Spaces:
Running
on
Zero
Running
on
Zero
File size: 89,086 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 |
from __future__ import annotations
import copy
from enum import Enum
from packaging.version import Version
import numpy as np
from datashader.datashape import dshape, isnumeric, Record, Option
from datashader.datashape import coretypes as ct
from toolz import concat, unique
import xarray as xr
from datashader.antialias import AntialiasCombination, AntialiasStage2
from datashader.utils import isminus1, isnull
from numba import cuda as nb_cuda
try:
from datashader.transfer_functions._cuda_utils import (
cuda_atomic_nanmin, cuda_atomic_nanmax, cuda_args, cuda_row_min_in_place,
cuda_nanmax_n_in_place_4d, cuda_nanmax_n_in_place_3d,
cuda_nanmin_n_in_place_4d, cuda_nanmin_n_in_place_3d,
cuda_row_max_n_in_place_4d, cuda_row_max_n_in_place_3d,
cuda_row_min_n_in_place_4d, cuda_row_min_n_in_place_3d, cuda_shift_and_insert,
)
except ImportError:
(cuda_atomic_nanmin, cuda_atomic_nanmax, cuda_args, cuda_row_min_in_place,
cuda_nanmax_n_in_place_4d, cuda_nanmax_n_in_place_3d,
cuda_nanmin_n_in_place_4d, cuda_nanmin_n_in_place_3d,
cuda_row_max_n_in_place_4d, cuda_row_max_n_in_place_3d,
cuda_row_min_n_in_place_4d, cuda_row_min_n_in_place_3d, cuda_shift_and_insert,
) = None, None, None, None, None, None, None, None, None, None, None, None, None
try:
import cudf
import cupy as cp
except Exception:
cudf = cp = None
from .utils import (
Expr, ngjit, nansum_missing, nanmax_in_place, nansum_in_place, row_min_in_place,
nanmax_n_in_place_4d, nanmax_n_in_place_3d, nanmin_n_in_place_4d, nanmin_n_in_place_3d,
row_max_n_in_place_4d, row_max_n_in_place_3d, row_min_n_in_place_4d, row_min_n_in_place_3d,
shift_and_insert,
)
class SpecialColumn(Enum):
"""
Internally datashader identifies the columns required by the user's
Reductions and extracts them from the supplied source (e.g. DataFrame) to
pass through the dynamically-generated append function in compiler.py and
end up as arguments to the Reduction._append* functions. Each column is
a string name or a SpecialColumn. A column of None is used in Reduction
classes to denote that no column is required.
"""
RowIndex = 1
class UsesCudaMutex(Enum):
"""
Enum that encapsulates the need for a Reduction to use a CUDA mutex to
operate correctly on a GPU. Possible values:
No: the Reduction append_cuda function is atomic and no mutex is required.
Local: Reduction append_cuda needs wrapping in a mutex.
Global: the overall compiled append function needs wrapping in a mutex.
"""
No = 0
Local = 1
Global = 2
class Preprocess(Expr):
"""Base clase for preprocessing steps."""
def __init__(self, column: str | SpecialColumn | None):
self.column = column
@property
def inputs(self):
return (self.column,)
@property
def nan_check_column(self):
return None
class extract(Preprocess):
"""Extract a column from a dataframe as a numpy array of values."""
def apply(self, df, cuda):
if self.column is SpecialColumn.RowIndex:
attr_name = "_datashader_row_offset"
if isinstance(df, xr.Dataset):
row_offset = df.attrs[attr_name]
row_length = df.attrs["_datashader_row_length"]
else:
attrs = getattr(df, "attrs", None)
row_offset = getattr(attrs or df, attr_name, 0)
row_length = len(df)
if cudf and isinstance(df, cudf.DataFrame):
if self.column is SpecialColumn.RowIndex:
return cp.arange(row_offset, row_offset + row_length, dtype=np.int64)
if df[self.column].dtype.kind == 'f':
nullval = np.nan
else:
nullval = 0
if Version(cudf.__version__) >= Version("22.02"):
return df[self.column].to_cupy(na_value=nullval)
return cp.array(df[self.column].to_gpu_array(fillna=nullval))
elif self.column is SpecialColumn.RowIndex:
if cuda:
return cp.arange(row_offset, row_offset + row_length, dtype=np.int64)
else:
return np.arange(row_offset, row_offset + row_length, dtype=np.int64)
elif isinstance(df, xr.Dataset):
if cuda and not isinstance(df[self.column].data, cp.ndarray):
return cp.asarray(df[self.column])
else:
return df[self.column].data
else:
return df[self.column].values
class CategoryPreprocess(Preprocess):
"""Base class for categorizing preprocessors."""
@property
def cat_column(self):
"""Returns name of categorized column"""
return self.column
def categories(self, input_dshape):
"""Returns list of categories corresponding to input shape"""
raise NotImplementedError("categories not implemented")
def validate(self, in_dshape):
"""Validates input shape"""
raise NotImplementedError("validate not implemented")
def apply(self, df, cuda):
"""Applies preprocessor to DataFrame and returns array"""
raise NotImplementedError("apply not implemented")
class category_codes(CategoryPreprocess):
"""
Extract just the category codes from a categorical column.
To create a new type of categorizer, derive a subclass from this
class or one of its subclasses, implementing ``__init__``,
``_hashable_inputs``, ``categories``, ``validate``, and ``apply``.
See the implementation of ``category_modulo`` in ``reductions.py``
for an example.
"""
def categories(self, input_dshape):
return input_dshape.measure[self.column].categories
def validate(self, in_dshape):
if self.column not in in_dshape.dict:
raise ValueError("specified column not found")
if not isinstance(in_dshape.measure[self.column], ct.Categorical):
raise ValueError("input must be categorical")
def apply(self, df, cuda):
if cudf and isinstance(df, cudf.DataFrame):
if Version(cudf.__version__) >= Version("22.02"):
return df[self.column].cat.codes.to_cupy()
return df[self.column].cat.codes.to_gpu_array()
else:
return df[self.column].cat.codes.values
class category_modulo(category_codes):
"""
A variation on category_codes that assigns categories using an integer column, modulo a base.
Category is computed as (column_value - offset)%modulo.
"""
# couldn't find anything in the datashape docs about how to check if a CType is an integer, so
# just define a big set
IntegerTypes = {ct.bool_, ct.uint8, ct.uint16, ct.uint32, ct.uint64, ct.int8, ct.int16,
ct.int32, ct.int64}
def __init__(self, column, modulo, offset=0):
super().__init__(column)
self.offset = offset
self.modulo = modulo
def _hashable_inputs(self):
return super()._hashable_inputs() + (self.offset, self.modulo)
def categories(self, in_dshape):
return list(range(self.modulo))
def validate(self, in_dshape):
if self.column not in in_dshape.dict:
raise ValueError("specified column not found")
if in_dshape.measure[self.column] not in self.IntegerTypes:
raise ValueError("input must be an integer column")
def apply(self, df, cuda):
result = (df[self.column] - self.offset) % self.modulo
if cudf and isinstance(df, cudf.Series):
if Version(cudf.__version__) >= Version("22.02"):
return result.to_cupy()
return result.to_gpu_array()
else:
return result.values
class category_binning(category_modulo):
"""
A variation on category_codes that assigns categories by binning a continuous-valued column.
The number of categories returned is always nbins+1.
The last category (nbin) is for NaNs in the data column, as well as for values under/over the
binned interval (when include_under or include_over is False).
Parameters
----------
column: column to use
lower: lower bound of first bin
upper: upper bound of last bin
nbins: number of bins
include_under: if True, values below bin 0 are assigned to category 0
include_over: if True, values above the last bin (nbins-1) are assigned to category nbin-1
"""
def __init__(self, column, lower, upper, nbins, include_under=True, include_over=True):
super().__init__(column, nbins + 1) # +1 category for NaNs and clipped values
self.bin0 = lower
self.binsize = (upper - lower) / float(nbins)
self.nbins = nbins
self.bin_under = 0 if include_under else nbins
self.bin_over = nbins-1 if include_over else nbins
def _hashable_inputs(self):
return super()._hashable_inputs() + (self.bin0, self.binsize, self.bin_under, self.bin_over)
def validate(self, in_dshape):
if self.column not in in_dshape.dict:
raise ValueError("specified column not found")
def apply(self, df, cuda):
if cudf and isinstance(df, cudf.DataFrame):
if Version(cudf.__version__) >= Version("22.02"):
values = df[self.column].to_cupy(na_value=cp.nan)
else:
values = cp.array(df[self.column].to_gpu_array(fillna=True))
nan_values = cp.isnan(values)
else:
values = df[self.column].to_numpy()
nan_values = np.isnan(values)
index_float = (values - self.bin0) / self.binsize
# NaN values are corrected below, so set them to zero to avoid warnings when
# converting from float to int.
index_float[nan_values] = 0
index = index_float.astype(int)
index[index < 0] = self.bin_under
index[index >= self.nbins] = self.bin_over
index[nan_values] = self.nbins
return index
class category_values(CategoryPreprocess):
"""Extract a category and a value column from a dataframe as (2,N) numpy array of values."""
def __init__(self, categorizer, value_column):
super().__init__(value_column)
self.categorizer = categorizer
@property
def inputs(self):
return (self.categorizer.column, self.column)
@property
def cat_column(self):
"""Returns name of categorized column"""
return self.categorizer.column
def categories(self, input_dshape):
return self.categorizer.categories
def validate(self, in_dshape):
return self.categorizer.validate(in_dshape)
def apply(self, df, cuda):
a = self.categorizer.apply(df, cuda)
if cudf and isinstance(df, cudf.DataFrame):
import cupy
if self.column == SpecialColumn.RowIndex:
nullval = -1
elif df[self.column].dtype.kind == 'f':
nullval = np.nan
else:
nullval = 0
a = cupy.asarray(a)
if self.column == SpecialColumn.RowIndex:
b = extract(SpecialColumn.RowIndex).apply(df, cuda)
elif Version(cudf.__version__) >= Version("22.02"):
b = df[self.column].to_cupy(na_value=nullval)
else:
b = cupy.asarray(df[self.column].fillna(nullval))
return cupy.stack((a, b), axis=-1)
else:
if self.column == SpecialColumn.RowIndex:
b = extract(SpecialColumn.RowIndex).apply(df, cuda)
else:
b = df[self.column].values
return np.stack((a, b), axis=-1)
class Reduction(Expr):
"""Base class for per-bin reductions."""
def __init__(self, column: str | SpecialColumn | None=None):
self.column = column
self._nan_check_column = None
@property
def nan_check_column(self):
if self._nan_check_column is not None:
return extract(self._nan_check_column)
else:
return None
def uses_cuda_mutex(self) -> UsesCudaMutex:
"""Return ``True`` if this Reduction needs to use a CUDA mutex to
ensure that it is threadsafe across CUDA threads.
If the CUDA append functions are all atomic (i.e. using functions from
the numba.cuda.atomic module) then this is ``False``, otherwise it is
``True``.
"""
return UsesCudaMutex.No
def uses_row_index(self, cuda, partitioned):
"""Return ``True`` if this Reduction uses a row index virtual column.
For some reductions the order of the rows of supplied data is
important. These include ``first`` and ``last`` reductions as well as
``where`` reductions that return a row index. In some situations the
order is intrinsic such as ``first`` reductions that are processed
sequentially (i.e. on a CPU without using Dask) and no extra column is
required. But in situations of parallel processing (using a GPU or
Dask) extra information is needed that is provided by a row index
virtual column.
Returning ``True`` from this function will cause a row index column to
be created and passed to the ``append`` functions in the usual manner.
"""
return False
def validate(self, in_dshape):
if self.column == SpecialColumn.RowIndex:
return
if self.column not in in_dshape.dict:
raise ValueError("specified column not found")
if not isnumeric(in_dshape.measure[self.column]):
raise ValueError("input must be numeric")
@property
def inputs(self):
return (extract(self.column),)
def is_categorical(self):
"""Return ``True`` if this is or contains a categorical reduction."""
return False
def is_where(self):
"""Return ``True`` if this is a ``where`` reduction or directly wraps
a where reduction."""
return False
def _antialias_requires_2_stages(self):
# Return True if this Reduction must be processed with 2 stages,
# False if it doesn't matter.
# Overridden in derived classes as appropriate.
return False
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
# Only called if using antialiased lines. Overridden in derived classes.
# Returns a tuple containing an item for each constituent reduction.
# Each item is (AntialiasCombination, zero_value)).
raise NotImplementedError(f"{type(self)}._antialias_stage_2 is not defined")
def _build_bases(self, cuda, partitioned):
return (self,)
def _build_combine_temps(self, cuda, partitioned):
# Temporaries (i.e. not returned to user) that are reductions, the
# aggs of which are passed to the combine() function but not the
# append() functions, as opposed to _build_temps() which are passed
# to both append() and combine().
return ()
def _build_temps(self, cuda=False):
# Temporaries (i.e. not returned to user) that are reductions, the
# aggs of which are passed to both append() and combine() functions.
return ()
def _build_create(self, required_dshape):
fields = getattr(required_dshape.measure, "fields", None)
if fields is not None and len(required_dshape.measure.fields) > 0:
# If more than one field then they all have the same dtype so can just take the first.
first_field = required_dshape.measure.fields[0]
required_dshape = dshape(first_field[1])
if isinstance(required_dshape, Option):
required_dshape = dshape(required_dshape.ty)
if required_dshape == dshape(ct.bool_):
return self._create_bool
elif required_dshape == dshape(ct.float32):
return self._create_float32_nan
elif required_dshape == dshape(ct.float64):
return self._create_float64_nan
elif required_dshape == dshape(ct.int64):
return self._create_int64
elif required_dshape == dshape(ct.uint32):
return self._create_uint32
else:
raise NotImplementedError(f"Unexpected dshape {dshape}")
def _build_append(self, dshape, schema, cuda, antialias, self_intersect):
if cuda:
if antialias and self.column is None:
return self._append_no_field_antialias_cuda
elif antialias:
return self._append_antialias_cuda
elif self.column is None:
return self._append_no_field_cuda
else:
return self._append_cuda
else:
if antialias and self.column is None:
return self._append_no_field_antialias
elif antialias:
return self._append_antialias
elif self.column is None:
return self._append_no_field
else:
return self._append
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
return self._combine
def _build_finalize(self, dshape):
return self._finalize
@staticmethod
def _create_bool(shape, array_module):
return array_module.zeros(shape, dtype='bool')
@staticmethod
def _create_float32_nan(shape, array_module):
return array_module.full(shape, array_module.nan, dtype='f4')
@staticmethod
def _create_float64_nan(shape, array_module):
return array_module.full(shape, array_module.nan, dtype='f8')
@staticmethod
def _create_float64_empty(shape, array_module):
return array_module.empty(shape, dtype='f8')
@staticmethod
def _create_float64_zero(shape, array_module):
return array_module.zeros(shape, dtype='f8')
@staticmethod
def _create_int64(shape, array_module):
return array_module.full(shape, -1, dtype='i8')
@staticmethod
def _create_uint32(shape, array_module):
return array_module.zeros(shape, dtype='u4')
class OptionalFieldReduction(Reduction):
"""Base class for things like ``count`` or ``any`` for which the field is optional"""
def __init__(self, column=None):
super().__init__(column)
@property
def inputs(self):
return (extract(self.column),) if self.column is not None else ()
def validate(self, in_dshape):
if self.column is not None:
super().validate(in_dshape)
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
return xr.DataArray(bases[0], **kwargs)
class SelfIntersectingOptionalFieldReduction(OptionalFieldReduction):
"""
Base class for optional field reductions for which self-intersecting
geometry may or may not be desirable.
Ignored if not using antialiasing.
"""
def __init__(self, column=None, self_intersect=True):
super().__init__(column)
self.self_intersect = self_intersect
def _antialias_requires_2_stages(self):
return not self.self_intersect
def _build_append(self, dshape, schema, cuda, antialias, self_intersect):
if antialias and not self_intersect:
# append functions specific to antialiased lines without self_intersect
if cuda:
if self.column is None:
return self._append_no_field_antialias_cuda_not_self_intersect
else:
return self._append_antialias_cuda_not_self_intersect
else:
if self.column is None:
return self._append_no_field_antialias_not_self_intersect
else:
return self._append_antialias_not_self_intersect
# Fall back to base class implementation
return super()._build_append(dshape, schema, cuda, antialias, self_intersect)
def _hashable_inputs(self):
# Reductions with different self_intersect attributes much have different hashes otherwise
# toolz.memoize will treat them as the same to give incorrect results.
return super()._hashable_inputs() + (self.self_intersect,)
class count(SelfIntersectingOptionalFieldReduction):
"""Count elements in each bin, returning the result as a uint32, or a
float32 if using antialiasing.
Parameters
----------
column : str, optional
If provided, only counts elements in ``column`` that are not ``NaN``.
Otherwise, counts every element.
"""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.float32) if antialias else dshape(ct.uint32)
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
if self_intersect:
return (AntialiasStage2(AntialiasCombination.SUM_1AGG, array_module.nan),)
else:
return (AntialiasStage2(AntialiasCombination.SUM_2AGG, array_module.nan),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
agg[y, x] += 1
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
if not isnull(field):
if isnull(agg[y, x]):
agg[y, x] = aa_factor - prev_aa_factor
else:
agg[y, x] += aa_factor - prev_aa_factor
return 0
return -1
@staticmethod
@ngjit
def _append_antialias_not_self_intersect(x, y, agg, field, aa_factor, prev_aa_factor):
if not isnull(field):
if isnull(agg[y, x]) or aa_factor > agg[y, x]:
agg[y, x] = aa_factor
return 0
return -1
@staticmethod
@ngjit
def _append_no_field(x, y, agg):
agg[y, x] += 1
return 0
@staticmethod
@ngjit
def _append_no_field_antialias(x, y, agg, aa_factor, prev_aa_factor):
if isnull(agg[y, x]):
agg[y, x] = aa_factor - prev_aa_factor
else:
agg[y, x] += aa_factor - prev_aa_factor
return 0
@staticmethod
@ngjit
def _append_no_field_antialias_not_self_intersect(x, y, agg, aa_factor, prev_aa_factor):
if isnull(agg[y, x]) or aa_factor > agg[y, x]:
agg[y, x] = aa_factor
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_antialias_cuda(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
old = cuda_atomic_nanmax(agg, (y, x), value)
if isnull(old) or old < value:
return 0
return -1
@staticmethod
@nb_cuda.jit(device=True)
def _append_no_field_antialias_cuda_not_self_intersect(x, y, agg, aa_factor, prev_aa_factor):
if not isnull(aa_factor):
old = cuda_atomic_nanmax(agg, (y, x), aa_factor)
if isnull(old) or old < aa_factor:
return 0
return -1
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
if not isnull(field):
nb_cuda.atomic.add(agg, (y, x), 1)
return 0
return -1
@staticmethod
@nb_cuda.jit(device=True)
def _append_no_field_antialias_cuda(x, y, agg, aa_factor, prev_aa_factor):
if not isnull(aa_factor):
old = cuda_atomic_nanmax(agg, (y, x), aa_factor)
if isnull(old) or old < aa_factor:
return 0
return -1
@staticmethod
@nb_cuda.jit(device=True)
def _append_no_field_cuda(x, y, agg):
nb_cuda.atomic.add(agg, (y, x), 1)
return 0
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
if antialias:
return self._combine_antialias
else:
return self._combine
@staticmethod
def _combine(aggs):
return aggs.sum(axis=0, dtype='u4')
@staticmethod
def _combine_antialias(aggs):
ret = aggs[0]
for i in range(1, len(aggs)):
nansum_in_place(ret, aggs[i])
return ret
class _count_ignore_antialiasing(count):
"""Count reduction but ignores antialiasing. Used by mean reduction.
"""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.uint32)
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
if self_intersect:
return (AntialiasStage2(AntialiasCombination.SUM_1AGG, 0),)
else:
return (AntialiasStage2(AntialiasCombination.SUM_2AGG, 0),)
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
if not isnull(field) and prev_aa_factor == 0.0:
agg[y, x] += 1
return 0
return -1
@staticmethod
@ngjit
def _append_antialias_not_self_intersect(x, y, agg, field, aa_factor, prev_aa_factor):
if not isnull(field) and prev_aa_factor == 0.0:
agg[y, x] += 1
return 0
return -1
class by(Reduction):
"""Apply the provided reduction separately per category.
Parameters
----------
cats: str or CategoryPreprocess instance
Name of column to aggregate over, or a categorizer object that returns categories.
Resulting aggregate has an outer dimension axis along the categories present.
reduction : Reduction
Per-category reduction function.
"""
def __init__(self, cat_column, reduction=count()):
super().__init__()
# set basic categorizer
if isinstance(cat_column, CategoryPreprocess):
self.categorizer = cat_column
elif isinstance(cat_column, str):
self.categorizer = category_codes(cat_column)
else:
raise TypeError("first argument must be a column name or a CategoryPreprocess instance")
self.column = self.categorizer.column # for backwards compatibility with count_cat
self.columns = (self.categorizer.column,)
if (columns := getattr(reduction, 'columns', None)) is not None:
# Must reverse columns (from where reduction) so that val_column property
# is the column that is returned to the user.
self.columns += columns[::-1]
else:
self.columns += (getattr(reduction, 'column', None),)
self.reduction = reduction
# if a value column is supplied, set category_values preprocessor
if self.val_column is not None:
self.preprocess = category_values(self.categorizer, self.val_column)
else:
self.preprocess = self.categorizer
def __hash__(self):
return hash((type(self), self._hashable_inputs(), self.categorizer._hashable_inputs(),
self.reduction))
def _build_temps(self, cuda=False):
return tuple(by(self.categorizer, tmp) for tmp in self.reduction._build_temps(cuda))
@property
def cat_column(self):
return self.columns[0]
@property
def val_column(self):
return self.columns[1]
def validate(self, in_dshape):
self.preprocess.validate(in_dshape)
self.reduction.validate(in_dshape)
def out_dshape(self, input_dshape, antialias, cuda, partitioned):
cats = self.categorizer.categories(input_dshape)
red_shape = self.reduction.out_dshape(input_dshape, antialias, cuda, partitioned)
return dshape(Record([(c, red_shape) for c in cats]))
@property
def inputs(self):
return (self.preprocess,)
def is_categorical(self):
return True
def is_where(self):
return self.reduction.is_where()
@property
def nan_check_column(self):
return self.reduction.nan_check_column
def uses_cuda_mutex(self) -> UsesCudaMutex:
return self.reduction.uses_cuda_mutex()
def uses_row_index(self, cuda, partitioned):
return self.reduction.uses_row_index(cuda, partitioned)
def _antialias_requires_2_stages(self):
return self.reduction._antialias_requires_2_stages()
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
ret = self.reduction._antialias_stage_2(self_intersect, array_module)
return (AntialiasStage2(combination=ret[0].combination,
zero=ret[0].zero,
n_reduction=ret[0].n_reduction,
categorical=True),)
def _build_create(self, required_dshape):
n_cats = len(required_dshape.measure.fields)
return lambda shape, array_module: self.reduction._build_create(
required_dshape)(shape + (n_cats,), array_module)
def _build_bases(self, cuda, partitioned):
bases = self.reduction._build_bases(cuda, partitioned)
if len(bases) == 1 and bases[0] is self:
return bases
return tuple(by(self.categorizer, base) for base in bases)
def _build_append(self, dshape, schema, cuda, antialias, self_intersect):
return self.reduction._build_append(dshape, schema, cuda, antialias, self_intersect)
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
return self.reduction._build_combine(dshape, antialias, cuda, partitioned, True)
def _build_combine_temps(self, cuda, partitioned):
return self.reduction._build_combine_temps(cuda, partitioned)
def _build_finalize(self, dshape):
cats = list(self.categorizer.categories(dshape))
def finalize(bases, cuda=False, **kwargs):
# Return a modified copy of kwargs. Cannot modify supplied kwargs as it
# may be used by multiple reductions, e.g. if a summary reduction.
kwargs = copy.deepcopy(kwargs)
kwargs['dims'] += [self.cat_column]
kwargs['coords'][self.cat_column] = cats
return self.reduction._build_finalize(dshape)(bases, cuda=cuda, **kwargs)
return finalize
class any(OptionalFieldReduction):
"""Whether any elements in ``column`` map to each bin.
Parameters
----------
column : str, optional
If provided, any elements in ``column`` that are ``NaN`` are skipped.
"""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.float32) if antialias else dshape(ct.bool_)
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MAX, array_module.nan),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
agg[y, x] = True
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
if not isnull(field):
if isnull(agg[y, x]) or aa_factor > agg[y, x]:
agg[y, x] = aa_factor
return 0
return -1
@staticmethod
@ngjit
def _append_no_field(x, y, agg):
agg[y, x] = True
return 0
@staticmethod
@ngjit
def _append_no_field_antialias(x, y, agg, aa_factor, prev_aa_factor):
if isnull(agg[y, x]) or aa_factor > agg[y, x]:
agg[y, x] = aa_factor
return 0
return -1
# GPU append functions
_append_cuda =_append
_append_no_field_cuda = _append_no_field
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
if antialias:
return self._combine_antialias
else:
return self._combine
@staticmethod
def _combine(aggs):
return aggs.sum(axis=0, dtype='bool')
@staticmethod
def _combine_antialias(aggs):
ret = aggs[0]
for i in range(1, len(aggs)):
nanmax_in_place(ret, aggs[i])
return ret
class _upsample(Reduction):
""""Special internal class used for upsampling"""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(Option(ct.float64))
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
return xr.DataArray(bases[0], **kwargs)
@property
def inputs(self):
return (extract(self.column),)
def _build_create(self, required_dshape):
# Use uninitialized memory, the upsample function must explicitly set unused
# values to nan
return self._create_float64_empty
@staticmethod
@ngjit
def _append(x, y, agg, field):
# not called, the upsample function must set agg directly
pass
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
# not called, the upsample function must set agg directly
pass
@staticmethod
def _combine(aggs):
return np.nanmax(aggs, axis=0)
class FloatingReduction(Reduction):
"""Base classes for reductions that always have floating-point dtype."""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(Option(ct.float64))
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
return xr.DataArray(bases[0], **kwargs)
class _sum_zero(FloatingReduction):
"""Sum of all elements in ``column``.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
if self_intersect:
return (AntialiasStage2(AntialiasCombination.SUM_1AGG, 0),)
else:
return (AntialiasStage2(AntialiasCombination.SUM_2AGG, 0),)
def _build_create(self, required_dshape):
return self._create_float64_zero
# CPU append functions.
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
# agg[y, x] cannot be null as initialised to zero.
agg[y, x] += field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*(aa_factor - prev_aa_factor)
if not isnull(value):
# agg[y, x] cannot be null as initialised to zero.
agg[y, x] += value
return 0
return -1
@staticmethod
@ngjit
def _append_antialias_not_self_intersect(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value) and value > agg[y, x]:
# agg[y, x] cannot be null as initialised to zero.
agg[y, x] = value
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
if not isnull(field):
nb_cuda.atomic.add(agg, (y, x), field)
return 0
return -1
@staticmethod
def _combine(aggs):
return aggs.sum(axis=0, dtype='f8')
class SelfIntersectingFloatingReduction(FloatingReduction):
"""
Base class for floating reductions for which self-intersecting geometry
may or may not be desirable.
Ignored if not using antialiasing.
"""
def __init__(self, column=None, self_intersect=True):
super().__init__(column)
self.self_intersect = self_intersect
def _antialias_requires_2_stages(self):
return not self.self_intersect
def _build_append(self, dshape, schema, cuda, antialias, self_intersect):
if antialias and not self_intersect:
if cuda:
raise NotImplementedError("SelfIntersectingOptionalFieldReduction")
else:
if self.column is None:
return self._append_no_field_antialias_not_self_intersect
else:
return self._append_antialias_not_self_intersect
return super()._build_append(dshape, schema, cuda, antialias, self_intersect)
def _hashable_inputs(self):
# Reductions with different self_intersect attributes much have different hashes otherwise
# toolz.memoize will treat them as the same to give incorrect results.
return super()._hashable_inputs() + (self.self_intersect,)
class sum(SelfIntersectingFloatingReduction):
"""Sum of all elements in ``column``.
Elements of resulting aggregate are nan if they are not updated.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
if self_intersect:
return (AntialiasStage2(AntialiasCombination.SUM_1AGG, array_module.nan),)
else:
return (AntialiasStage2(AntialiasCombination.SUM_2AGG, array_module.nan),)
def _build_bases(self, cuda, partitioned):
if cuda:
return (_sum_zero(self.column), any(self.column))
else:
return (self,)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
if isnull(agg[y, x]):
agg[y, x] = field
else:
agg[y, x] += field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*(aa_factor - prev_aa_factor)
if not isnull(value):
if isnull(agg[y, x]):
agg[y, x] = value
else:
agg[y, x] += value
return 0
return -1
@staticmethod
@ngjit
def _append_antialias_not_self_intersect(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
if isnull(agg[y, x]) or value > agg[y, x]:
agg[y, x] = value
return 0
return -1
@staticmethod
def _combine(aggs):
return nansum_missing(aggs, axis=0)
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
if cuda:
sums, anys = bases
x = np.where(anys, sums, np.nan)
return xr.DataArray(x, **kwargs)
else:
return xr.DataArray(bases[0], **kwargs)
class m2(FloatingReduction):
"""Sum of square differences from the mean of all elements in ``column``.
Intermediate value for computing ``var`` and ``std``, not intended to be
used on its own.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def uses_cuda_mutex(self) -> UsesCudaMutex:
return UsesCudaMutex.Global
def _build_append(self, dshape, schema, cuda, antialias, self_intersect):
return super(m2, self)._build_append(dshape, schema, cuda, antialias, self_intersect)
def _build_create(self, required_dshape):
return self._create_float64_zero
def _build_temps(self, cuda=False):
return (_sum_zero(self.column), count(self.column))
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, m2, field, sum, count):
# sum & count are the results of sum[y, x], count[y, x] before being
# updated by field
if not isnull(field):
if count > 0:
u1 = np.float64(sum) / count
u = np.float64(sum + field) / (count + 1)
m2[y, x] += (field - u1) * (field - u)
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, m2, field, sum, count):
# sum & count are the results of sum[y, x], count[y, x] before being
# updated by field
if not isnull(field):
if count > 0:
u1 = np.float64(sum) / count
u = np.float64(sum + field) / (count + 1)
m2[y, x] += (field - u1) * (field - u)
return 0
return -1
@staticmethod
def _combine(Ms, sums, ns):
with np.errstate(divide='ignore', invalid='ignore'):
mu = np.nansum(sums, axis=0) / ns.sum(axis=0)
return np.nansum(Ms + ns*(sums/ns - mu)**2, axis=0)
class min(FloatingReduction):
"""Minimum value of all elements in ``column``.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def _antialias_requires_2_stages(self):
return True
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MIN, array_module.nan),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field) and (isnull(agg[y, x]) or agg[y, x] > field):
agg[y, x] = field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value) and (isnull(agg[y, x]) or value > agg[y, x]):
agg[y, x] = value
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
if not isnull(field):
old = cuda_atomic_nanmin(agg, (y, x), field)
if isnull(old) or old > field:
return 0
return -1
@staticmethod
def _combine(aggs):
return np.nanmin(aggs, axis=0)
class max(FloatingReduction):
"""Maximum value of all elements in ``column``.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MAX, array_module.nan),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field) and (isnull(agg[y, x]) or agg[y, x] < field):
agg[y, x] = field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value) and (isnull(agg[y, x]) or value > agg[y, x]):
agg[y, x] = value
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_antialias_cuda(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
old = cuda_atomic_nanmax(agg, (y, x), value)
if isnull(old) or old < value:
return 0
return -1
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
if not isnull(field):
old = cuda_atomic_nanmax(agg, (y, x), field)
if isnull(old) or old < field:
return 0
return -1
@staticmethod
def _combine(aggs):
return np.nanmax(aggs, axis=0)
class count_cat(by):
"""Count of all elements in ``column``, grouped by category.
Alias for `by(...,count())`, for backwards compatibility.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be
categorical. Resulting aggregate has a outer dimension axis along the
categories present.
"""
def __init__(self, column):
super(count_cat, self).__init__(column, count())
class mean(Reduction):
"""Mean of all elements in ``column``.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def _build_bases(self, cuda, partitioned):
return (_sum_zero(self.column), _count_ignore_antialiasing(self.column))
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
sums, counts = bases
with np.errstate(divide='ignore', invalid='ignore'):
x = np.where(counts > 0, sums/counts, np.nan)
return xr.DataArray(x, **kwargs)
class var(Reduction):
"""Variance of all elements in ``column``.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def _build_bases(self, cuda, partitioned):
return (_sum_zero(self.column), count(self.column), m2(self.column))
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
sums, counts, m2s = bases
with np.errstate(divide='ignore', invalid='ignore'):
x = np.where(counts > 0, m2s / counts, np.nan)
return xr.DataArray(x, **kwargs)
class std(Reduction):
"""Standard Deviation of all elements in ``column``.
Parameters
----------
column : str
Name of the column to aggregate over. Column data type must be numeric.
``NaN`` values in the column are skipped.
"""
def _build_bases(self, cuda, partitioned):
return (_sum_zero(self.column), count(self.column), m2(self.column))
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
sums, counts, m2s = bases
with np.errstate(divide='ignore', invalid='ignore'):
x = np.where(counts > 0, np.sqrt(m2s / counts), np.nan)
return xr.DataArray(x, **kwargs)
class _first_or_last(Reduction):
"""Abstract base class of first and last reductions.
"""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.float64)
def uses_row_index(self, cuda, partitioned):
return cuda or partitioned
def _antialias_requires_2_stages(self):
return True
def _build_bases(self, cuda, partitioned):
if self.uses_row_index(cuda, partitioned):
row_index_selector = self._create_row_index_selector()
wrapper = where(selector=row_index_selector, lookup_column=self.column)
wrapper._nan_check_column = self.column
# where reduction is always preceded by its selector reduction
return row_index_selector._build_bases(cuda, partitioned) + (wrapper,)
else:
return super()._build_bases(cuda, partitioned)
@staticmethod
def _combine(aggs):
# Dask combine is handled by a where reduction using a row index.
# Hence this can only ever be called if npartitions == 1 in which case len(aggs) == 1.
if len(aggs) > 1:
raise RuntimeError("_combine should never be called with more than one agg")
return aggs[0]
def _create_row_index_selector(self):
pass
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
# Note returning the last of the bases which is correct regardless of whether
# this is a simple reduction (with a single base) or a compound where reduction
# (with 2 bases, the second of which is the where reduction).
return xr.DataArray(bases[-1], **kwargs)
class first(_first_or_last):
"""First value encountered in ``column``.
Useful for categorical data where an actual value must always be returned,
not an average or other numerical calculation.
Currently only supported for rasters, externally to this class.
Parameters
----------
column : str
Name of the column to aggregate over. If the data type is floating point,
``NaN`` values in the column are skipped.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.FIRST, array_module.nan),)
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field) and isnull(agg[y, x]):
agg[y, x] = field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value) and (isnull(agg[y, x]) or value > agg[y, x]):
agg[y, x] = value
return 0
return -1
def _create_row_index_selector(self):
return _min_row_index()
class last(_first_or_last):
"""Last value encountered in ``column``.
Useful for categorical data where an actual value must always be returned,
not an average or other numerical calculation.
Currently only supported for rasters, externally to this class.
Parameters
----------
column : str
Name of the column to aggregate over. If the data type is floating point,
``NaN`` values in the column are skipped.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.LAST, array_module.nan),)
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
agg[y, x] = field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value) and (isnull(agg[y, x]) or value > agg[y, x]):
agg[y, x] = value
return 0
return -1
def _create_row_index_selector(self):
return _max_row_index()
class FloatingNReduction(OptionalFieldReduction):
def __init__(self, column=None, n=1):
super().__init__(column)
self.n = n if n >= 1 else 1
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.float64)
def _add_finalize_kwargs(self, **kwargs):
# Add the new dimension and coordinate.
n_name = "n"
n_values = np.arange(self.n)
# Return a modified copy of kwargs. Cannot modify supplied kwargs as it
# may be used by multiple reductions, e.g. if a summary reduction.
kwargs = copy.deepcopy(kwargs)
kwargs['dims'] += [n_name]
kwargs['coords'][n_name] = n_values
return kwargs
def _build_create(self, required_dshape):
return lambda shape, array_module: super(FloatingNReduction, self)._build_create(
required_dshape)(shape + (self.n,), array_module)
def _build_finalize(self, dshape):
def finalize(bases, cuda=False, **kwargs):
kwargs = self._add_finalize_kwargs(**kwargs)
return self._finalize(bases, cuda=cuda, **kwargs)
return finalize
def _hashable_inputs(self):
return super()._hashable_inputs() + (self.n,)
class _first_n_or_last_n(FloatingNReduction):
"""Abstract base class of first_n and last_n reductions.
"""
def uses_row_index(self, cuda, partitioned):
return cuda or partitioned
def _antialias_requires_2_stages(self):
return True
def _build_bases(self, cuda, partitioned):
if self.uses_row_index(cuda, partitioned):
row_index_selector = self._create_row_index_selector()
wrapper = where(selector=row_index_selector, lookup_column=self.column)
wrapper._nan_check_column = self.column
# where reduction is always preceded by its selector reduction
return row_index_selector._build_bases(cuda, partitioned) + (wrapper,)
else:
return super()._build_bases(cuda, partitioned)
@staticmethod
def _combine(aggs):
# Dask combine is handled by a where reduction using a row index.
# Hence this can only ever be called if npartitions == 1 in which case len(aggs) == 1.
if len(aggs) > 1:
raise RuntimeError("_combine should never be called with more than one agg")
return aggs[0]
def _create_row_index_selector(self):
pass
@staticmethod
def _finalize(bases, cuda=False, **kwargs):
# Note returning the last of the bases which is correct regardless of whether
# this is a simple reduction (with a single base) or a compound where reduction
# (with 2 bases, the second of which is the where reduction).
return xr.DataArray(bases[-1], **kwargs)
class first_n(_first_n_or_last_n):
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.FIRST, array_module.nan, n_reduction=True),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
# Check final value first for quick abort.
n = agg.shape[2]
if not isnull(agg[y, x, n-1]):
return -1
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
for i in range(n):
if isnull(agg[y, x, i]):
# Nothing to shift.
agg[y, x, i] = field
return i
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
# Check final value first for quick abort.
n = agg.shape[2]
if not isnull(agg[y, x, n-1]):
return -1
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
for i in range(n):
if isnull(agg[y, x, i]):
# Nothing to shift.
agg[y, x, i] = value
return i
return -1
def _create_row_index_selector(self):
return _min_n_row_index(n=self.n)
class last_n(_first_n_or_last_n):
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.LAST, array_module.nan, n_reduction=True),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
# Always inserts at front of agg's third dimension.
shift_and_insert(agg[y, x], field, 0)
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
# Always inserts at front of agg's third dimension.
shift_and_insert(agg[y, x], value, 0)
return 0
return -1
def _create_row_index_selector(self):
return _max_n_row_index(n=self.n)
class max_n(FloatingNReduction):
def uses_cuda_mutex(self) -> UsesCudaMutex:
return UsesCudaMutex.Local
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MAX, array_module.nan, n_reduction=True),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if isnull(agg[y, x, i]) or field > agg[y, x, i]:
shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if isnull(agg[y, x, i]) or value > agg[y, x, i]:
shift_and_insert(agg[y, x], value, i)
return i
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
if not isnull(field):
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if isnull(agg[y, x, i]) or field > agg[y, x, i]:
cuda_shift_and_insert(agg[y, x], field, i)
return i
return -1
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
if cuda:
return self._combine_cuda
else:
return self._combine
@staticmethod
def _combine(aggs):
ret = aggs[0]
for i in range(1, len(aggs)):
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
nanmax_n_in_place_3d(aggs[0], aggs[i])
else:
nanmax_n_in_place_4d(aggs[0], aggs[i])
return ret
@staticmethod
def _combine_cuda(aggs):
ret = aggs[0]
kernel_args = cuda_args(ret.shape[:-1])
for i in range(1, len(aggs)):
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
cuda_nanmax_n_in_place_3d[kernel_args](aggs[0], aggs[i])
else:
cuda_nanmax_n_in_place_4d[kernel_args](aggs[0], aggs[i])
return ret
class min_n(FloatingNReduction):
def uses_cuda_mutex(self) -> UsesCudaMutex:
return UsesCudaMutex.Local
def _antialias_requires_2_stages(self):
return True
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MIN, array_module.nan, n_reduction=True),)
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
if not isnull(field):
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if isnull(agg[y, x, i]) or field < agg[y, x, i]:
shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
value = field*aa_factor
if not isnull(value):
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if isnull(agg[y, x, i]) or value < agg[y, x, i]:
shift_and_insert(agg[y, x], value, i)
return i
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
if not isnull(field):
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if isnull(agg[y, x, i]) or field < agg[y, x, i]:
cuda_shift_and_insert(agg[y, x], field, i)
return i
return -1
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
if cuda:
return self._combine_cuda
else:
return self._combine
@staticmethod
def _combine(aggs):
ret = aggs[0]
for i in range(1, len(aggs)):
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
nanmin_n_in_place_3d(aggs[0], aggs[i])
else:
nanmin_n_in_place_4d(aggs[0], aggs[i])
return ret
@staticmethod
def _combine_cuda(aggs):
ret = aggs[0]
kernel_args = cuda_args(ret.shape[:-1])
for i in range(1, len(aggs)):
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
cuda_nanmin_n_in_place_3d[kernel_args](aggs[0], aggs[i])
else:
cuda_nanmin_n_in_place_4d[kernel_args](aggs[0], aggs[i])
return ret
class mode(Reduction):
"""Mode (most common value) of all the values encountered in ``column``.
Useful for categorical data where an actual value must always be returned,
not an average or other numerical calculation.
Currently only supported for rasters, externally to this class.
Implementing it for other glyph types would be difficult due to potentially
unbounded data storage requirements to store indefinite point or line
data per pixel.
Parameters
----------
column : str
Name of the column to aggregate over. If the data type is floating point,
``NaN`` values in the column are skipped.
"""
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(Option(ct.float64))
@staticmethod
def _append(x, y, agg):
raise NotImplementedError("mode is currently implemented only for rasters")
@staticmethod
def _combine(aggs):
raise NotImplementedError("mode is currently implemented only for rasters")
@staticmethod
def _finalize(bases, **kwargs):
raise NotImplementedError("mode is currently implemented only for rasters")
class where(FloatingReduction):
"""
Returns values from a ``lookup_column`` corresponding to a ``selector``
reduction that is applied to some other column.
If ``lookup_column`` is ``None`` then it uses the index of the row in the
DataFrame instead of a named column. This is returned as an int64
aggregation with -1 used to denote no value.
Examples
--------
>>> canvas.line(df, 'x', 'y', agg=ds.where(ds.max("value"), "other")) # doctest: +SKIP
This returns the values of the "other" column that correspond to the
maximum of the "value" column in each bin.
Parameters
----------
selector: Reduction
Reduction used to select the values of the ``lookup_column`` which are
returned by this ``where`` reduction.
lookup_column : str | None
Column containing values that are returned from this ``where``
reduction, or ``None`` to return row indexes instead.
"""
def __init__(self, selector: Reduction, lookup_column: str | None=None):
if not isinstance(selector, (first, first_n, last, last_n, max, max_n, min, min_n,
_max_or_min_row_index, _max_n_or_min_n_row_index)):
raise TypeError(
"selector can only be a first, first_n, last, last_n, "
"max, max_n, min or min_n reduction")
if lookup_column is None:
lookup_column = SpecialColumn.RowIndex
super().__init__(lookup_column)
self.selector = selector
# List of all column names that this reduction uses.
self.columns = (selector.column, lookup_column)
def __hash__(self):
return hash((type(self), self._hashable_inputs(), self.selector))
def is_where(self):
return True
def out_dshape(self, input_dshape, antialias, cuda, partitioned):
if self.column == SpecialColumn.RowIndex:
return dshape(ct.int64)
else:
return dshape(ct.float64)
def uses_cuda_mutex(self) -> UsesCudaMutex:
return UsesCudaMutex.Local
def uses_row_index(self, cuda, partitioned):
return (self.column == SpecialColumn.RowIndex or
self.selector.uses_row_index(cuda, partitioned))
def validate(self, in_dshape):
if self.column != SpecialColumn.RowIndex:
super().validate(in_dshape)
self.selector.validate(in_dshape)
if self.column != SpecialColumn.RowIndex and self.column == self.selector.column:
raise ValueError("where and its contained reduction cannot use the same column")
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
ret = self.selector._antialias_stage_2(self_intersect, array_module)
if self.column == SpecialColumn.RowIndex:
# Override antialiased zero value when returning integer row index.
ret = (AntialiasStage2(combination=ret[0].combination,
zero=-1,
n_reduction=ret[0].n_reduction),)
return ret
# CPU append functions
# All where._append* functions have an extra argument which is the update index.
# For 3D aggs like max_n, this is the index of insertion in the final dimension,
# and the previous values from this index upwards are shifted along to make room
# for the new value.
@staticmethod
@ngjit
def _append(x, y, agg, field, update_index):
if agg.ndim > 2:
shift_and_insert(agg[y, x], field, update_index)
else:
agg[y, x] = field
return update_index
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor, update_index):
# Ignore aa_factor.
if agg.ndim > 2:
shift_and_insert(agg[y, x], field, update_index)
else:
agg[y, x] = field
@staticmethod
@nb_cuda.jit(device=True)
def _append_antialias_cuda(x, y, agg, field, aa_factor, prev_aa_factor, update_index):
# Ignore aa_factor
if agg.ndim > 2:
cuda_shift_and_insert(agg[y, x], field, update_index)
else:
agg[y, x] = field
return update_index
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field, update_index):
if agg.ndim > 2:
cuda_shift_and_insert(agg[y, x], field, update_index)
else:
agg[y, x] = field
return update_index
def _build_append(self, dshape, schema, cuda, antialias, self_intersect):
# If self.column is SpecialColumn.RowIndex then append function is passed a
# 'field' argument which is the row index.
if cuda:
if antialias:
return self._append_antialias_cuda
else:
return self._append_cuda
else:
if antialias:
return self._append_antialias
else:
return self._append
def _build_bases(self, cuda, partitioned):
selector = self.selector
if isinstance(selector, (_first_or_last, _first_n_or_last_n)) and \
selector.uses_row_index(cuda, partitioned):
# Need to swap out the selector with an equivalent row index selector
row_index_selector = selector._create_row_index_selector()
if self.column == SpecialColumn.RowIndex:
# If selector uses a row index and this where returns the same row index,
# can just swap out this where reduction with the row_index_selector.
row_index_selector._nan_check_column = self.selector.column
return row_index_selector._build_bases(cuda, partitioned)
else:
new_where = where(row_index_selector, self.column)
new_where._nan_check_column = self.selector.column
return row_index_selector._build_bases(cuda, partitioned) + \
new_where._build_bases(cuda, partitioned)
else:
return selector._build_bases(cuda, partitioned) + \
super()._build_bases(cuda, partitioned)
def _combine_callback(self, cuda, partitioned, categorical):
# Used by:
# 1) where._build_combine()) below, the usual mechanism for combining aggs from
# different dask partitions.
# 2) make_antialias_stage_2_functions() in compiler.py to perform stage 2 combine
# of antialiased aggs.
selector = self.selector
is_n_reduction = isinstance(selector, FloatingNReduction)
if cuda:
append = selector._append_cuda
else:
append = selector._append
# If the selector uses a row_index then selector_aggs will be int64 with -1
# representing missing data. Otherwise missing data is NaN.
invalid = isminus1 if self.selector.uses_row_index(cuda, partitioned) else isnull
@ngjit
def combine_cpu_2d(aggs, selector_aggs):
ny, nx = aggs[0].shape
for y in range(ny):
for x in range(nx):
value = selector_aggs[1][y, x]
if not invalid(value) and append(x, y, selector_aggs[0], value) >= 0:
aggs[0][y, x] = aggs[1][y, x]
@ngjit
def combine_cpu_3d(aggs, selector_aggs):
ny, nx, ncat = aggs[0].shape
for y in range(ny):
for x in range(nx):
for cat in range(ncat):
value = selector_aggs[1][y, x, cat]
if not invalid(value) and append(x, y, selector_aggs[0][:, :, cat],
value) >= 0:
aggs[0][y, x, cat] = aggs[1][y, x, cat]
@ngjit
def combine_cpu_n_3d(aggs, selector_aggs):
ny, nx, n = aggs[0].shape
for y in range(ny):
for x in range(nx):
for i in range(n):
value = selector_aggs[1][y, x, i]
if invalid(value):
break
update_index = append(x, y, selector_aggs[0], value)
if update_index < 0:
break
shift_and_insert(aggs[0][y, x], aggs[1][y, x, i], update_index)
@ngjit
def combine_cpu_n_4d(aggs, selector_aggs):
ny, nx, ncat, n = aggs[0].shape
for y in range(ny):
for x in range(nx):
for cat in range(ncat):
for i in range(n):
value = selector_aggs[1][y, x, cat, i]
if invalid(value):
break
update_index = append(x, y, selector_aggs[0][:, :, cat, :], value)
if update_index < 0:
break
shift_and_insert(aggs[0][y, x, cat], aggs[1][y, x, cat, i],
update_index)
@nb_cuda.jit
def combine_cuda_2d(aggs, selector_aggs):
ny, nx = aggs[0].shape
x, y = nb_cuda.grid(2)
if x < nx and y < ny:
value = selector_aggs[1][y, x]
if not invalid(value) and append(x, y, selector_aggs[0], value) >= 0:
aggs[0][y, x] = aggs[1][y, x]
@nb_cuda.jit
def combine_cuda_3d(aggs, selector_aggs):
ny, nx, ncat = aggs[0].shape
x, y, cat = nb_cuda.grid(3)
if x < nx and y < ny and cat < ncat:
value = selector_aggs[1][y, x, cat]
if not invalid(value) and append(x, y, selector_aggs[0][:, :, cat], value) >= 0:
aggs[0][y, x, cat] = aggs[1][y, x, cat]
@nb_cuda.jit
def combine_cuda_n_3d(aggs, selector_aggs):
ny, nx, n = aggs[0].shape
x, y = nb_cuda.grid(2)
if x < nx and y < ny:
for i in range(n):
value = selector_aggs[1][y, x, i]
if invalid(value):
break
update_index = append(x, y, selector_aggs[0], value)
if update_index < 0:
break
cuda_shift_and_insert(aggs[0][y, x], aggs[1][y, x, i], update_index)
@nb_cuda.jit
def combine_cuda_n_4d(aggs, selector_aggs):
ny, nx, ncat, n = aggs[0].shape
x, y, cat = nb_cuda.grid(3)
if x < nx and y < ny and cat < ncat:
for i in range(n):
value = selector_aggs[1][y, x, cat, i]
if invalid(value):
break
update_index = append(x, y, selector_aggs[0][:, :, cat, :], value)
if update_index < 0:
break
cuda_shift_and_insert(aggs[0][y, x, cat], aggs[1][y, x, cat, i], update_index)
if is_n_reduction:
# ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
if cuda:
return combine_cuda_n_4d if categorical else combine_cuda_n_3d
else:
return combine_cpu_n_4d if categorical else combine_cpu_n_3d
else:
# ndim is either 2 (ny, nx) or 3 (ny, nx, ncat)
if cuda:
return combine_cuda_3d if categorical else combine_cuda_2d
else:
return combine_cpu_3d if categorical else combine_cpu_2d
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
combine = self._combine_callback(cuda, partitioned, categorical)
def wrapped_combine(aggs, selector_aggs):
if len(aggs) == 1:
pass
elif cuda:
assert len(aggs) == 2
is_n_reduction = isinstance(self.selector, FloatingNReduction)
shape = aggs[0].shape[:-1] if is_n_reduction else aggs[0].shape
combine[cuda_args(shape)](aggs, selector_aggs)
else:
for i in range(1, len(aggs)):
combine((aggs[0], aggs[i]), (selector_aggs[0], selector_aggs[i]))
return aggs[0], selector_aggs[0]
return wrapped_combine
def _build_combine_temps(self, cuda, partitioned):
return (self.selector,)
def _build_create(self, required_dshape):
# Return a function that when called with a shape creates an agg array
# of the required type (numpy/cupy) and dtype.
if isinstance(self.selector, FloatingNReduction):
# This specialisation isn't ideal but Reduction classes do not
# store information about the required extra dimension.
return lambda shape, array_module: super(where, self)._build_create(
required_dshape)(shape + (self.selector.n,), array_module)
else:
return super()._build_create(required_dshape)
def _build_finalize(self, dshape):
if isinstance(self.selector, FloatingNReduction):
add_finalize_kwargs = self.selector._add_finalize_kwargs
else:
add_finalize_kwargs = None
def finalize(bases, cuda=False, **kwargs):
if add_finalize_kwargs is not None:
kwargs = add_finalize_kwargs(**kwargs)
return xr.DataArray(bases[-1], **kwargs)
return finalize
class summary(Expr):
"""A collection of named reductions.
Computes all aggregates simultaneously, output is stored as a
``xarray.Dataset``.
Examples
--------
A reduction for computing the mean of column "a", and the sum of column "b"
for each bin, all in a single pass.
>>> import datashader as ds
>>> red = ds.summary(mean_a=ds.mean('a'), sum_b=ds.sum('b'))
Notes
-----
A single pass of the source dataset using antialiased lines can either be
performed using a single-stage aggregation (e.g. ``self_intersect=True``)
or two stages (``self_intersect=False``). If a ``summary`` contains a
``count`` or ``sum`` reduction with ``self_intersect=False``, or any of
``first``, ``last`` or ``min``, then the antialiased line pass will be
performed in two stages.
"""
def __init__(self, **kwargs):
ks, vs = zip(*sorted(kwargs.items()))
self.keys = ks
self.values = vs
def __hash__(self):
return hash((type(self), tuple(self.keys), tuple(self.values)))
def is_categorical(self):
for v in self.values:
if v.is_categorical():
return True
return False
def uses_row_index(self, cuda, partitioned):
for v in self.values:
if v.uses_row_index(cuda, partitioned):
return True
return False
def validate(self, input_dshape):
for v in self.values:
v.validate(input_dshape)
# Check that any included FloatingNReductions have the same n values.
n_values = []
for v in self.values:
if isinstance(v, where):
v = v.selector
if isinstance(v, FloatingNReduction):
n_values.append(v.n)
if len(np.unique(n_values)) > 1:
raise ValueError(
"Using multiple FloatingNReductions with different n values is not supported")
@property
def inputs(self):
return tuple(unique(concat(v.inputs for v in self.values)))
class _max_or_min_row_index(OptionalFieldReduction):
"""Abstract base class of max and min row_index reductions.
"""
def __init__(self):
super().__init__(column=SpecialColumn.RowIndex)
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.int64)
def uses_row_index(self, cuda, partitioned):
return True
class _max_row_index(_max_or_min_row_index):
"""Max reduction operating on row index.
This is a private class as it is not intended to be used explicitly in
user code. It is primarily purpose is to support the use of ``last``
reductions using dask and/or CUDA.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MAX, -1),)
@staticmethod
@ngjit
def _append(x, y, agg, field):
# field is int64 row index
if field > agg[y, x]:
agg[y, x] = field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
# field is int64 row index
# Ignore aa_factor
if field > agg[y, x]:
agg[y, x] = field
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
# field is int64 row index
if field != -1:
old = nb_cuda.atomic.max(agg, (y, x), field)
if old < field:
return 0
return -1
@staticmethod
def _combine(aggs):
# Maximum ignoring -1 values
# Works for CPU and GPU
ret = aggs[0]
for i in range(1, len(aggs)):
# Works with numpy or cupy arrays
np.maximum(ret, aggs[i], out=ret)
return ret
class _min_row_index(_max_or_min_row_index):
"""Min reduction operating on row index.
This is a private class as it is not intended to be used explicitly in
user code. It is primarily purpose is to support the use of ``first``
reductions using dask and/or CUDA.
"""
def _antialias_requires_2_stages(self):
return True
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MIN, -1),)
def uses_cuda_mutex(self) -> UsesCudaMutex:
return UsesCudaMutex.Local
# CPU append functions
@staticmethod
@ngjit
def _append(x, y, agg, field):
# field is int64 row index
if field != -1 and (agg[y, x] == -1 or field < agg[y, x]):
agg[y, x] = field
return 0
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
# field is int64 row index
# Ignore aa_factor
if field != -1 and (agg[y, x] == -1 or field < agg[y, x]):
agg[y, x] = field
return 0
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
# field is int64 row index
# Always uses cuda mutex so this does not need to be atomic
if field != -1 and (agg[y, x] == -1 or field < agg[y, x]):
agg[y, x] = field
return 0
return -1
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
if cuda:
return self._combine_cuda
else:
return self._combine
@staticmethod
def _combine(aggs):
# Minimum ignoring -1 values
ret = aggs[0]
for i in range(1, len(aggs)):
# Can take 2d (ny, nx) or 3d (ny, nx, ncat) arrays.
row_min_in_place(ret, aggs[i])
return ret
@staticmethod
def _combine_cuda(aggs):
ret = aggs[0]
if len(aggs) > 1:
if ret.ndim == 2: # ndim is either 2 (ny, nx) or 3 (ny, nx, ncat)
# 3d view of each agg
aggs = [cp.expand_dims(agg, 2) for agg in aggs]
kernel_args = cuda_args(ret.shape[:3])
for i in range(1, len(aggs)):
cuda_row_min_in_place[kernel_args](aggs[0], aggs[i])
return ret
class _max_n_or_min_n_row_index(FloatingNReduction):
"""Abstract base class of max_n and min_n row_index reductions.
"""
def __init__(self, n=1):
super().__init__(column=SpecialColumn.RowIndex)
self.n = n if n >= 1 else 1
def out_dshape(self, in_dshape, antialias, cuda, partitioned):
return dshape(ct.int64)
def uses_cuda_mutex(self) -> UsesCudaMutex:
return UsesCudaMutex.Local
def uses_row_index(self, cuda, partitioned):
return True
def _build_combine(self, dshape, antialias, cuda, partitioned, categorical = False):
if cuda:
return self._combine_cuda
else:
return self._combine
class _max_n_row_index(_max_n_or_min_n_row_index):
"""Max_n reduction operating on row index.
This is a private class as it is not intended to be used explicitly in
user code. It is primarily purpose is to support the use of ``last_n``
reductions using dask and/or CUDA.
"""
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MAX, -1, n_reduction=True),)
@staticmethod
@ngjit
def _append(x, y, agg, field):
# field is int64 row index
if field != -1:
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if agg[y, x, i] == -1 or field > agg[y, x, i]:
shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
# field is int64 row index
# Ignoring aa_factor
if field != -1:
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if agg[y, x, i] == -1 or field > agg[y, x, i]:
# Bump previous values along to make room for new value.
for j in range(n-1, i, -1):
agg[y, x, j] = agg[y, x, j-1]
agg[y, x, i] = field
return i
return -1
# GPU append functions
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
# field is int64 row index
# Always uses cuda mutex so this does not need to be atomic
if field != -1:
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if agg[y, x, i] == -1 or field > agg[y, x, i]:
cuda_shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
def _combine(aggs):
ret = aggs[0]
if len(aggs) > 1:
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
row_max_n_in_place_3d(aggs[0], aggs[1])
else:
row_max_n_in_place_4d(aggs[0], aggs[1])
return ret
@staticmethod
def _combine_cuda(aggs):
ret = aggs[0]
if len(aggs) > 1:
kernel_args = cuda_args(ret.shape[:-1])
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
cuda_row_max_n_in_place_3d[kernel_args](aggs[0], aggs[1])
else:
cuda_row_max_n_in_place_4d[kernel_args](aggs[0], aggs[1])
return ret
class _min_n_row_index(_max_n_or_min_n_row_index):
"""Min_n reduction operating on row index.
This is a private class as it is not intended to be used explicitly in
user code. It is primarily purpose is to support the use of ``first_n``
reductions using dask and/or CUDA.
"""
def _antialias_requires_2_stages(self):
return True
def _antialias_stage_2(self, self_intersect, array_module) -> tuple[AntialiasStage2]:
return (AntialiasStage2(AntialiasCombination.MIN, -1, n_reduction=True),)
@staticmethod
@ngjit
def _append(x, y, agg, field):
# field is int64 row index
if field != -1:
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if agg[y, x, i] == -1 or field < agg[y, x, i]:
shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
@ngjit
def _append_antialias(x, y, agg, field, aa_factor, prev_aa_factor):
# field is int64 row index
# Ignoring aa_factor
if field != -1:
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if agg[y, x, i] == -1 or field < agg[y, x, i]:
shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
@nb_cuda.jit(device=True)
def _append_cuda(x, y, agg, field):
# field is int64 row index
# Always uses cuda mutex so this does not need to be atomic
if field != -1:
# Linear walk along stored values.
# Could do binary search instead but not expecting n to be large.
n = agg.shape[2]
for i in range(n):
if agg[y, x, i] == -1 or field < agg[y, x, i]:
cuda_shift_and_insert(agg[y, x], field, i)
return i
return -1
@staticmethod
def _combine(aggs):
ret = aggs[0]
if len(aggs) > 1:
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
row_min_n_in_place_3d(aggs[0], aggs[1])
else:
row_min_n_in_place_4d(aggs[0], aggs[1])
return ret
@staticmethod
def _combine_cuda(aggs):
ret = aggs[0]
if len(aggs) > 1:
kernel_args = cuda_args(ret.shape[:-1])
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
cuda_row_min_n_in_place_3d[kernel_args](aggs[0], aggs[1])
else:
cuda_row_min_n_in_place_4d[kernel_args](aggs[0], aggs[1])
return ret
__all__ = list(set([_k for _k,_v in locals().items()
if isinstance(_v,type) and (issubclass(_v,Reduction) or _v is summary)
and _v not in [Reduction, OptionalFieldReduction,
FloatingReduction, m2]])) + \
['category_modulo', 'category_binning']
|