", "ignore")
try:
flat_stories = await self.scheduler.get_story(
keys_or_stimuli=keys_or_stimuli
)
flat_stories = [("scheduler", *msg) for msg in flat_stories]
except Exception:
if on_error == "raise":
raise
elif on_error == "ignore":
flat_stories = []
else:
raise ValueError(f"on_error not in {'raise', 'ignore'}")
responses = await self.scheduler.broadcast(
msg={"op": "get_story", "keys_or_stimuli": keys_or_stimuli},
on_error=on_error,
)
for worker, stories in responses.items():
flat_stories.extend((worker, *msg) for msg in stories)
return flat_stories
def story(self, *keys_or_stimuli, on_error="raise"):
"""Returns a cluster-wide story for the given keys or stimulus_id's"""
return self.sync(self._story, *keys_or_stimuli, on_error=on_error)
def get_task_stream(
self,
start=None,
stop=None,
count=None,
plot=False,
filename="task-stream.html",
bokeh_resources=None,
):
"""Get task stream data from scheduler
This collects the data present in the diagnostic "Task Stream" plot on
the dashboard. It includes the start, stop, transfer, and
deserialization time of every task for a particular duration.
Note that the task stream diagnostic does not run by default. You may
wish to call this function once before you start work to ensure that
things start recording, and then again after you have completed.
Parameters
----------
start : Number or string
When you want to start recording
If a number it should be the result of calling time()
If a string then it should be a time difference before now,
like '60s' or '500 ms'
stop : Number or string
When you want to stop recording
count : int
The number of desired records, ignored if both start and stop are
specified
plot : boolean, str
If true then also return a Bokeh figure
If plot == 'save' then save the figure to a file
filename : str (optional)
The filename to save to if you set ``plot='save'``
bokeh_resources : bokeh.resources.Resources (optional)
Specifies if the resource component is INLINE or CDN
Examples
--------
>>> client.get_task_stream() # prime plugin if not already connected
>>> x.compute() # do some work
>>> client.get_task_stream()
[{'task': ...,
'type': ...,
'thread': ...,
...}]
Pass the ``plot=True`` or ``plot='save'`` keywords to get back a Bokeh
figure
>>> data, figure = client.get_task_stream(plot='save', filename='myfile.html')
Alternatively consider the context manager
>>> from dask.distributed import get_task_stream
>>> with get_task_stream() as ts:
... x.compute()
>>> ts.data
[...]
Returns
-------
L: List[Dict]
See Also
--------
get_task_stream : a context manager version of this method
"""
return self.sync(
self._get_task_stream,
start=start,
stop=stop,
count=count,
plot=plot,
filename=filename,
bokeh_resources=bokeh_resources,
)
async def _get_task_stream(
self,
start=None,
stop=None,
count=None,
plot=False,
filename="task-stream.html",
bokeh_resources=None,
):
msgs = await self.scheduler.get_task_stream(start=start, stop=stop, count=count)
if plot:
from distributed.diagnostics.task_stream import rectangles
rects = rectangles(msgs)
from distributed.dashboard.components.scheduler import task_stream_figure
source, figure = task_stream_figure(sizing_mode="stretch_both")
source.data.update(rects)
if plot == "save":
from bokeh.plotting import output_file, save
output_file(filename=filename, title="Dask Task Stream")
save(figure, filename=filename, resources=bokeh_resources)
return (msgs, figure)
else:
return msgs
async def _register_scheduler_plugin(self, plugin, name, idempotent=False):
return await self.scheduler.register_scheduler_plugin(
plugin=dumps(plugin),
name=name,
idempotent=idempotent,
)
def register_scheduler_plugin(self, plugin, name=None, idempotent=False):
"""Register a scheduler plugin.
See https://distributed.readthedocs.io/en/latest/plugins.html#scheduler-plugins
Parameters
----------
plugin : SchedulerPlugin
SchedulerPlugin instance to pass to the scheduler.
name : str
Name for the plugin; if None, a name is taken from the
plugin instance or automatically generated if not present.
idempotent : bool
Do not re-register if a plugin of the given name already exists.
"""
if name is None:
name = _get_plugin_name(plugin)
return self.sync(
self._register_scheduler_plugin,
plugin=plugin,
name=name,
idempotent=idempotent,
)
def register_worker_callbacks(self, setup=None):
"""
Registers a setup callback function for all current and future workers.
This registers a new setup function for workers in this cluster. The
function will run immediately on all currently connected workers. It
will also be run upon connection by any workers that are added in the
future. Multiple setup functions can be registered - these will be
called in the order they were added.
If the function takes an input argument named ``dask_worker`` then
that variable will be populated with the worker itself.
Parameters
----------
setup : callable(dask_worker: Worker) -> None
Function to register and run on all workers
"""
return self.register_worker_plugin(_WorkerSetupPlugin(setup))
async def _register_worker_plugin(self, plugin=None, name=None, nanny=None):
if nanny or nanny is None and isinstance(plugin, NannyPlugin):
method = self.scheduler.register_nanny_plugin
else:
method = self.scheduler.register_worker_plugin
responses = await method(plugin=dumps(plugin), name=name)
for response in responses.values():
if response["status"] == "error":
_, exc, tb = clean_exception(
response["exception"], response["traceback"]
)
raise exc.with_traceback(tb)
return responses
def register_worker_plugin(self, plugin=None, name=None, nanny=None):
"""
Registers a lifecycle worker plugin for all current and future workers.
This registers a new object to handle setup, task state transitions and
teardown for workers in this cluster. The plugin will instantiate
itself on all currently connected workers. It will also be run on any
worker that connects in the future.
The plugin may include methods ``setup``, ``teardown``, ``transition``,
and ``release_key``. See the
``dask.distributed.WorkerPlugin`` class or the examples below for the
interface and docstrings. It must be serializable with the pickle or
cloudpickle modules.
If the plugin has a ``name`` attribute, or if the ``name=`` keyword is
used then that will control idempotency. If a plugin with that name has
already been registered, then it will be removed and replaced by the new one.
For alternatives to plugins, you may also wish to look into preload
scripts.
Parameters
----------
plugin : WorkerPlugin or NannyPlugin
WorkerPlugin or NannyPlugin instance to register.
name : str, optional
A name for the plugin.
Registering a plugin with the same name will have no effect.
If plugin has no name attribute a random name is used.
nanny : bool, optional
Whether to register the plugin with workers or nannies.
Examples
--------
>>> class MyPlugin(WorkerPlugin):
... def __init__(self, *args, **kwargs):
... pass # the constructor is up to you
... def setup(self, worker: dask.distributed.Worker):
... pass
... def teardown(self, worker: dask.distributed.Worker):
... pass
... def transition(self, key: str, start: str, finish: str,
... **kwargs):
... pass
... def release_key(self, key: str, state: str, cause: str | None, reason: None, report: bool):
... pass
>>> plugin = MyPlugin(1, 2, 3)
>>> client.register_worker_plugin(plugin)
You can get access to the plugin with the ``get_worker`` function
>>> client.register_worker_plugin(other_plugin, name='my-plugin')
>>> def f():
... worker = get_worker()
... plugin = worker.plugins['my-plugin']
... return plugin.my_state
>>> future = client.run(f)
See Also
--------
distributed.WorkerPlugin
unregister_worker_plugin
"""
if name is None:
name = _get_plugin_name(plugin)
assert name
return self.sync(
self._register_worker_plugin, plugin=plugin, name=name, nanny=nanny
)
async def _unregister_worker_plugin(self, name, nanny=None):
if nanny:
responses = await self.scheduler.unregister_nanny_plugin(name=name)
else:
responses = await self.scheduler.unregister_worker_plugin(name=name)
for response in responses.values():
if response["status"] == "error":
exc = response["exception"]
tb = response["traceback"]
raise exc.with_traceback(tb)
return responses
def unregister_worker_plugin(self, name, nanny=None):
"""Unregisters a lifecycle worker plugin
This unregisters an existing worker plugin. As part of the unregistration process
the plugin's ``teardown`` method will be called.
Parameters
----------
name : str
Name of the plugin to unregister. See the :meth:`Client.register_worker_plugin`
docstring for more information.
Examples
--------
>>> class MyPlugin(WorkerPlugin):
... def __init__(self, *args, **kwargs):
... pass # the constructor is up to you
... def setup(self, worker: dask.distributed.Worker):
... pass
... def teardown(self, worker: dask.distributed.Worker):
... pass
... def transition(self, key: str, start: str, finish: str, **kwargs):
... pass
... def release_key(self, key: str, state: str, cause: str | None, reason: None, report: bool):
... pass
>>> plugin = MyPlugin(1, 2, 3)
>>> client.register_worker_plugin(plugin, name='foo')
>>> client.unregister_worker_plugin(name='foo')
See Also
--------
register_worker_plugin
"""
return self.sync(self._unregister_worker_plugin, name=name, nanny=nanny)
@property
def amm(self):
"""Convenience accessors for the :doc:`active_memory_manager`"""
from distributed.active_memory_manager import AMMClientProxy
return AMMClientProxy(self)
class _WorkerSetupPlugin(WorkerPlugin):
"""This is used to support older setup functions as callbacks"""
def __init__(self, setup):
self._setup = setup
def setup(self, worker):
if has_keyword(self._setup, "dask_worker"):
return self._setup(dask_worker=worker)
else:
return self._setup()
def CompatibleExecutor(*args, **kwargs):
raise Exception("This has been moved to the Client.get_executor() method")
ALL_COMPLETED = "ALL_COMPLETED"
FIRST_COMPLETED = "FIRST_COMPLETED"
async def _wait(fs, timeout=None, return_when=ALL_COMPLETED):
if timeout is not None and not isinstance(timeout, Number):
raise TypeError(
"timeout= keyword received a non-numeric value.\n"
"Beware that wait expects a list of values\n"
" Bad: wait(x, y, z)\n"
" Good: wait([x, y, z])"
)
fs = futures_of(fs)
if return_when == ALL_COMPLETED:
wait_for = distributed.utils.All
elif return_when == FIRST_COMPLETED:
wait_for = distributed.utils.Any
else:
raise NotImplementedError(
"Only return_when='ALL_COMPLETED' and 'FIRST_COMPLETED' are supported"
)
future = wait_for({f._state.wait() for f in fs})
if timeout is not None:
future = asyncio.wait_for(future, timeout)
await future
done, not_done = (
{fu for fu in fs if fu.status != "pending"},
{fu for fu in fs if fu.status == "pending"},
)
cancelled = [f.key for f in done if f.status == "cancelled"]
if cancelled:
raise CancelledError(cancelled)
return DoneAndNotDoneFutures(done, not_done)
def wait(fs, timeout=None, return_when=ALL_COMPLETED):
"""Wait until all/any futures are finished
Parameters
----------
fs : List[Future]
timeout : number, string, optional
Time after which to raise a ``dask.distributed.TimeoutError``.
Can be a string like ``"10 minutes"`` or a number of seconds to wait.
return_when : str, optional
One of `ALL_COMPLETED` or `FIRST_COMPLETED`
Returns
-------
Named tuple of completed, not completed
"""
if timeout is not None and isinstance(timeout, (Number, str)):
timeout = parse_timedelta(timeout, default="s")
client = default_client()
result = client.sync(_wait, fs, timeout=timeout, return_when=return_when)
return result
async def _as_completed(fs, queue):
fs = futures_of(fs)
groups = groupby(lambda f: f.key, fs)
firsts = [v[0] for v in groups.values()]
wait_iterator = gen.WaitIterator(
*map(asyncio.ensure_future, [f._state.wait() for f in firsts])
)
while not wait_iterator.done():
await wait_iterator.next()
# TODO: handle case of restarted futures
future = firsts[wait_iterator.current_index]
for f in groups[future.key]:
queue.put_nowait(f)
async def _first_completed(futures):
"""Return a single completed future
See Also:
_as_completed
"""
q = asyncio.Queue()
await _as_completed(futures, q)
result = await q.get()
return result
class as_completed:
"""
Return futures in the order in which they complete
This returns an iterator that yields the input future objects in the order
in which they complete. Calling ``next`` on the iterator will block until
the next future completes, irrespective of order.
Additionally, you can also add more futures to this object during
computation with the ``.add`` method
Parameters
----------
futures: Collection of futures
A list of Future objects to be iterated over in the order in which they
complete
with_results: bool (False)
Whether to wait and include results of futures as well;
in this case `as_completed` yields a tuple of (future, result)
raise_errors: bool (True)
Whether we should raise when the result of a future raises an
exception; only affects behavior when `with_results=True`.
Examples
--------
>>> x, y, z = client.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> for future in as_completed([x, y, z]): # doctest: +SKIP
... print(future.result()) # doctest: +SKIP
3
2
4
Add more futures during computation
>>> x, y, z = client.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> ac = as_completed([x, y, z]) # doctest: +SKIP
>>> for future in ac: # doctest: +SKIP
... print(future.result()) # doctest: +SKIP
... if random.random() < 0.5: # doctest: +SKIP
... ac.add(c.submit(double, future)) # doctest: +SKIP
4
2
8
3
6
12
24
Optionally wait until the result has been gathered as well
>>> ac = as_completed([x, y, z], with_results=True) # doctest: +SKIP
>>> for future, result in ac: # doctest: +SKIP
... print(result) # doctest: +SKIP
2
4
3
"""
def __init__(self, futures=None, loop=None, with_results=False, raise_errors=True):
if futures is None:
futures = []
self.futures = defaultdict(lambda: 0)
self.queue = pyQueue()
self.lock = threading.Lock()
self.loop = loop or default_client().loop
self.thread_condition = threading.Condition()
self.with_results = with_results
self.raise_errors = raise_errors
if futures:
self.update(futures)
@property
def condition(self):
try:
return self._condition
except AttributeError:
self._condition = asyncio.Condition()
return self._condition
async def _track_future(self, future):
try:
await _wait(future)
except CancelledError:
pass
if self.with_results:
try:
result = await future._result(raiseit=False)
except CancelledError as exc:
result = exc
with self.lock:
if future in self.futures:
self.futures[future] -= 1
if not self.futures[future]:
del self.futures[future]
if self.with_results:
self.queue.put_nowait((future, result))
else:
self.queue.put_nowait(future)
async with self.condition:
self.condition.notify()
with self.thread_condition:
self.thread_condition.notify()
def update(self, futures):
"""Add multiple futures to the collection.
The added futures will emit from the iterator once they finish"""
from distributed.actor import BaseActorFuture
with self.lock:
for f in futures:
if not isinstance(f, (Future, BaseActorFuture)):
raise TypeError("Input must be a future, got %s" % f)
self.futures[f] += 1
self.loop.add_callback(self._track_future, f)
def add(self, future):
"""Add a future to the collection
This future will emit from the iterator once it finishes
"""
self.update((future,))
def is_empty(self):
"""Returns True if there no completed or computing futures"""
return not self.count()
def has_ready(self):
"""Returns True if there are completed futures available."""
return not self.queue.empty()
def count(self):
"""Return the number of futures yet to be returned
This includes both the number of futures still computing, as well as
those that are finished, but have not yet been returned from this
iterator.
"""
with self.lock:
return len(self.futures) + len(self.queue.queue)
def __repr__(self):
return "<as_completed: waiting={} done={}>".format(
len(self.futures), len(self.queue.queue)
)
def __iter__(self):
return self
def __aiter__(self):
return self
def _get_and_raise(self):
res = self.queue.get()
if self.with_results:
future, result = res
if self.raise_errors and future.status == "error":
typ, exc, tb = result
raise exc.with_traceback(tb)
elif future.status == "cancelled":
res = (res[0], CancelledError(future.key))
return res
def __next__(self):
while self.queue.empty():
if self.is_empty():
raise StopIteration()
with self.thread_condition:
self.thread_condition.wait(timeout=0.100)
return self._get_and_raise()
async def __anext__(self):
if not self.futures and self.queue.empty():
raise StopAsyncIteration
while self.queue.empty():
if not self.futures:
raise StopAsyncIteration
async with self.condition:
await self.condition.wait()
return self._get_and_raise()
next = __next__
def next_batch(self, block=True):
"""Get the next batch of completed futures.
Parameters
----------
block : bool, optional
If True then wait until we have some result, otherwise return
immediately, even with an empty list. Defaults to True.
Examples
--------
>>> ac = as_completed(futures) # doctest: +SKIP
>>> client.gather(ac.next_batch()) # doctest: +SKIP
[4, 1, 3]
>>> client.gather(ac.next_batch(block=False)) # doctest: +SKIP
[]
Returns
-------
List of futures or (future, result) tuples
"""
if block:
batch = [next(self)]
else:
batch = []
while not self.queue.empty():
batch.append(self.queue.get())
return batch
def batches(self):
"""
Yield all finished futures at once rather than one-by-one
This returns an iterator of lists of futures or lists of
(future, result) tuples rather than individual futures or individual
(future, result) tuples. It will yield these as soon as possible
without waiting.
Examples
--------
>>> for batch in as_completed(futures).batches(): # doctest: +SKIP
... results = client.gather(batch)
... print(results)
[4, 2]
[1, 3, 7]
[5]
[6]
"""
while True:
try:
yield self.next_batch(block=True)
except StopIteration:
return
def clear(self):
"""Clear out all submitted futures"""
with self.lock:
self.futures.clear()
while not self.queue.empty():
self.queue.get()
def AsCompleted(*args, **kwargs):
raise Exception("This has moved to as_completed")
def default_client(c=None):
"""Return a client if one has started
Parameters
----------
c : Client
The client to return. If None, the default client is returned.
Returns
-------
c : Client
The client, if one has started
"""
c = c or _get_global_client()
if c:
return c
else:
raise ValueError(
"No clients found\n"
"Start a client and point it to the scheduler address\n"
" from distributed import Client\n"
" client = Client('ip-addr-of-scheduler:8786')\n"
)
def ensure_default_client(client):
"""Ensures the client passed as argument is set as the default
Parameters
----------
client : Client
The client
"""
_set_global_client(client)
def redict_collection(c, dsk):
"""Change the dictionary in the collection
Parameters
----------
c : collection
The collection
dsk : dict
The dictionary
Returns
-------
c : Delayed
If the collection is a 'Delayed' object the collection is returned
cc : collection
If the collection is not a 'Delayed' object a copy of the
collection with xthe new dictionary is returned
"""
from dask.delayed import Delayed
if isinstance(c, Delayed):
return Delayed(c.key, dsk)
else:
cc = copy.copy(c)
cc.dask = dsk
return cc
def futures_of(o, client=None):
"""Future objects in a collection
Parameters
----------
o : collection
A possibly nested collection of Dask objects
client : Client, optional
The client
Examples
--------
>>> futures_of(my_dask_dataframe)
[<Future: finished key: ...>,
<Future: pending key: ...>]
Raises
------
CancelledError
If one of the futures is cancelled a CancelledError is raised
Returns
-------
futures : List[Future]
A list of futures held by those collections
"""
stack = [o]
seen = set()
futures = list()
while stack:
x = stack.pop()
if type(x) in (tuple, set, list):
stack.extend(x)
elif type(x) is dict:
stack.extend(x.values())
elif type(x) is SubgraphCallable:
stack.extend(x.dsk.values())
elif isinstance(x, Future):
if x not in seen:
seen.add(x)
futures.append(x)
elif dask.is_dask_collection(x):
stack.extend(x.__dask_graph__().values())
if client is not None:
bad = {f for f in futures if f.cancelled()}
if bad:
raise CancelledError(bad)
return futures[::-1]
def fire_and_forget(obj):
"""Run tasks at least once, even if we release the futures
Under normal operation Dask will not run any tasks for which there is not
an active future (this avoids unnecessary work in many situations).
However sometimes you want to just fire off a task, not track its future,
and expect it to finish eventually. You can use this function on a future
or collection of futures to ask Dask to complete the task even if no active
client is tracking it.
The results will not be kept in memory after the task completes (unless
there is an active future) so this is only useful for tasks that depend on
side effects.
Parameters
----------
obj : Future, list, dict, dask collection
The futures that you want to run at least once
Examples
--------
>>> fire_and_forget(client.submit(func, *args)) # doctest: +SKIP
"""
futures = futures_of(obj)
for future in futures:
future.client._send_to_scheduler(
{
"op": "client-desires-keys",
"keys": [stringify(future.key)],
"client": "fire-and-forget",
}
)
class get_task_stream:
"""
Collect task stream within a context block
This provides diagnostic information about every task that was run during
the time when this block was active.
This must be used as a context manager.
Parameters
----------
plot: boolean, str
If true then also return a Bokeh figure
If plot == 'save' then save the figure to a file
filename: str (optional)
The filename to save to if you set ``plot='save'``
Examples
--------
>>> with get_task_stream() as ts:
... x.compute()
>>> ts.data
[...]
Get back a Bokeh figure and optionally save to a file
>>> with get_task_stream(plot='save', filename='task-stream.html') as ts:
... x.compute()
>>> ts.figure
<Bokeh Figure>
To share this file with others you may wish to upload and serve it online.
A common way to do this is to upload the file as a gist, and then serve it
on https://raw.githack.com ::
$ python -m pip install gist
$ gist task-stream.html
https://gist.github.com/8a5b3c74b10b413f612bb5e250856ceb
You can then navigate to that site, click the "Raw" button to the right of
the ``task-stream.html`` file, and then provide that URL to
https://raw.githack.com . This process should provide a sharable link that
others can use to see your task stream plot.
See Also
--------
Client.get_task_stream: Function version of this context manager
"""
def __init__(self, client=None, plot=False, filename="task-stream.html"):
self.data = []
self._plot = plot
self._filename = filename
self.figure = None
self.client = client or default_client()
self.client.get_task_stream(start=0, stop=0) # ensure plugin
def __enter__(self):
self.start = time()
return self
def __exit__(self, exc_type, exc_value, traceback):
L = self.client.get_task_stream(
start=self.start, plot=self._plot, filename=self._filename
)
if self._plot:
L, self.figure = L
self.data.extend(L)
async def __aenter__(self):
return self
async def __aexit__(self, exc_type, exc_value, traceback):
L = await self.client.get_task_stream(
start=self.start, plot=self._plot, filename=self._filename
)
if self._plot:
L, self.figure = L
self.data.extend(L)
class performance_report:
"""Gather performance report
This creates a static HTML file that includes many of the same plots of the
dashboard for later viewing.
The resulting file uses JavaScript, and so must be viewed with a web
browser. Locally we recommend using ``python -m http.server`` or hosting
the file live online.
Parameters
----------
filename: str, optional
The filename to save the performance report locally
stacklevel: int, optional
The code execution frame utilized for populating the Calling Code section
of the report. Defaults to `1` which is the frame calling ``performance_report``
mode: str, optional
Mode parameter to pass to :func:`bokeh.io.output.output_file`. Defaults to ``None``.
Examples
--------
>>> with performance_report(filename="myfile.html", stacklevel=1):
... x.compute()
$ python -m http.server
$ open myfile.html
"""
def __init__(self, filename="dask-report.html", stacklevel=1, mode=None):
self.filename = filename
# stacklevel 0 or less - shows dask internals which likely isn't helpful
self._stacklevel = stacklevel if stacklevel > 0 else 1
self.mode = mode
async def __aenter__(self):
self.start = time()
self.last_count = await get_client().run_on_scheduler(
lambda dask_scheduler: dask_scheduler.monitor.count
)
await get_client().get_task_stream(start=0, stop=0) # ensure plugin
async def __aexit__(self, exc_type, exc_value, traceback, code=None):
client = get_client()
if code is None:
code = client._get_computation_code(self._stacklevel + 1)
data = await client.scheduler.performance_report(
start=self.start, last_count=self.last_count, code=code, mode=self.mode
)
with open(self.filename, "w") as f:
f.write(data)
def __enter__(self):
get_client().sync(self.__aenter__)
def __exit__(self, exc_type, exc_value, traceback):
client = get_client()
code = client._get_computation_code(self._stacklevel + 1)
client.sync(self.__aexit__, exc_type, exc_value, traceback, code=code)
class get_task_metadata:
"""Collect task metadata within a context block
This gathers ``TaskState`` metadata and final state from the scheduler
for tasks which are submitted and finished within the scope of this
context manager.
Examples
--------
>>> with get_task_metadata() as tasks:
... x.compute()
>>> tasks.metadata
{...}
>>> tasks.state
{...}
"""
def __init__(self):
self.name = f"task-metadata-{uuid.uuid4().hex}"
self.keys = set()
self.metadata = None
self.state = None
async def __aenter__(self):
await get_client().scheduler.start_task_metadata(name=self.name)
return self
async def __aexit__(self, exc_type, exc_value, traceback):
response = await get_client().scheduler.stop_task_metadata(name=self.name)
self.metadata = response["metadata"]
self.state = response["state"]
def __enter__(self):
return get_client().sync(self.__aenter__)
def __exit__(self, exc_type, exc_value, traceback):
return get_client().sync(self.__aexit__, exc_type, exc_value, traceback)
@contextmanager
def temp_default_client(c):
"""Set the default client for the duration of the context
.. note::
This function should be used exclusively for unit testing the default
client functionality. In all other cases, please use
``Client.as_current`` instead.
.. note::
Unlike ``Client.as_current``, this context manager is neither
thread-local nor task-local.
Parameters
----------
c : Client
This is what default_client() will return within the with-block.
"""
old_exec = default_client()
_set_global_client(c)
try:
yield
finally:
_set_global_client(old_exec)
def _close_global_client():
"""
Force close of global client. This cleans up when a client
wasn't close explicitly, e.g. interactive sessions.
"""
c = _get_global_client()
if c is not None:
c._should_close_loop = False
with suppress(TimeoutError, RuntimeError):
if c.asynchronous:
c.loop.add_callback(c.close, timeout=3)
else:
c.close(timeout=3)
atexit.register(_close_global_client)
|