File size: 24,353 Bytes
d1ed09d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
import operator
import types
import uuid
import warnings
from collections.abc import Iterator
from dataclasses import fields, is_dataclass, replace
from functools import partial

from tlz import concat, curry, merge, unique

from dask import config
from dask.base import (
    DaskMethodsMixin,
    dont_optimize,
    is_dask_collection,
    named_schedulers,
    replace_name_in_key,
)
from dask.base import tokenize as _tokenize
from dask.context import globalmethod
from dask.core import flatten, quote
from dask.highlevelgraph import HighLevelGraph
from dask.utils import (
    OperatorMethodMixin,
    apply,
    funcname,
    is_namedtuple_instance,
    methodcaller,
)

__all__ = ["Delayed", "delayed"]


DEFAULT_GET = named_schedulers.get("threads", named_schedulers["sync"])


def unzip(ls, nout):
    """Unzip a list of lists into ``nout`` outputs."""
    out = list(zip(*ls))
    if not out:
        out = [()] * nout
    return out


def finalize(collection):
    assert is_dask_collection(collection)

    name = "finalize-" + tokenize(collection)
    keys = collection.__dask_keys__()
    finalize, args = collection.__dask_postcompute__()
    layer = {name: (finalize, keys) + args}
    graph = HighLevelGraph.from_collections(name, layer, dependencies=[collection])
    return Delayed(name, graph)


def unpack_collections(expr):
    """Normalize a python object and merge all sub-graphs.

    - Replace ``Delayed`` with their keys
    - Convert literals to things the schedulers can handle
    - Extract dask graphs from all enclosed values

    Parameters
    ----------
    expr : object
        The object to be normalized. This function knows how to handle
        dask collections, as well as most builtin python types.

    Returns
    -------
    task : normalized task to be run
    collections : a tuple of collections

    Examples
    --------
    >>> import dask
    >>> a = delayed(1, 'a')
    >>> b = delayed(2, 'b')
    >>> task, collections = unpack_collections([a, b, 3])
    >>> task
    ['a', 'b', 3]
    >>> collections
    (Delayed('a'), Delayed('b'))

    >>> task, collections = unpack_collections({a: 1, b: 2})
    >>> task
    (<class 'dict'>, [['a', 1], ['b', 2]])
    >>> collections
    (Delayed('a'), Delayed('b'))
    """
    if isinstance(expr, Delayed):
        return expr._key, (expr,)

    if is_dask_collection(expr):
        finalized = finalize(expr)
        return finalized._key, (finalized,)

    if isinstance(expr, Iterator):
        expr = tuple(expr)

    typ = type(expr)

    if typ in (list, tuple, set):
        args, collections = unzip((unpack_collections(e) for e in expr), 2)
        args = list(args)
        collections = tuple(unique(concat(collections), key=id))
        # Ensure output type matches input type
        if typ is not list:
            args = (typ, args)
        return args, collections

    if typ is dict:
        args, collections = unpack_collections([[k, v] for k, v in expr.items()])
        return (dict, args), collections

    if typ is slice:
        args, collections = unpack_collections([expr.start, expr.stop, expr.step])
        return (slice, *args), collections

    if is_dataclass(expr):
        args, collections = unpack_collections(
            [
                [f.name, getattr(expr, f.name)]
                for f in fields(expr)
                if hasattr(expr, f.name)  # if init=False, field might not exist
            ]
        )
        if not collections:
            return expr, ()
        try:
            _fields = {
                f.name: getattr(expr, f.name)
                for f in fields(expr)
                if hasattr(expr, f.name)
            }
            replace(expr, **_fields)
        except TypeError as e:
            raise TypeError(
                f"Failed to unpack {typ} instance. "
                "Note that using a custom __init__ is not supported."
            ) from e
        except ValueError as e:
            raise ValueError(
                f"Failed to unpack {typ} instance. "
                "Note that using fields with `init=False` are not supported."
            ) from e
        return (apply, typ, (), (dict, args)), collections

    if is_namedtuple_instance(expr):
        args, collections = unpack_collections([v for v in expr])
        return (typ, *args), collections

    return expr, ()


def to_task_dask(expr):
    """Normalize a python object and merge all sub-graphs.

    - Replace ``Delayed`` with their keys
    - Convert literals to things the schedulers can handle
    - Extract dask graphs from all enclosed values

    Parameters
    ----------
    expr : object
        The object to be normalized. This function knows how to handle
        ``Delayed``s, as well as most builtin python types.

    Returns
    -------
    task : normalized task to be run
    dask : a merged dask graph that forms the dag for this task

    Examples
    --------
    >>> import dask
    >>> a = delayed(1, 'a')
    >>> b = delayed(2, 'b')
    >>> task, dask = to_task_dask([a, b, 3])  # doctest: +SKIP
    >>> task  # doctest: +SKIP
    ['a', 'b', 3]
    >>> dict(dask)  # doctest: +SKIP
    {'a': 1, 'b': 2}

    >>> task, dasks = to_task_dask({a: 1, b: 2})  # doctest: +SKIP
    >>> task  # doctest: +SKIP
    (dict, [['a', 1], ['b', 2]])
    >>> dict(dask)  # doctest: +SKIP
    {'a': 1, 'b': 2}
    """
    warnings.warn(
        "The dask.delayed.to_dask_dask function has been "
        "Deprecated in favor of unpack_collections",
        stacklevel=2,
    )

    if isinstance(expr, Delayed):
        return expr.key, expr.dask

    if is_dask_collection(expr):
        name = "finalize-" + tokenize(expr, pure=True)
        keys = expr.__dask_keys__()
        opt = getattr(expr, "__dask_optimize__", dont_optimize)
        finalize, args = expr.__dask_postcompute__()
        dsk = {name: (finalize, keys) + args}
        dsk.update(opt(expr.__dask_graph__(), keys))
        return name, dsk

    if isinstance(expr, Iterator):
        expr = list(expr)
    typ = type(expr)

    if typ in (list, tuple, set):
        args, dasks = unzip((to_task_dask(e) for e in expr), 2)
        args = list(args)
        dsk = merge(dasks)
        # Ensure output type matches input type
        return (args, dsk) if typ is list else ((typ, args), dsk)

    if typ is dict:
        args, dsk = to_task_dask([[k, v] for k, v in expr.items()])
        return (dict, args), dsk

    if is_dataclass(expr):
        args, dsk = to_task_dask(
            [
                [f.name, getattr(expr, f.name)]
                for f in fields(expr)
                if hasattr(expr, f.name)  # if init=False, field might not exist
            ]
        )

        return (apply, typ, (), (dict, args)), dsk

    if is_namedtuple_instance(expr):
        args, dsk = to_task_dask([v for v in expr])
        return (typ, *args), dsk

    if typ is slice:
        args, dsk = to_task_dask([expr.start, expr.stop, expr.step])
        return (slice,) + tuple(args), dsk

    return expr, {}


def tokenize(*args, pure=None, **kwargs):
    """Mapping function from task -> consistent name.

    Parameters
    ----------
    args : object
        Python objects that summarize the task.
    pure : boolean, optional
        If True, a consistent hash function is tried on the input. If this
        fails, then a unique identifier is used. If False (default), then a
        unique identifier is always used.
    """
    if pure is None:
        pure = config.get("delayed_pure", False)

    if pure:
        return _tokenize(*args, **kwargs)
    else:
        return str(uuid.uuid4())


@curry
def delayed(obj, name=None, pure=None, nout=None, traverse=True):
    """Wraps a function or object to produce a ``Delayed``.

    ``Delayed`` objects act as proxies for the object they wrap, but all
    operations on them are done lazily by building up a dask graph internally.

    Parameters
    ----------
    obj : object
        The function or object to wrap
    name : string or hashable, optional
        The key to use in the underlying graph for the wrapped object. Defaults
        to hashing content. Note that this only affects the name of the object
        wrapped by this call to delayed, and *not* the output of delayed
        function calls - for that use ``dask_key_name=`` as described below.

        .. note::

           Because this ``name`` is used as the key in task graphs, you should
           ensure that it uniquely identifies ``obj``. If you'd like to provide
           a descriptive name that is still unique, combine the descriptive name
           with :func:`dask.base.tokenize` of the ``array_like``. See
           :ref:`graphs` for more.

    pure : bool, optional
        Indicates whether calling the resulting ``Delayed`` object is a pure
        operation. If True, arguments to the call are hashed to produce
        deterministic keys. If not provided, the default is to check the global
        ``delayed_pure`` setting, and fallback to ``False`` if unset.
    nout : int, optional
        The number of outputs returned from calling the resulting ``Delayed``
        object. If provided, the ``Delayed`` output of the call can be iterated
        into ``nout`` objects, allowing for unpacking of results. By default
        iteration over ``Delayed`` objects will error. Note, that ``nout=1``
        expects ``obj`` to return a tuple of length 1, and consequently for
        ``nout=0``, ``obj`` should return an empty tuple.
    traverse : bool, optional
        By default dask traverses builtin python collections looking for dask
        objects passed to ``delayed``. For large collections this can be
        expensive. If ``obj`` doesn't contain any dask objects, set
        ``traverse=False`` to avoid doing this traversal.

    Examples
    --------
    Apply to functions to delay execution:

    >>> from dask import delayed
    >>> def inc(x):
    ...     return x + 1

    >>> inc(10)
    11

    >>> x = delayed(inc, pure=True)(10)
    >>> type(x) == Delayed
    True
    >>> x.compute()
    11

    Can be used as a decorator:

    >>> @delayed(pure=True)
    ... def add(a, b):
    ...     return a + b
    >>> add(1, 2).compute()
    3

    ``delayed`` also accepts an optional keyword ``pure``. If False, then
    subsequent calls will always produce a different ``Delayed``. This is
    useful for non-pure functions (such as ``time`` or ``random``).

    >>> from random import random
    >>> out1 = delayed(random, pure=False)()
    >>> out2 = delayed(random, pure=False)()
    >>> out1.key == out2.key
    False

    If you know a function is pure (output only depends on the input, with no
    global state), then you can set ``pure=True``. This will attempt to apply a
    consistent name to the output, but will fallback on the same behavior of
    ``pure=False`` if this fails.

    >>> @delayed(pure=True)
    ... def add(a, b):
    ...     return a + b
    >>> out1 = add(1, 2)
    >>> out2 = add(1, 2)
    >>> out1.key == out2.key
    True

    Instead of setting ``pure`` as a property of the callable, you can also set
    it contextually using the ``delayed_pure`` setting. Note that this
    influences the *call* and not the *creation* of the callable:

    >>> @delayed
    ... def mul(a, b):
    ...     return a * b
    >>> import dask
    >>> with dask.config.set(delayed_pure=True):
    ...     print(mul(1, 2).key == mul(1, 2).key)
    True
    >>> with dask.config.set(delayed_pure=False):
    ...     print(mul(1, 2).key == mul(1, 2).key)
    False

    The key name of the result of calling a delayed object is determined by
    hashing the arguments by default. To explicitly set the name, you can use
    the ``dask_key_name`` keyword when calling the function:

    >>> add(1, 2)   # doctest: +SKIP
    Delayed('add-3dce7c56edd1ac2614add714086e950f')
    >>> add(1, 2, dask_key_name='three')
    Delayed('three')

    Note that objects with the same key name are assumed to have the same
    result. If you set the names explicitly you should make sure your key names
    are different for different results.

    >>> add(1, 2, dask_key_name='three')
    Delayed('three')
    >>> add(2, 1, dask_key_name='three')
    Delayed('three')
    >>> add(2, 2, dask_key_name='four')
    Delayed('four')

    ``delayed`` can also be applied to objects to make operations on them lazy:

    >>> a = delayed([1, 2, 3])
    >>> isinstance(a, Delayed)
    True
    >>> a.compute()
    [1, 2, 3]

    The key name of a delayed object is hashed by default if ``pure=True`` or
    is generated randomly if ``pure=False`` (default).  To explicitly set the
    name, you can use the ``name`` keyword. To ensure that the key is unique
    you should include the tokenized value as well, or otherwise ensure that
    it's unique:

    >>> from dask.base import tokenize
    >>> data = [1, 2, 3]
    >>> a = delayed(data, name='mylist-' + tokenize(data))
    >>> a  # doctest: +SKIP
    Delayed('mylist-55af65871cb378a4fa6de1660c3e8fb7')

    Delayed results act as a proxy to the underlying object. Many operators
    are supported:

    >>> (a + [1, 2]).compute()
    [1, 2, 3, 1, 2]
    >>> a[1].compute()
    2

    Method and attribute access also works:

    >>> a.count(2).compute()
    1

    Note that if a method doesn't exist, no error will be thrown until runtime:

    >>> res = a.not_a_real_method() # doctest: +SKIP
    >>> res.compute()  # doctest: +SKIP
    AttributeError("'list' object has no attribute 'not_a_real_method'")

    "Magic" methods (e.g. operators and attribute access) are assumed to be
    pure, meaning that subsequent calls must return the same results. This
    behavior is not overrideable through the ``delayed`` call, but can be
    modified using other ways as described below.

    To invoke an impure attribute or operator, you'd need to use it in a
    delayed function with ``pure=False``:

    >>> class Incrementer:
    ...     def __init__(self):
    ...         self._n = 0
    ...     @property
    ...     def n(self):
    ...         self._n += 1
    ...         return self._n
    ...
    >>> x = delayed(Incrementer())
    >>> x.n.key == x.n.key
    True
    >>> get_n = delayed(lambda x: x.n, pure=False)
    >>> get_n(x).key == get_n(x).key
    False

    In contrast, methods are assumed to be impure by default, meaning that
    subsequent calls may return different results. To assume purity, set
    ``pure=True``. This allows sharing of any intermediate values.

    >>> a.count(2, pure=True).key == a.count(2, pure=True).key
    True

    As with function calls, method calls also respect the global
    ``delayed_pure`` setting and support the ``dask_key_name`` keyword:

    >>> a.count(2, dask_key_name="count_2")
    Delayed('count_2')
    >>> import dask
    >>> with dask.config.set(delayed_pure=True):
    ...     print(a.count(2).key == a.count(2).key)
    True
    """
    if isinstance(obj, Delayed):
        return obj

    if is_dask_collection(obj) or traverse:
        task, collections = unpack_collections(obj)
    else:
        task = quote(obj)
        collections = set()

    if not (nout is None or (type(nout) is int and nout >= 0)):
        raise ValueError("nout must be None or a non-negative integer, got %s" % nout)
    if task is obj:
        if not name:
            try:
                prefix = obj.__name__
            except AttributeError:
                prefix = type(obj).__name__
            token = tokenize(obj, nout, pure=pure)
            name = f"{prefix}-{token}"
        return DelayedLeaf(obj, name, pure=pure, nout=nout)
    else:
        if not name:
            name = f"{type(obj).__name__}-{tokenize(task, pure=pure)}"
        layer = {name: task}
        graph = HighLevelGraph.from_collections(name, layer, dependencies=collections)
        return Delayed(name, graph, nout)


def _swap(method, self, other):
    return method(other, self)


def right(method):
    """Wrapper to create 'right' version of operator given left version"""
    return partial(_swap, method)


def optimize(dsk, keys, **kwargs):
    if not isinstance(keys, (list, set)):
        keys = [keys]
    if not isinstance(dsk, HighLevelGraph):
        dsk = HighLevelGraph.from_collections(id(dsk), dsk, dependencies=())
    dsk = dsk.cull(set(flatten(keys)))
    return dsk


class Delayed(DaskMethodsMixin, OperatorMethodMixin):
    """Represents a value to be computed by dask.

    Equivalent to the output from a single key in a dask graph.
    """

    __slots__ = ("_key", "_dask", "_length", "_layer")

    def __init__(self, key, dsk, length=None, layer=None):
        self._key = key
        self._dask = dsk
        self._length = length

        # NOTE: Layer is used by `to_delayed` in other collections, but not in normal Delayed use
        self._layer = layer or key
        if isinstance(dsk, HighLevelGraph) and self._layer not in dsk.layers:
            raise ValueError(
                f"Layer {self._layer} not in the HighLevelGraph's layers: {list(dsk.layers)}"
            )

    @property
    def key(self):
        return self._key

    @property
    def dask(self):
        return self._dask

    def __dask_graph__(self):
        return self.dask

    def __dask_keys__(self):
        return [self.key]

    def __dask_layers__(self):
        return (self._layer,)

    def __dask_tokenize__(self):
        return self.key

    __dask_scheduler__ = staticmethod(DEFAULT_GET)
    __dask_optimize__ = globalmethod(optimize, key="delayed_optimize")

    def __dask_postcompute__(self):
        return single_key, ()

    def __dask_postpersist__(self):
        return self._rebuild, ()

    def _rebuild(self, dsk, *, rename=None):
        key = replace_name_in_key(self.key, rename) if rename else self.key
        if isinstance(dsk, HighLevelGraph) and len(dsk.layers) == 1:
            # FIXME Delayed is currently the only collection type that supports both high- and low-level graphs.
            # The HLG output of `optimize` will have a layer name that doesn't match `key`.
            # Remove this when Delayed is HLG-only (because `optimize` will only be passed HLGs, so it won't have
            # to generate random layer names).
            layer = next(iter(dsk.layers))
        else:
            layer = None
        return Delayed(key, dsk, self._length, layer=layer)

    def __repr__(self):
        return f"Delayed({repr(self.key)})"

    def __hash__(self):
        return hash(self.key)

    def __dir__(self):
        return dir(type(self))

    def __getattr__(self, attr):
        if attr.startswith("_"):
            raise AttributeError(f"Attribute {attr} not found")

        if attr == "visualise":
            # added to warn users in case of spelling error
            # for more details: https://github.com/dask/dask/issues/5721
            warnings.warn(
                "dask.delayed objects have no `visualise` method. "
                "Perhaps you meant `visualize`?"
            )

        return DelayedAttr(self, attr)

    def __setattr__(self, attr, val):
        try:
            object.__setattr__(self, attr, val)
        except AttributeError:
            # attr is neither in type(self).__slots__ nor in the __slots__ of any of its
            # parent classes, and all the parent classes define __slots__ too.
            # This last bit needs to be unit tested: if any of the parent classes omit
            # the __slots__ declaration, self will gain a __dict__ and this branch will
            # become unreachable.
            raise TypeError("Delayed objects are immutable")

    def __setitem__(self, index, val):
        raise TypeError("Delayed objects are immutable")

    def __iter__(self):
        if self._length is None:
            raise TypeError("Delayed objects of unspecified length are not iterable")
        for i in range(self._length):
            yield self[i]

    def __len__(self):
        if self._length is None:
            raise TypeError("Delayed objects of unspecified length have no len()")
        return self._length

    def __call__(self, *args, pure=None, dask_key_name=None, **kwargs):
        func = delayed(apply, pure=pure)
        if dask_key_name is not None:
            return func(self, args, kwargs, dask_key_name=dask_key_name)
        return func(self, args, kwargs)

    def __bool__(self):
        raise TypeError("Truth of Delayed objects is not supported")

    __nonzero__ = __bool__

    def __get__(self, instance, cls):
        if instance is None:
            return self
        return types.MethodType(self, instance)

    @classmethod
    def _get_binary_operator(cls, op, inv=False):
        method = delayed(right(op) if inv else op, pure=True)
        return lambda *args, **kwargs: method(*args, **kwargs)

    _get_unary_operator = _get_binary_operator


def call_function(func, func_token, args, kwargs, pure=None, nout=None):
    dask_key_name = kwargs.pop("dask_key_name", None)
    pure = kwargs.pop("pure", pure)

    if dask_key_name is None:
        name = "{}-{}".format(
            funcname(func),
            tokenize(func_token, *args, pure=pure, **kwargs),
        )
    else:
        name = dask_key_name

    args2, collections = unzip(map(unpack_collections, args), 2)
    collections = list(concat(collections))

    if kwargs:
        dask_kwargs, collections2 = unpack_collections(kwargs)
        collections.extend(collections2)
        task = (apply, func, list(args2), dask_kwargs)
    else:
        task = (func,) + args2

    graph = HighLevelGraph.from_collections(
        name, {name: task}, dependencies=collections
    )
    nout = nout if nout is not None else None
    return Delayed(name, graph, length=nout)


class DelayedLeaf(Delayed):
    __slots__ = ("_obj", "_pure", "_nout")

    def __init__(self, obj, key, pure=None, nout=None):
        super().__init__(key, None)
        self._obj = obj
        self._pure = pure
        self._nout = nout

    @property
    def dask(self):
        return HighLevelGraph.from_collections(
            self._key, {self._key: self._obj}, dependencies=()
        )

    def __call__(self, *args, **kwargs):
        return call_function(
            self._obj, self._key, args, kwargs, pure=self._pure, nout=self._nout
        )

    @property
    def __name__(self):
        return self._obj.__name__

    @property
    def __doc__(self):
        return self._obj.__doc__


class DelayedAttr(Delayed):
    __slots__ = ("_obj", "_attr")

    def __init__(self, obj, attr):
        key = "getattr-%s" % tokenize(obj, attr, pure=True)
        super().__init__(key, None)
        self._obj = obj
        self._attr = attr

    def __getattr__(self, attr):
        # Calling np.dtype(dask.delayed(...)) used to result in a segfault, as
        # numpy recursively tries to get `dtype` from the object. This is
        # likely a bug in numpy. For now, we can do a dumb for if
        # `x.dtype().dtype()` is called (which shouldn't ever show up in real
        # code). See https://github.com/dask/dask/pull/4374#issuecomment-454381465
        if attr == "dtype" and self._attr == "dtype":
            raise AttributeError("Attribute dtype not found")
        return super().__getattr__(attr)

    @property
    def dask(self):
        layer = {self._key: (getattr, self._obj._key, self._attr)}
        return HighLevelGraph.from_collections(
            self._key, layer, dependencies=[self._obj]
        )

    def __call__(self, *args, **kwargs):
        return call_function(
            methodcaller(self._attr), self._attr, (self._obj,) + args, kwargs
        )


for op in [
    operator.abs,
    operator.neg,
    operator.pos,
    operator.invert,
    operator.add,
    operator.sub,
    operator.mul,
    operator.floordiv,
    operator.truediv,
    operator.mod,
    operator.pow,
    operator.and_,
    operator.or_,
    operator.xor,
    operator.lshift,
    operator.rshift,
    operator.eq,
    operator.ge,
    operator.gt,
    operator.ne,
    operator.le,
    operator.lt,
    operator.getitem,
]:
    Delayed._bind_operator(op)


try:
    Delayed._bind_operator(operator.matmul)
except AttributeError:
    pass


def single_key(seq):
    """Pick out the only element of this list, a list of keys"""
    return seq[0]