Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,602 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
import math
import numbers
import uuid
from enum import Enum
from dask import config, core, utils
from dask.core import (
flatten,
get_dependencies,
ishashable,
istask,
reverse_dict,
subs,
toposort,
)
def cull(dsk, keys):
"""Return new dask with only the tasks required to calculate keys.
In other words, remove unnecessary tasks from dask.
``keys`` may be a single key or list of keys.
Examples
--------
>>> def inc(x):
... return x + 1
>>> def add(x, y):
... return x + y
>>> d = {'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)}
>>> dsk, dependencies = cull(d, 'out')
>>> dsk # doctest: +ELLIPSIS
{'out': (<function add at ...>, 'x', 10), 'x': 1}
>>> dependencies # doctest: +ELLIPSIS
{'out': ['x'], 'x': []}
Returns
-------
dsk: culled dask graph
dependencies: Dict mapping {key: [deps]}. Useful side effect to accelerate
other optimizations, notably fuse.
"""
if not isinstance(keys, (list, set)):
keys = [keys]
seen = set()
dependencies = dict()
out = {}
work = list(set(flatten(keys)))
while work:
new_work = []
for k in work:
dependencies_k = get_dependencies(dsk, k, as_list=True) # fuse needs lists
out[k] = dsk[k]
dependencies[k] = dependencies_k
for d in dependencies_k:
if d not in seen:
seen.add(d)
new_work.append(d)
work = new_work
return out, dependencies
def default_fused_linear_keys_renamer(keys):
"""Create new keys for fused tasks"""
typ = type(keys[0])
if typ is str:
names = [utils.key_split(x) for x in keys[:0:-1]]
names.append(keys[0])
return "-".join(names)
elif typ is tuple and len(keys[0]) > 0 and isinstance(keys[0][0], str):
names = [utils.key_split(x) for x in keys[:0:-1]]
names.append(keys[0][0])
return ("-".join(names),) + keys[0][1:]
else:
return None
def fuse_linear(dsk, keys=None, dependencies=None, rename_keys=True):
"""Return new dask graph with linear sequence of tasks fused together.
If specified, the keys in ``keys`` keyword argument are *not* fused.
Supply ``dependencies`` from output of ``cull`` if available to avoid
recomputing dependencies.
**This function is mostly superseded by ``fuse``**
Parameters
----------
dsk: dict
keys: list
dependencies: dict, optional
{key: [list-of-keys]}. Must be a list to provide count of each key
This optional input often comes from ``cull``
rename_keys: bool or func, optional
Whether to rename fused keys with ``default_fused_linear_keys_renamer``
or not. Renaming fused keys can keep the graph more understandable
and comprehensive, but it comes at the cost of additional processing.
If False, then the top-most key will be used. For advanced usage, a
func is also accepted, ``new_key = rename_keys(fused_key_list)``.
Examples
--------
>>> def inc(x):
... return x + 1
>>> def add(x, y):
... return x + y
>>> d = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')}
>>> dsk, dependencies = fuse(d)
>>> dsk # doctest: +SKIP
{'a-b-c': (inc, (inc, 1)), 'c': 'a-b-c'}
>>> dsk, dependencies = fuse(d, rename_keys=False)
>>> dsk # doctest: +ELLIPSIS
{'c': (<function inc at ...>, (<function inc at ...>, 1))}
>>> dsk, dependencies = fuse(d, keys=['b'], rename_keys=False)
>>> dsk # doctest: +ELLIPSIS
{'b': (<function inc at ...>, 1), 'c': (<function inc at ...>, 'b')}
Returns
-------
dsk: output graph with keys fused
dependencies: dict mapping dependencies after fusion. Useful side effect
to accelerate other downstream optimizations.
"""
if keys is not None and not isinstance(keys, set):
if not isinstance(keys, list):
keys = [keys]
keys = set(flatten(keys))
if dependencies is None:
dependencies = {k: get_dependencies(dsk, k, as_list=True) for k in dsk}
# locate all members of linear chains
child2parent = {}
unfusible = set()
for parent in dsk:
deps = dependencies[parent]
has_many_children = len(deps) > 1
for child in deps:
if keys is not None and child in keys:
unfusible.add(child)
elif child in child2parent:
del child2parent[child]
unfusible.add(child)
elif has_many_children:
unfusible.add(child)
elif child not in unfusible:
child2parent[child] = parent
# construct the chains from ancestor to descendant
chains = []
parent2child = dict(map(reversed, child2parent.items()))
while child2parent:
child, parent = child2parent.popitem()
chain = [child, parent]
while parent in child2parent:
parent = child2parent.pop(parent)
del parent2child[parent]
chain.append(parent)
chain.reverse()
while child in parent2child:
child = parent2child.pop(child)
del child2parent[child]
chain.append(child)
chains.append(chain)
dependencies = {k: set(v) for k, v in dependencies.items()}
if rename_keys is True:
key_renamer = default_fused_linear_keys_renamer
elif rename_keys is False:
key_renamer = None
else:
key_renamer = rename_keys
# create a new dask with fused chains
rv = {}
fused = set()
aliases = set()
is_renamed = False
for chain in chains:
if key_renamer is not None:
new_key = key_renamer(chain)
is_renamed = (
new_key is not None and new_key not in dsk and new_key not in rv
)
child = chain.pop()
val = dsk[child]
while chain:
parent = chain.pop()
dependencies[parent].update(dependencies.pop(child))
dependencies[parent].remove(child)
val = subs(dsk[parent], child, val)
fused.add(child)
child = parent
fused.add(child)
if is_renamed:
rv[new_key] = val
rv[child] = new_key
dependencies[new_key] = dependencies[child]
dependencies[child] = {new_key}
aliases.add(child)
else:
rv[child] = val
for key, val in dsk.items():
if key not in fused:
rv[key] = val
if aliases:
for key, deps in dependencies.items():
for old_key in deps & aliases:
new_key = rv[old_key]
deps.remove(old_key)
deps.add(new_key)
rv[key] = subs(rv[key], old_key, new_key)
if keys is not None:
for key in aliases - keys:
del rv[key]
del dependencies[key]
return rv, dependencies
def _flat_set(x):
if x is None:
return set()
elif isinstance(x, set):
return x
elif not isinstance(x, (list, set)):
x = [x]
return set(x)
def inline(dsk, keys=None, inline_constants=True, dependencies=None):
"""Return new dask with the given keys inlined with their values.
Inlines all constants if ``inline_constants`` keyword is True. Note that
the constant keys will remain in the graph, to remove them follow
``inline`` with ``cull``.
Examples
--------
>>> def inc(x):
... return x + 1
>>> def add(x, y):
... return x + y
>>> d = {'x': 1, 'y': (inc, 'x'), 'z': (add, 'x', 'y')}
>>> inline(d) # doctest: +ELLIPSIS
{'x': 1, 'y': (<function inc at ...>, 1), 'z': (<function add at ...>, 1, 'y')}
>>> inline(d, keys='y') # doctest: +ELLIPSIS
{'x': 1, 'y': (<function inc at ...>, 1), 'z': (<function add at ...>, 1, (<function inc at ...>, 1))}
>>> inline(d, keys='y', inline_constants=False) # doctest: +ELLIPSIS
{'x': 1, 'y': (<function inc at ...>, 'x'), 'z': (<function add at ...>, 'x', (<function inc at ...>, 'x'))}
"""
if dependencies and isinstance(next(iter(dependencies.values())), list):
dependencies = {k: set(v) for k, v in dependencies.items()}
keys = _flat_set(keys)
if dependencies is None:
dependencies = {k: get_dependencies(dsk, k) for k in dsk}
if inline_constants:
keys.update(
k
for k, v in dsk.items()
if (ishashable(v) and v in dsk) or (not dependencies[k] and not istask(v))
)
# Keys may depend on other keys, so determine replace order with toposort.
# The values stored in `keysubs` do not include other keys.
replaceorder = toposort(
{k: dsk[k] for k in keys if k in dsk}, dependencies=dependencies
)
keysubs = {}
for key in replaceorder:
val = dsk[key]
for dep in keys & dependencies[key]:
if dep in keysubs:
replace = keysubs[dep]
else:
replace = dsk[dep]
val = subs(val, dep, replace)
keysubs[key] = val
# Make new dask with substitutions
dsk2 = keysubs.copy()
for key, val in dsk.items():
if key not in dsk2:
for item in keys & dependencies[key]:
val = subs(val, item, keysubs[item])
dsk2[key] = val
return dsk2
def inline_functions(
dsk, output, fast_functions=None, inline_constants=False, dependencies=None
):
"""Inline cheap functions into larger operations
Examples
--------
>>> inc = lambda x: x + 1
>>> add = lambda x, y: x + y
>>> double = lambda x: x * 2
>>> dsk = {'out': (add, 'i', 'd'), # doctest: +SKIP
... 'i': (inc, 'x'),
... 'd': (double, 'y'),
... 'x': 1, 'y': 1}
>>> inline_functions(dsk, [], [inc]) # doctest: +SKIP
{'out': (add, (inc, 'x'), 'd'),
'd': (double, 'y'),
'x': 1, 'y': 1}
Protect output keys. In the example below ``i`` is not inlined because it
is marked as an output key.
>>> inline_functions(dsk, ['i', 'out'], [inc, double]) # doctest: +SKIP
{'out': (add, 'i', (double, 'y')),
'i': (inc, 'x'),
'x': 1, 'y': 1}
"""
if not fast_functions:
return dsk
output = set(output)
fast_functions = set(fast_functions)
if dependencies is None:
dependencies = {k: get_dependencies(dsk, k) for k in dsk}
dependents = reverse_dict(dependencies)
def inlinable(v):
try:
return functions_of(v).issubset(fast_functions)
except TypeError:
return False
keys = [
k
for k, v in dsk.items()
if istask(v) and dependents[k] and k not in output and inlinable(v)
]
if keys:
dsk = inline(
dsk, keys, inline_constants=inline_constants, dependencies=dependencies
)
for k in keys:
del dsk[k]
return dsk
def unwrap_partial(func):
while hasattr(func, "func"):
func = func.func
return func
def functions_of(task):
"""Set of functions contained within nested task
Examples
--------
>>> inc = lambda x: x + 1
>>> add = lambda x, y: x + y
>>> mul = lambda x, y: x * y
>>> task = (add, (mul, 1, 2), (inc, 3)) # doctest: +SKIP
>>> functions_of(task) # doctest: +SKIP
set([add, mul, inc])
"""
funcs = set()
work = [task]
sequence_types = {list, tuple}
while work:
new_work = []
for task in work:
if type(task) in sequence_types:
if istask(task):
funcs.add(unwrap_partial(task[0]))
new_work.extend(task[1:])
else:
new_work.extend(task)
work = new_work
return funcs
def default_fused_keys_renamer(keys, max_fused_key_length=120):
"""Create new keys for ``fuse`` tasks.
The optional parameter `max_fused_key_length` is used to limit the maximum string length for each renamed key.
If this parameter is set to `None`, there is no limit.
"""
it = reversed(keys)
first_key = next(it)
typ = type(first_key)
if max_fused_key_length: # Take into account size of hash suffix
max_fused_key_length -= 5
def _enforce_max_key_limit(key_name):
if max_fused_key_length and len(key_name) > max_fused_key_length:
name_hash = f"{hash(key_name):x}"[:4]
key_name = f"{key_name[:max_fused_key_length]}-{name_hash}"
return key_name
if typ is str:
first_name = utils.key_split(first_key)
names = {utils.key_split(k) for k in it}
names.discard(first_name)
names = sorted(names)
names.append(first_key)
concatenated_name = "-".join(names)
return _enforce_max_key_limit(concatenated_name)
elif typ is tuple and len(first_key) > 0 and isinstance(first_key[0], str):
first_name = utils.key_split(first_key)
names = {utils.key_split(k) for k in it}
names.discard(first_name)
names = sorted(names)
names.append(first_key[0])
concatenated_name = "-".join(names)
return (_enforce_max_key_limit(concatenated_name),) + first_key[1:]
# PEP-484 compliant singleton constant
# https://www.python.org/dev/peps/pep-0484/#support-for-singleton-types-in-unions
class Default(Enum):
token = 0
def __repr__(self) -> str:
return "<default>"
_default = Default.token
def fuse(
dsk,
keys=None,
dependencies=None,
ave_width=_default,
max_width=_default,
max_height=_default,
max_depth_new_edges=_default,
rename_keys=_default,
fuse_subgraphs=_default,
):
"""Fuse tasks that form reductions; more advanced than ``fuse_linear``
This trades parallelism opportunities for faster scheduling by making tasks
less granular. It can replace ``fuse_linear`` in optimization passes.
This optimization applies to all reductions--tasks that have at most one
dependent--so it may be viewed as fusing "multiple input, single output"
groups of tasks into a single task. There are many parameters to fine
tune the behavior, which are described below. ``ave_width`` is the
natural parameter with which to compare parallelism to granularity, so
it should always be specified. Reasonable values for other parameters
will be determined using ``ave_width`` if necessary.
Parameters
----------
dsk: dict
dask graph
keys: list or set, optional
Keys that must remain in the returned dask graph
dependencies: dict, optional
{key: [list-of-keys]}. Must be a list to provide count of each key
This optional input often comes from ``cull``
ave_width: float (default 1)
Upper limit for ``width = num_nodes / height``, a good measure of
parallelizability.
dask.config key: ``optimization.fuse.ave-width``
max_width: int (default infinite)
Don't fuse if total width is greater than this.
dask.config key: ``optimization.fuse.max-width``
max_height: int or None (default None)
Don't fuse more than this many levels. Set to None to dynamically
adjust to ``1.5 + ave_width * log(ave_width + 1)``.
dask.config key: ``optimization.fuse.max-height``
max_depth_new_edges: int or None (default None)
Don't fuse if new dependencies are added after this many levels.
Set to None to dynamically adjust to ave_width * 1.5.
dask.config key: ``optimization.fuse.max-depth-new-edges``
rename_keys: bool or func, optional (default True)
Whether to rename the fused keys with ``default_fused_keys_renamer``
or not. Renaming fused keys can keep the graph more understandable
and comprehensive, but it comes at the cost of additional processing.
If False, then the top-most key will be used. For advanced usage, a
function to create the new name is also accepted.
dask.config key: ``optimization.fuse.rename-keys``
fuse_subgraphs : bool or None, optional (default None)
Whether to fuse multiple tasks into ``SubgraphCallable`` objects.
Set to None to let the default optimizer of individual dask collections decide.
If no collection-specific default exists, None defaults to False.
dask.config key: ``optimization.fuse.subgraphs``
Returns
-------
dsk
output graph with keys fused
dependencies
dict mapping dependencies after fusion. Useful side effect to accelerate other
downstream optimizations.
"""
# Perform low-level fusion unless the user has
# specified False explicitly.
if config.get("optimization.fuse.active") is False:
return dsk, dependencies
if keys is not None and not isinstance(keys, set):
if not isinstance(keys, list):
keys = [keys]
keys = set(flatten(keys))
# Read defaults from dask.yaml and/or user-defined config file
if ave_width is _default:
ave_width = config.get("optimization.fuse.ave-width")
assert ave_width is not _default
if max_height is _default:
max_height = config.get("optimization.fuse.max-height")
assert max_height is not _default
if max_depth_new_edges is _default:
max_depth_new_edges = config.get("optimization.fuse.max-depth-new-edges")
assert max_depth_new_edges is not _default
if max_depth_new_edges is None:
max_depth_new_edges = ave_width * 1.5
if max_width is _default:
max_width = config.get("optimization.fuse.max-width")
assert max_width is not _default
if max_width is None:
max_width = 1.5 + ave_width * math.log(ave_width + 1)
if fuse_subgraphs is _default:
fuse_subgraphs = config.get("optimization.fuse.subgraphs")
assert fuse_subgraphs is not _default
if fuse_subgraphs is None:
fuse_subgraphs = False
if not ave_width or not max_height:
return dsk, dependencies
if rename_keys is _default:
rename_keys = config.get("optimization.fuse.rename-keys")
assert rename_keys is not _default
if rename_keys is True:
key_renamer = default_fused_keys_renamer
elif rename_keys is False:
key_renamer = None
elif not callable(rename_keys):
raise TypeError("rename_keys must be a boolean or callable")
else:
key_renamer = rename_keys
rename_keys = key_renamer is not None
if dependencies is None:
deps = {k: get_dependencies(dsk, k, as_list=True) for k in dsk}
else:
deps = dict(dependencies)
rdeps = {}
for k, vals in deps.items():
for v in vals:
if v not in rdeps:
rdeps[v] = [k]
else:
rdeps[v].append(k)
deps[k] = set(vals)
reducible = {k for k, vals in rdeps.items() if len(vals) == 1}
if keys:
reducible -= keys
for k, v in dsk.items():
if type(v) is not tuple and not isinstance(v, (numbers.Number, str)):
reducible.discard(k)
if not reducible and (
not fuse_subgraphs or all(len(set(v)) != 1 for v in rdeps.values())
):
# Quick return if there's nothing to do. Only progress if there's tasks
# fusible by the main `fuse`, or by `fuse_subgraphs` if enabled.
return dsk, deps
rv = dsk.copy()
fused_trees = {}
# These are the stacks we use to store data as we traverse the graph
info_stack = []
children_stack = []
# For speed
deps_pop = deps.pop
reducible_add = reducible.add
reducible_pop = reducible.pop
reducible_remove = reducible.remove
fused_trees_pop = fused_trees.pop
info_stack_append = info_stack.append
info_stack_pop = info_stack.pop
children_stack_append = children_stack.append
children_stack_extend = children_stack.extend
children_stack_pop = children_stack.pop
while reducible:
parent = reducible_pop()
reducible_add(parent)
while parent in reducible:
# Go to the top
parent = rdeps[parent][0]
children_stack_append(parent)
children_stack_extend(reducible & deps[parent])
while True:
child = children_stack[-1]
if child != parent:
children = reducible & deps[child]
while children:
# Depth-first search
children_stack_extend(children)
parent = child
child = children_stack[-1]
children = reducible & deps[child]
children_stack_pop()
# This is a leaf node in the reduction region
# key, task, fused_keys, height, width, number of nodes, fudge, set of edges
info_stack_append(
(
child,
rv[child],
[child] if rename_keys else None,
1,
1,
1,
0,
deps[child] - reducible,
)
)
else:
children_stack_pop()
# Calculate metrics and fuse as appropriate
deps_parent = deps[parent]
edges = deps_parent - reducible
children = deps_parent - edges
num_children = len(children)
if num_children == 1:
(
child_key,
child_task,
child_keys,
height,
width,
num_nodes,
fudge,
children_edges,
) = info_stack_pop()
num_children_edges = len(children_edges)
if fudge > num_children_edges - 1 >= 0:
fudge = num_children_edges - 1
edges |= children_edges
no_new_edges = len(edges) == num_children_edges
if not no_new_edges:
fudge += 1
if (
(num_nodes + fudge) / height <= ave_width
and
# Sanity check; don't go too deep if new levels introduce new edge dependencies
(no_new_edges or height < max_depth_new_edges)
):
# Perform substitutions as we go
val = subs(dsk[parent], child_key, child_task)
deps_parent.remove(child_key)
deps_parent |= deps_pop(child_key)
del rv[child_key]
reducible_remove(child_key)
if rename_keys:
child_keys.append(parent)
fused_trees[parent] = child_keys
fused_trees_pop(child_key, None)
if children_stack:
if no_new_edges:
# Linear fuse
info_stack_append(
(
parent,
val,
child_keys,
height,
width,
num_nodes,
fudge,
edges,
)
)
else:
info_stack_append(
(
parent,
val,
child_keys,
height + 1,
width,
num_nodes + 1,
fudge,
edges,
)
)
else:
rv[parent] = val
break
else:
rv[child_key] = child_task
reducible_remove(child_key)
if children_stack:
# Allow the parent to be fused, but only under strict circumstances.
# Ensure that linear chains may still be fused.
if fudge > int(ave_width - 1):
fudge = int(ave_width - 1)
# This task *implicitly* depends on `edges`
info_stack_append(
(
parent,
rv[parent],
[parent] if rename_keys else None,
1,
width,
1,
fudge,
edges,
)
)
else:
break
else:
child_keys = []
height = 1
width = 0
num_single_nodes = 0
num_nodes = 0
fudge = 0
children_edges = set()
max_num_edges = 0
children_info = info_stack[-num_children:]
del info_stack[-num_children:]
for (
_,
_,
_,
cur_height,
cur_width,
cur_num_nodes,
cur_fudge,
cur_edges,
) in children_info:
if cur_height == 1:
num_single_nodes += 1
elif cur_height > height:
height = cur_height
width += cur_width
num_nodes += cur_num_nodes
fudge += cur_fudge
if len(cur_edges) > max_num_edges:
max_num_edges = len(cur_edges)
children_edges |= cur_edges
# Fudge factor to account for possible parallelism with the boundaries
num_children_edges = len(children_edges)
fudge += min(
num_children - 1, max(0, num_children_edges - max_num_edges)
)
if fudge > num_children_edges - 1 >= 0:
fudge = num_children_edges - 1
edges |= children_edges
no_new_edges = len(edges) == num_children_edges
if not no_new_edges:
fudge += 1
if (
(num_nodes + fudge) / height <= ave_width
and num_single_nodes <= ave_width
and width <= max_width
and height <= max_height
and
# Sanity check; don't go too deep if new levels introduce new edge dependencies
(no_new_edges or height < max_depth_new_edges)
):
# Perform substitutions as we go
val = dsk[parent]
children_deps = set()
for child_info in children_info:
cur_child = child_info[0]
val = subs(val, cur_child, child_info[1])
del rv[cur_child]
children_deps |= deps_pop(cur_child)
reducible_remove(cur_child)
if rename_keys:
fused_trees_pop(cur_child, None)
child_keys.extend(child_info[2])
deps_parent -= children
deps_parent |= children_deps
if rename_keys:
child_keys.append(parent)
fused_trees[parent] = child_keys
if children_stack:
info_stack_append(
(
parent,
val,
child_keys,
height + 1,
width,
num_nodes + 1,
fudge,
edges,
)
)
else:
rv[parent] = val
break
else:
for child_info in children_info:
rv[child_info[0]] = child_info[1]
reducible_remove(child_info[0])
if children_stack:
# Allow the parent to be fused, but only under strict circumstances.
# Ensure that linear chains may still be fused.
if width > max_width:
width = max_width
if fudge > int(ave_width - 1):
fudge = int(ave_width - 1)
# key, task, height, width, number of nodes, fudge, set of edges
# This task *implicitly* depends on `edges`
info_stack_append(
(
parent,
rv[parent],
[parent] if rename_keys else None,
1,
width,
1,
fudge,
edges,
)
)
else:
break
# Traverse upwards
parent = rdeps[parent][0]
if fuse_subgraphs:
_inplace_fuse_subgraphs(rv, keys, deps, fused_trees, rename_keys)
if key_renamer:
for root_key, fused_keys in fused_trees.items():
alias = key_renamer(fused_keys)
if alias is not None and alias not in rv:
rv[alias] = rv[root_key]
rv[root_key] = alias
deps[alias] = deps[root_key]
deps[root_key] = {alias}
return rv, deps
def _inplace_fuse_subgraphs(dsk, keys, dependencies, fused_trees, rename_keys):
"""Subroutine of fuse.
Mutates dsk, dependencies, and fused_trees inplace"""
# locate all members of linear chains
child2parent = {}
unfusible = set()
for parent in dsk:
deps = dependencies[parent]
has_many_children = len(deps) > 1
for child in deps:
if keys is not None and child in keys:
unfusible.add(child)
elif child in child2parent:
del child2parent[child]
unfusible.add(child)
elif has_many_children:
unfusible.add(child)
elif child not in unfusible:
child2parent[child] = parent
# construct the chains from ancestor to descendant
chains = []
parent2child = {v: k for k, v in child2parent.items()}
while child2parent:
child, parent = child2parent.popitem()
chain = [child, parent]
while parent in child2parent:
parent = child2parent.pop(parent)
del parent2child[parent]
chain.append(parent)
chain.reverse()
while child in parent2child:
child = parent2child.pop(child)
del child2parent[child]
chain.append(child)
# Skip chains with < 2 executable tasks
ntasks = 0
for key in chain:
ntasks += istask(dsk[key])
if ntasks > 1:
chains.append(chain)
break
# Mutate dsk fusing chains into subgraphs
for chain in chains:
subgraph = {k: dsk[k] for k in chain}
outkey = chain[0]
# Update dependencies and graph
inkeys_set = dependencies[outkey] = dependencies[chain[-1]]
for k in chain[1:]:
del dependencies[k]
del dsk[k]
# Create new task
inkeys = tuple(inkeys_set)
dsk[outkey] = (SubgraphCallable(subgraph, outkey, inkeys),) + inkeys
# Mutate `fused_trees` if key renaming is needed (renaming done in fuse)
if rename_keys:
chain2 = []
for k in chain:
subchain = fused_trees.pop(k, False)
if subchain:
chain2.extend(subchain)
else:
chain2.append(k)
fused_trees[outkey] = chain2
class SubgraphCallable:
"""Create a callable object from a dask graph.
Parameters
----------
dsk : dict
A dask graph
outkey : hashable
The output key from the graph
inkeys : list
A list of keys to be used as arguments to the callable.
name : str, optional
The name to use for the function.
"""
__slots__ = ("dsk", "outkey", "inkeys", "name")
def __init__(self, dsk, outkey, inkeys, name=None):
self.dsk = dsk
self.outkey = outkey
self.inkeys = inkeys
if name is None:
name = f"subgraph_callable-{uuid.uuid4()}"
self.name = name
def __repr__(self):
return self.name
def __eq__(self, other):
return (
type(self) is type(other)
and self.name == other.name
and self.outkey == other.outkey
and set(self.inkeys) == set(other.inkeys)
)
def __ne__(self, other):
return not (self == other)
def __call__(self, *args):
if not len(args) == len(self.inkeys):
raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args)))
return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
def __reduce__(self):
return (SubgraphCallable, (self.dsk, self.outkey, self.inkeys, self.name))
def __hash__(self):
return hash(tuple((self.outkey, frozenset(self.inkeys), self.name)))
|