Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,439 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
from __future__ import annotations
import os
import re
from inspect import getmro
import numba as nb
import numpy as np
import pandas as pd
from toolz import memoize
from xarray import DataArray
import dask.dataframe as dd
import datashader.datashape as datashape
try:
from datashader.datatypes import RaggedDtype
except ImportError:
RaggedDtype = type(None)
try:
import cudf
except Exception:
cudf = None
try:
from geopandas.array import GeometryDtype as gpd_GeometryDtype
except ImportError:
gpd_GeometryDtype = type(None)
try:
from spatialpandas.geometry import GeometryDtype
except ImportError:
GeometryDtype = type(None)
class VisibleDeprecationWarning(UserWarning):
"""Visible deprecation warning.
By default, python will not show deprecation warnings, so this class
can be used when a very visible warning is helpful, for example because
the usage is most likely a user bug.
"""
ngjit = nb.jit(nopython=True, nogil=True)
ngjit_parallel = nb.jit(nopython=True, nogil=True, parallel=True)
# Get and save the Numba version, will be used to limit functionality
numba_version = tuple([int(x) for x in re.match(
r"([0-9]+)\.([0-9]+)\.([0-9]+)",
nb.__version__).groups()])
class Expr:
"""Base class for expression-like objects.
Implements hashing and equality checks. Subclasses should implement an
``inputs`` attribute/property, containing a tuple of everything that fully
defines that expression.
"""
def __hash__(self):
return hash((type(self), self._hashable_inputs()))
def __eq__(self, other):
return (type(self) is type(other) and
self._hashable_inputs() == other._hashable_inputs())
def __ne__(self, other):
return not self == other
def _hashable_inputs(self):
"""
Return a version of the inputs tuple that is suitable for hashing and
equality comparisons
"""
result = []
for ip in self.inputs:
if isinstance(ip, (list, set)):
result.append(tuple(ip))
elif isinstance(ip, np.ndarray):
result.append(ip.tobytes())
else:
result.append(ip)
return tuple(result)
class Dispatcher:
"""Simple single dispatch."""
def __init__(self):
self._lookup = {}
def register(self, typ, func=None):
"""Register dispatch of `func` on arguments of type `typ`"""
if func is None:
return lambda f: self.register(typ, f)
if isinstance(typ, tuple):
for t in typ:
self.register(t, func)
else:
self._lookup[typ] = func
return func
def __call__(self, head, *rest, **kwargs):
# We dispatch first on type(head), and fall back to iterating through
# the mro. This is significantly faster in the common case where
# type(head) is in the lookup, with only a small penalty on fall back.
lk = self._lookup
typ = type(head)
if typ in lk:
return lk[typ](head, *rest, **kwargs)
for cls in getmro(typ)[1:]:
if cls in lk:
return lk[cls](head, *rest, **kwargs)
raise TypeError("No dispatch for {0} type".format(typ))
def isrealfloat(dt):
"""Check if a datashape is numeric and real.
Example
-------
>>> isrealfloat('int32')
False
>>> isrealfloat('float64')
True
>>> isrealfloat('string')
False
>>> isrealfloat('complex64')
False
"""
dt = datashape.predicates.launder(dt)
return isinstance(dt, datashape.Unit) and dt in datashape.typesets.floating
def isreal(dt):
"""Check if a datashape is numeric and real.
Example
-------
>>> isreal('int32')
True
>>> isreal('float64')
True
>>> isreal('string')
False
>>> isreal('complex64')
False
"""
dt = datashape.predicates.launder(dt)
return isinstance(dt, datashape.Unit) and dt in datashape.typesets.real
def nansum_missing(array, axis):
"""nansum where all-NaN values remain NaNs.
Note: In NumPy <=1.9 NaN is returned for slices that are
all NaN, while later versions return 0. This function emulates
the older behavior, which allows using NaN as a missing value
indicator.
Parameters
----------
array: Array to sum over
axis: Axis to sum over
"""
T = list(range(array.ndim))
T.remove(axis)
T.insert(0, axis)
array = array.transpose(T)
missing_vals = np.isnan(array)
all_empty = np.all(missing_vals, axis=0)
set_to_zero = missing_vals & ~all_empty
return np.where(set_to_zero, 0, array).sum(axis=0)
def calc_res(raster):
"""Calculate the resolution of xarray.DataArray raster and return it as the
two-tuple (xres, yres). yres is positive if it is decreasing.
"""
h, w = raster.shape[-2:]
ydim, xdim = raster.dims[-2:]
xcoords = raster[xdim].values
ycoords = raster[ydim].values
xres = (xcoords[-1] - xcoords[0]) / (w - 1)
yres = (ycoords[0] - ycoords[-1]) / (h - 1)
return xres, yres
def calc_bbox(xs, ys, res):
"""Calculate the bounding box of a raster, and return it in a four-element
tuple: (xmin, ymin, xmax, ymax). This calculation assumes the raster is
uniformly sampled (equivalent to a flat-earth assumption, for geographic
data) so that an affine transform (using the "Augmented Matrix" approach)
suffices:
https://en.wikipedia.org/wiki/Affine_transformation#Augmented_matrix
Parameters
----------
xs : numpy.array
1D NumPy array of floats representing the x-values of a raster. This
likely originated from an xarray.DataArray or xarray.Dataset object
(xr.open_rasterio).
ys : numpy.array
1D NumPy array of floats representing the y-values of a raster. This
likely originated from an xarray.DataArray or xarray.Dataset object
(xr.open_rasterio).
res : tuple
Two-tuple (int, int) which includes x and y resolutions (aka "grid/cell
sizes"), respectively.
"""
xbound = xs.max() if res[0] < 0 else xs.min()
ybound = ys.min() if res[1] < 0 else ys.max()
xmin = ymin = np.inf
xmax = ymax = -np.inf
Ab = np.array([[res[0], 0., xbound],
[0., -res[1], ybound],
[0., 0., 1.]])
for x_, y_ in [(0, 0), (0, len(ys)), (len(xs), 0), (len(xs), len(ys))]:
x, y, _ = np.dot(Ab, np.array([x_, y_, 1.]))
if x < xmin:
xmin = x
if x > xmax:
xmax = x
if y < ymin:
ymin = y
if y > ymax:
ymax = y
xpad, ypad = res[0]/2., res[1]/2.
return xmin-xpad, ymin+ypad, xmax-xpad, ymax+ypad
def get_indices(start, end, coords, res):
"""
Transform continuous start and end coordinates into array indices.
Parameters
----------
start : float
coordinate of the lower bound.
end : float
coordinate of the upper bound.
coords : numpy.ndarray
coordinate values along the axis.
res : tuple
Resolution along an axis (aka "grid/cell sizes")
"""
size = len(coords)
half = abs(res)/2.
vmin, vmax = coords.min(), coords.max()
span = vmax-vmin
start, end = start+half-vmin, end-half-vmin
sidx, eidx = int((start/span)*size), int((end/span)*size)
if eidx < sidx:
return sidx, sidx
return sidx, eidx
def _flip_array(array, xflip, yflip):
# array may have 2 or 3 dimensions, last one is x-dimension, last but one is y-dimension.
if yflip:
array = array[..., ::-1, :]
if xflip:
array = array[..., :, ::-1]
return array
def orient_array(raster, res=None, layer=None):
"""
Reorients the array to a canonical orientation depending on
whether the x and y-resolution values are positive or negative.
Parameters
----------
raster : DataArray
xarray DataArray to be reoriented
res : tuple
Two-tuple (int, int) which includes x and y resolutions (aka "grid/cell
sizes"), respectively.
layer : int
Index of the raster layer to be reoriented (optional)
Returns
-------
array : numpy.ndarray
Reoriented 2d NumPy ndarray
"""
if res is None:
res = calc_res(raster)
array = raster.data
if layer is not None:
array = array[layer-1]
r0zero = np.timedelta64(0, 'ns') if isinstance(res[0], np.timedelta64) else 0
r1zero = np.timedelta64(0, 'ns') if isinstance(res[1], np.timedelta64) else 0
xflip = res[0] < r0zero
yflip = res[1] > r1zero
array = _flip_array(array, xflip, yflip)
return array
def downsample_aggregate(aggregate, factor, how='mean'):
"""Create downsampled aggregate factor in pixels units"""
ys, xs = aggregate.shape[:2]
crarr = aggregate[:ys-(ys % int(factor)), :xs-(xs % int(factor))]
concat = np.concatenate([[crarr[i::factor, j::factor]
for i in range(factor)]
for j in range(factor)])
if how == 'mean':
return np.nanmean(concat, axis=0)
elif how == 'sum':
return np.nansum(concat, axis=0)
elif how == 'max':
return np.nanmax(concat, axis=0)
elif how == 'min':
return np.nanmin(concat, axis=0)
elif how == 'median':
return np.nanmedian(concat, axis=0)
elif how == 'std':
return np.nanstd(concat, axis=0)
elif how == 'var':
return np.nanvar(concat, axis=0)
else:
raise ValueError("Invalid 'how' downsample method. Options mean, sum, max, min, median, "
"std, var")
def summarize_aggregate_values(aggregate, how='linear', num=180):
"""Helper function similar to np.linspace which return values from aggregate min value to
aggregate max value in either linear or log space.
"""
max_val = np.nanmax(aggregate.values)
min_val = np.nanmin(aggregate.values)
if min_val == 0:
min_val = aggregate.data[aggregate.data > 0].min()
if how == 'linear':
vals = np.linspace(min_val, max_val, num)[None, :]
else:
vals = (np.logspace(0,
np.log1p(max_val - min_val),
base=np.e, num=num,
dtype=min_val.dtype) + min_val)[None, :]
return DataArray(vals), min_val, max_val
def hold(f):
'''
simple arg caching decorator
'''
last = []
def _(*args):
if not last or last[0] != args:
last[:] = args, f(*args)
return last[1]
return _
def export_image(img, filename, fmt=".png", _return=True, export_path=".", background=""):
"""Given a datashader Image object, saves it to a disk file in the requested format"""
from datashader.transfer_functions import set_background
if not os.path.exists(export_path):
os.mkdir(export_path)
if background:
img = set_background(img, background)
img.to_pil().save(os.path.join(export_path, filename + fmt))
return img if _return else None
def lnglat_to_meters(longitude, latitude):
"""
Projects the given (longitude, latitude) values into Web Mercator
coordinates (meters East of Greenwich and meters North of the Equator).
Longitude and latitude can be provided as scalars, Pandas columns,
or Numpy arrays, and will be returned in the same form. Lists
or tuples will be converted to Numpy arrays.
Examples:
easting, northing = lnglat_to_meters(-74,40.71)
easting, northing = lnglat_to_meters(np.array([-74]),np.array([40.71]))
df=pandas.DataFrame(dict(longitude=np.array([-74]),latitude=np.array([40.71])))
df.loc[:, 'longitude'], df.loc[:, 'latitude'] = lnglat_to_meters(df.longitude,df.latitude)
"""
if isinstance(longitude, (list, tuple)):
longitude = np.array(longitude)
if isinstance(latitude, (list, tuple)):
latitude = np.array(latitude)
origin_shift = np.pi * 6378137
easting = longitude * origin_shift / 180.0
northing = np.log(np.tan((90 + latitude) * np.pi / 360.0)) * origin_shift / np.pi
return (easting, northing)
# Heavily inspired by odo
def dshape_from_pandas_helper(col):
"""Return an object from datashader.datashape.coretypes given a column from a pandas
dataframe.
"""
if (isinstance(col.dtype, type(pd.Categorical.dtype)) or
isinstance(col.dtype, pd.api.types.CategoricalDtype) or
cudf and isinstance(col.dtype, cudf.core.dtypes.CategoricalDtype)):
# Compute category dtype
pd_categories = col.cat.categories
if isinstance(pd_categories, dd.Index):
pd_categories = pd_categories.compute()
if cudf and isinstance(pd_categories, cudf.Index):
pd_categories = pd_categories.to_pandas()
categories = np.array(pd_categories)
if categories.dtype.kind == 'U':
categories = categories.astype('object')
cat_dshape = datashape.dshape('{} * {}'.format(
len(col.cat.categories),
categories.dtype,
))
return datashape.Categorical(categories,
type=cat_dshape,
ordered=col.cat.ordered)
elif col.dtype.kind == 'M':
tz = getattr(col.dtype, 'tz', None)
if tz is not None:
# Pandas stores this as a pytz.tzinfo, but DataShape wants a string
tz = str(tz)
return datashape.Option(datashape.DateTime(tz=tz))
elif isinstance(col.dtype, (RaggedDtype, GeometryDtype)):
return col.dtype
elif gpd_GeometryDtype and isinstance(col.dtype, gpd_GeometryDtype):
return col.dtype
dshape = datashape.CType.from_numpy_dtype(col.dtype)
dshape = datashape.string if dshape == datashape.object_ else dshape
if dshape in (datashape.string, datashape.datetime_):
return datashape.Option(dshape)
return dshape
def dshape_from_pandas(df):
"""Return a datashape.DataShape object given a pandas dataframe."""
return len(df) * datashape.Record([(k, dshape_from_pandas_helper(df[k]))
for k in df.columns])
@memoize(key=lambda args, kwargs: tuple(args[0].__dask_keys__()))
def dshape_from_dask(df):
"""Return a datashape.DataShape object given a dask dataframe."""
cat_columns = [
col for col in df.columns
if (isinstance(df[col].dtype, type(pd.Categorical.dtype)) or
isinstance(df[col].dtype, pd.api.types.CategoricalDtype))
and not getattr(df[col].cat, 'known', True)]
df = df.categorize(cat_columns, index=False)
# get_partition(0) used below because categories are sometimes repeated
# for dask-cudf DataFrames with multiple partitions
return datashape.var * datashape.Record([
(k, dshape_from_pandas_helper(df[k].get_partition(0))) for k in df.columns
]), df
def dshape_from_xarray_dataset(xr_ds):
"""Return a datashape.DataShape object given a xarray Dataset."""
return datashape.var * datashape.Record([
(k, dshape_from_pandas_helper(xr_ds[k]))
for k in list(xr_ds.data_vars) + list(xr_ds.coords)
])
def dataframe_from_multiple_sequences(x_values, y_values):
"""
Converts a set of multiple sequences (eg: time series), stored as a 2 dimensional
numpy array into a pandas dataframe that can be plotted by datashader.
The pandas dataframe eventually contains two columns ('x' and 'y') with the data.
Each time series is separated by a row of NaNs.
Discussion at: https://github.com/bokeh/datashader/issues/286#issuecomment-334619499
x_values: 1D numpy array with the values to be plotted on the x axis (eg: time)
y_values: 2D numpy array with the sequences to be plotted of shape (num sequences X length of
each sequence)
"""
# Add a NaN at the end of the array of x values
x = np.zeros(x_values.shape[0] + 1)
x[-1] = np.nan
x[:-1] = x_values
# Tile this array of x values: number of repeats = number of sequences/time series in the data
x = np.tile(x, y_values.shape[0])
# Add a NaN at the end of every sequence in y_values
y = np.zeros((y_values.shape[0], y_values.shape[1] + 1))
y[:, -1] = np.nan
y[:, :-1] = y_values
# Return a dataframe with this new set of x and y values
return pd.DataFrame({'x': x, 'y': y.flatten()})
def _pd_mesh(vertices, simplices):
"""Helper for ``datashader.utils.mesh()``. Both arguments are assumed to be
Pandas DataFrame objects.
"""
# Winding auto-detect
winding = [0, 1, 2]
first_tri = vertices.values[simplices.values[0, winding].astype(np.int64), :2]
a, b, c = first_tri
p1, p2 = b - a, c - a
cross_product = p1[0] * p2[1] - p1[1] * p2[0]
if cross_product >= 0:
winding = [0, 2, 1]
# Construct mesh by indexing into vertices with simplex indices
vertex_idxs = simplices.values[:, winding]
if not vertex_idxs.dtype == 'int64':
vertex_idxs = vertex_idxs.astype(np.int64)
vals = np.take(vertices.values, vertex_idxs, axis=0)
vals = vals.reshape(np.prod(vals.shape[:2]), vals.shape[2])
res = pd.DataFrame(vals, columns=vertices.columns)
# If vertices don't have weights, use simplex weights
verts_have_weights = len(vertices.columns) > 2
if not verts_have_weights:
weight_col = simplices.columns[3]
res[weight_col] = simplices.values[:, 3].repeat(3)
return res
def _dd_mesh(vertices, simplices):
"""Helper for ``datashader.utils.mesh()``. Both arguments are assumed to be
Dask DataFrame objects.
"""
# Construct mesh by indexing into vertices with simplex indices
# TODO: For dask: avoid .compute() calls
res = _pd_mesh(vertices.compute(), simplices.compute())
# Compute a chunksize that will not split the vertices of a single
# triangle across partitions
approx_npartitions = max(vertices.npartitions, simplices.npartitions)
chunksize = int(np.ceil(len(res) / (3*approx_npartitions)) * 3)
# Create dask dataframe
res = dd.from_pandas(res, chunksize=chunksize)
return res
def mesh(vertices, simplices):
"""Merge vertices and simplices into a triangular mesh, suitable to be
passed into the ``Canvas.trimesh()`` method via the ``mesh``
keyword-argument. Both arguments are assumed to be Dask DataFrame
objects.
"""
# Verify the simplex data structure
assert simplices.values.shape[1] >= 3, ('At least three vertex columns '
'are required for the triangle '
'definition')
simplices_all_ints = simplices.dtypes.iloc[:3].map(
lambda dt: np.issubdtype(dt, np.integer)
).all()
assert simplices_all_ints, ('Simplices must be integral. You may '
'consider casting simplices to integers '
'with ".astype(int)"')
assert len(vertices.columns) > 2 or simplices.values.shape[1] > 3, \
'If no vertex weight column is provided, a triangle weight column is required.'
if isinstance(vertices, dd.DataFrame) and isinstance(simplices, dd.DataFrame):
return _dd_mesh(vertices, simplices)
return _pd_mesh(vertices, simplices)
def apply(func, args, kwargs=None):
if kwargs:
return func(*args, **kwargs)
else:
return func(*args)
@ngjit
def isnull(val):
"""
Equivalent to isnan for floats, but also numba compatible with integers
"""
return not (val <= 0 or val > 0)
@ngjit
def isminus1(val):
"""
Check for -1 which is equivalent to NaN for some integer aggregations
"""
return val == -1
@ngjit_parallel
def nanfirst_in_place(ret, other):
"""First of 2 arrays but taking nans into account.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in nb.prange(len(ret)):
if isnull(ret[i]) and not isnull(other[i]):
ret[i] = other[i]
@ngjit_parallel
def nanlast_in_place(ret, other):
"""Last of 2 arrays but taking nans into account.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in nb.prange(len(ret)):
if not isnull(other[i]):
ret[i] = other[i]
@ngjit_parallel
def nanmax_in_place(ret, other):
"""Max of 2 arrays but taking nans into account. Could use np.nanmax but
would need to replace zeros with nans where both arrays are nans.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in nb.prange(len(ret)):
if isnull(ret[i]):
if not isnull(other[i]):
ret[i] = other[i]
elif not isnull(other[i]) and other[i] > ret[i]:
ret[i] = other[i]
@ngjit_parallel
def nanmin_in_place(ret, other):
"""Min of 2 arrays but taking nans into account. Could use np.nanmin but
would need to replace zeros with nans where both arrays are nans.
Accepts 3D (ny, nx, ncat) and 2D (ny, nx) arrays.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in nb.prange(len(ret)):
if isnull(ret[i]):
if not isnull(other[i]):
ret[i] = other[i]
elif not isnull(other[i]) and other[i] < ret[i]:
ret[i] = other[i]
@ngjit
def shift_and_insert(target, value, index):
"""Insert a value into a 1D array at a particular index, but before doing
that shift the previous values along one to make room. For use in
``FloatingNReduction`` classes such as ``max_n`` and ``first_n`` which
store ``n`` values per pixel.
Parameters
----------
target : 1d numpy array
Target pixel array.
value : float
Value to insert into target pixel array.
index : int
Index to insert at.
Returns
-------
Index beyond insertion, i.e. where the first shifted value now sits.
"""
n = len(target)
for i in range(n-1, index, -1):
target[i] = target[i-1]
target[index] = value
return index + 1
@ngjit
def _nanfirst_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of nanfirst_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.
Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]):
# Always insert after existing values, so no shifting required.
ret_pixel[i] = other_value
istart = i+1
break
@ngjit_parallel
def nanfirst_n_in_place_4d(ret, other):
"""3d version of nanfirst_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, ncat, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
for cat in range(ncat):
_nanfirst_n_impl(ret[y, x, cat], other[y, x, cat])
@ngjit_parallel
def nanfirst_n_in_place_3d(ret, other):
"""3d version of nanfirst_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
_nanfirst_n_impl(ret[y, x], other[y, x])
@ngjit
def _nanlast_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of nanlast_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.
Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
# Always insert at istart index.
istart = shift_and_insert(ret_pixel, other_value, istart)
break
@ngjit_parallel
def nanlast_n_in_place_4d(ret, other):
"""3d version of nanfirst_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, ncat, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
for cat in range(ncat):
_nanlast_n_impl(ret[y, x, cat], other[y, x, cat])
@ngjit_parallel
def nanlast_n_in_place_3d(ret, other):
"""3d version of nanlast_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
_nanlast_n_impl(ret[y, x], other[y, x])
@ngjit
def _nanmax_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of nanmax_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.
Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]) or other_value > ret_pixel[i]:
istart = shift_and_insert(ret_pixel, other_value, i)
break
@ngjit_parallel
def nanmax_n_in_place_4d(ret, other):
"""Combine two max-n arrays, taking nans into account. Max-n arrays are 4D
with shape (ny, nx, ncat, n) where ny and nx are the number of pixels,
ncat the number of categories (will be 1 if not using a categorical
reduction) and the last axis containing n values in descending order.
If there are fewer than n values it is padded with nans.
Return the first array.
"""
ny, nx, ncat, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
for cat in range(ncat):
_nanmax_n_impl(ret[y, x, cat], other[y, x, cat])
@ngjit_parallel
def nanmax_n_in_place_3d(ret, other):
"""3d version of nanmax_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
_nanmax_n_impl(ret[y, x], other[y, x])
@ngjit
def _nanmin_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of nanmin_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.
Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]) or other_value < ret_pixel[i]:
istart = shift_and_insert(ret_pixel, other_value, i)
break
@ngjit_parallel
def nanmin_n_in_place_4d(ret, other):
"""Combine two min-n arrays, taking nans into account. Min-n arrays are 4D
with shape (ny, nx, ncat, n) where ny and nx are the number of pixels,
ncat the number of categories (will be 1 if not using a categorical
reduction) and the last axis containing n values in ascending order.
If there are fewer than n values it is padded with nans.
Return the first array.
"""
ny, nx, ncat, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
for cat in range(ncat):
_nanmin_n_impl(ret[y, x, cat], other[y, x, cat])
@ngjit_parallel
def nanmin_n_in_place_3d(ret, other):
"""3d version of nanmin_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
_nanmin_n_impl(ret[y, x], other[y, x])
@ngjit_parallel
def nansum_in_place(ret, other):
"""Sum of 2 arrays but taking nans into account. Could use np.nansum but
would need to replace zeros with nans where both arrays are nans.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in nb.prange(len(ret)):
if isnull(ret[i]):
if not isnull(other[i]):
ret[i] = other[i]
elif not isnull(other[i]):
ret[i] += other[i]
@ngjit
def row_max_in_place(ret, other):
"""Maximum of 2 arrays of row indexes.
Row indexes are integers from 0 upwards, missing data is -1.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in range(len(ret)):
if other[i] > -1 and (ret[i] == -1 or other[i] > ret[i]):
ret[i] = other[i]
@ngjit
def row_min_in_place(ret, other):
"""Minimum of 2 arrays of row indexes.
Row indexes are integers from 0 upwards, missing data is -1.
Return the first array.
"""
ret = ret.ravel()
other = other.ravel()
for i in range(len(ret)):
if other[i] > -1 and (ret[i] == -1 or other[i] < ret[i]):
ret[i] = other[i]
@ngjit
def _row_max_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of row_max_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.
Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if other_value == -1:
break
else:
for i in range(istart, n):
if ret_pixel[i] == -1 or other_value > ret_pixel[i]:
istart = shift_and_insert(ret_pixel, other_value, i)
break
@ngjit
def row_max_n_in_place_4d(ret, other):
"""Combine two row_max_n signed integer arrays.
Equivalent to nanmax_n_in_place with -1 replacing NaN for missing data.
Return the first array.
"""
ny, nx, ncat, _n = ret.shape
for y in range(ny):
for x in range(nx):
for cat in range(ncat):
_row_max_n_impl(ret[y, x, cat], other[y, x, cat])
@ngjit
def row_max_n_in_place_3d(ret, other):
ny, nx, _n = ret.shape
for y in range(ny):
for x in range(nx):
_row_max_n_impl(ret[y, x], other[y, x])
@ngjit
def _row_min_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of row_min_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.
Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if other_value == -1:
break
else:
for i in range(istart, n):
if ret_pixel[i] == -1 or other_value < ret_pixel[i]:
istart = shift_and_insert(ret_pixel, other_value, i)
break
@ngjit
def row_min_n_in_place_4d(ret, other):
"""Combine two row_min_n signed integer arrays.
Equivalent to nanmin_n_in_place with -1 replacing NaN for missing data.
Return the first array.
"""
ny, nx, ncat, _n = ret.shape
for y in range(ny):
for x in range(nx):
for cat in range(ncat):
_row_min_n_impl(ret[y, x, cat], other[y, x, cat])
@ngjit
def row_min_n_in_place_3d(ret, other):
ny, nx, _n = ret.shape
for y in range(ny):
for x in range(nx):
_row_min_n_impl(ret[y, x], other[y, x])
|