Spaces:
Running
on
Zero
Running
on
Zero
File size: 61,176 Bytes
d1ed09d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 |
from __future__ import annotations
import itertools
import os
from collections.abc import Hashable, Iterable, Mapping, Sequence
from itertools import product
from math import prod
from typing import Any
import tlz as toolz
import dask
from dask.base import clone_key, get_name_from_key, tokenize
from dask.core import flatten, keys_in_tasks, reverse_dict
from dask.highlevelgraph import HighLevelGraph, Layer
from dask.optimization import SubgraphCallable, fuse
from dask.utils import (
_deprecated,
apply,
ensure_dict,
homogeneous_deepmap,
stringify,
stringify_collection_keys,
)
class BlockwiseDep:
"""Blockwise-IO argument
This is the base class for indexable Blockwise-IO arguments.
When constructing a ``Blockwise`` Layer, one or more of the
collection tuples passed in with ``indices`` may contain a
``BlockwiseDep`` instance (in place of a "real" collection name).
This allows a new collection to be created (via IO) within a
``Blockwise`` layer.
Parameters
----------
numblocks: tuple[int, ...]
The number of blocks/partitions the object can support
along each dimension.
produces_tasks: bool
Whether any nested tasks will be passed to the Blockwise
function.
See Also
--------
dask.blockwise.Blockwise
dask.blockwise.BlockwiseDepDict
"""
numblocks: tuple[int, ...]
produces_tasks: bool
def __getitem__(self, idx: tuple[int, ...]) -> Any:
"""Return Blockwise-function arguments for a specific index"""
raise NotImplementedError(
"Must define `__getitem__` for `BlockwiseDep` subclass."
)
def get(self, idx: tuple[int, ...], default) -> Any:
"""BlockwiseDep ``__getitem__`` Wrapper"""
try:
return self.__getitem__(idx)
except KeyError:
return default
@property
def produces_keys(self) -> bool:
"""Whether this object will produce external key dependencies.
An external key corresponds to a task key or ``Delayed``-object
key that does not originate from within the ``Blockwise`` layer
that is including this ``BlockwiseDep`` object in its ``indices``.
A ``BlockwiseDep`` object should only return external-key
dependencies when those dependencies do not correspond to a
blockwise-compatible Dask collection (otherwise the collection
name should just be included in ``indices`` list instead).
"""
return False
def __dask_distributed_pack__(
self, required_indices: list[tuple[int, ...]] | None = None
):
"""Client-side serialization for ``BlockwiseDep`` objects.
Should return a ``state`` dictionary, with msgpack-serializable
values, that can be used to initialize a new ``BlockwiseDep`` object
on a scheduler process.
"""
raise NotImplementedError(
"Must define `__dask_distributed_pack__` for `BlockwiseDep` subclass."
)
@classmethod
def __dask_distributed_unpack__(cls, state):
"""Scheduler-side deserialization for ``BlockwiseDep`` objects.
Should use an input ``state`` dictionary to initialize a new
``BlockwiseDep`` object.
"""
raise NotImplementedError(
"Must define `__dask_distributed_unpack__` for `BlockwiseDep` subclass."
)
def __repr__(self) -> str:
return f"<{type(self).__name__} {self.numblocks}>"
class BlockwiseDepDict(BlockwiseDep):
"""Dictionary-based Blockwise-IO argument
This is a dictionary-backed instance of ``BlockwiseDep``.
The purpose of this class is to simplify the construction
of IO-based Blockwise Layers with block/partition-dependent
function arguments that are difficult to calculate at
graph-materialization time.
Examples
--------
Specify an IO-based function for the Blockwise Layer. Note
that the function will be passed a single input object when
the task is executed (e.g. a single ``tuple`` or ``dict``):
>>> import pandas as pd
>>> func = lambda x: pd.read_csv(**x)
Use ``BlockwiseDepDict`` to define the input argument to
``func`` for each block/partition:
>>> dep = BlockwiseDepDict(
... mapping={
... (0,) : {
... "filepath_or_buffer": "data.csv",
... "skiprows": 1,
... "nrows": 2,
... "names": ["a", "b"],
... },
... (1,) : {
... "filepath_or_buffer": "data.csv",
... "skiprows": 3,
... "nrows": 2,
... "names": ["a", "b"],
... },
... }
... )
Construct a Blockwise Layer with ``dep`` specified
in the ``indices`` list:
>>> layer = Blockwise(
... output="collection-name",
... output_indices="i",
... dsk={"collection-name": (func, '_0')},
... indices=[(dep, "i")],
... numblocks={},
... )
See Also
--------
dask.blockwise.Blockwise
dask.blockwise.BlockwiseDep
"""
def __init__(
self,
mapping: dict,
numblocks: tuple[int, ...] | None = None,
produces_tasks: bool = False,
produces_keys: bool = False,
):
self.mapping = mapping
self.produces_tasks = produces_tasks
# By default, assume 1D shape
self.numblocks = numblocks or (len(mapping),)
# Whether `mapping` values are real task keys
# (e.g. Delayed objects)
self._produces_keys = produces_keys
@property
def produces_keys(self) -> bool:
return self._produces_keys
def __getitem__(self, idx: tuple[int, ...]) -> Any:
try:
return self.mapping[idx]
except KeyError as err:
# If a DataFrame collection was converted
# to an Array collection, the dimesion of
# `idx` may not agree with the keys in
# `self.mapping`. In this case, we can
# use `self.numblocks` to check for a key
# match in the leading elements of `idx`
flat_idx = idx[: len(self.numblocks)]
if flat_idx in self.mapping:
return self.mapping[flat_idx]
raise err
def __len__(self) -> int:
return len(self.mapping)
def __dask_distributed_pack__(
self, required_indices: tuple | list[tuple[int, ...]] | None = None
):
from distributed.protocol import to_serialize
if required_indices is None:
required_indices = tuple(self.mapping.keys())
return {
"mapping": {
k: stringify(self.mapping[k])
if self.produces_keys
else to_serialize(self.mapping[k])
for k in required_indices
},
"numblocks": self.numblocks,
"produces_tasks": self.produces_tasks,
"produces_keys": self.produces_keys,
}
@classmethod
def __dask_distributed_unpack__(cls, state):
return cls(**state)
class BlockIndex(BlockwiseDep):
"""Index BlockwiseDep argument
The purpose of this class is to provide each
block of a ``Blockwise``-based operation with
the current block index.
"""
produces_tasks: bool = False
def __init__(self, numblocks: tuple[int, ...]):
# NOTE: Unused - Just needs to be set to
# follow the `BlockwiseDep` interface
self.numblocks = numblocks
def __getitem__(self, idx: tuple[int, ...]) -> tuple[int, ...]:
return idx
def __dask_distributed_pack__(self, **kwargs):
return {"numblocks": self.numblocks}
@classmethod
def __dask_distributed_unpack__(cls, state):
return cls(**state)
def subs(task, substitution):
"""Create a new task with the values substituted
This is like dask.core.subs, but takes a dict of many substitutions to
perform simultaneously. It is not as concerned with micro performance.
"""
if isinstance(task, dict):
return {k: subs(v, substitution) for k, v in task.items()}
if type(task) in (tuple, list, set):
return type(task)([subs(x, substitution) for x in task])
try:
return substitution[task]
except (KeyError, TypeError):
return task
def index_subs(ind, substitution):
"""A simple subs function that works both on tuples and strings"""
if ind is None:
return ind
else:
return tuple(substitution.get(c, c) for c in ind)
_BLOCKWISE_DEFAULT_PREFIX = "__dask_blockwise__"
def blockwise_token(i, prefix=_BLOCKWISE_DEFAULT_PREFIX):
return prefix + "%d" % i
def blockwise(
func,
output,
output_indices,
*arrind_pairs,
numblocks=None,
concatenate=None,
new_axes=None,
dependencies=(),
**kwargs,
):
"""Create a Blockwise symbolic mutable mapping
This is like the ``make_blockwise_graph`` function, but rather than construct a
dict, it returns a symbolic Blockwise object.
``*arrind_pairs`` is similar to those in `make_blockwise_graph`, but in addition to
allowing for collections it can accept BlockwiseDep instances, which allows for lazy
evaluation of arguments to ``func`` which might be different for different
chunks/partitions.
See Also
--------
make_blockwise_graph
Blockwise
"""
new_axes = new_axes or {}
arrind_pairs = list(arrind_pairs)
# Transform indices to canonical elements
# We use terms like _0, and _1 rather than provided index elements
unique_indices = {
i for ii in arrind_pairs[1::2] if ii is not None for i in ii
} | set(output_indices)
sub = {k: blockwise_token(i, ".") for i, k in enumerate(sorted(unique_indices))}
output_indices = index_subs(tuple(output_indices), sub)
a_pairs_list = []
for a in arrind_pairs[1::2]:
if a is not None:
val = tuple(a)
else:
val = a
a_pairs_list.append(index_subs(val, sub))
arrind_pairs[1::2] = a_pairs_list
new_axes = {index_subs((k,), sub)[0]: v for k, v in new_axes.items()}
# Unpack dask values in non-array arguments
inputs = []
inputs_indices = []
for name, index in toolz.partition(2, arrind_pairs):
inputs.append(name)
inputs_indices.append(index)
# Unpack delayed objects in kwargs
new_keys = {n for c in dependencies for n in c.__dask_layers__()}
if kwargs:
# replace keys in kwargs with _0 tokens
new_tokens = tuple(
blockwise_token(i) for i in range(len(inputs), len(inputs) + len(new_keys))
)
sub = dict(zip(new_keys, new_tokens))
inputs.extend(new_keys)
inputs_indices.extend((None,) * len(new_keys))
kwargs = subs(kwargs, sub)
indices = [(k, v) for k, v in zip(inputs, inputs_indices)]
keys = map(blockwise_token, range(len(inputs)))
# Construct local graph
if not kwargs:
subgraph = {output: (func,) + tuple(keys)}
else:
_keys = list(keys)
if new_keys:
_keys = _keys[: -len(new_keys)]
kwargs2 = (dict, list(map(list, kwargs.items())))
subgraph = {output: (apply, func, _keys, kwargs2)}
# Construct final output
subgraph = Blockwise(
output,
output_indices,
subgraph,
indices,
numblocks=numblocks,
concatenate=concatenate,
new_axes=new_axes,
)
return subgraph
class Blockwise(Layer):
"""Tensor Operation
This is a lazily constructed mapping for tensor operation graphs.
This defines a dictionary using an operation and an indexing pattern.
It is built for many operations like elementwise, transpose, tensordot, and
so on. We choose to keep these as symbolic mappings rather than raw
dictionaries because we are able to fuse them during optimization,
sometimes resulting in much lower overhead.
Parameters
----------
output: str
The name of the output collection. Used in keynames
output_indices: tuple
The output indices, like ``('i', 'j', 'k')`` used to determine the
structure of the block computations
dsk: dict
A small graph to apply per-output-block. May include keys from the
input indices.
indices: tuple[tuple[str, tuple[str, ...] | None], ...]
An ordered mapping from input key name, like ``'x'``
to input indices, like ``('i', 'j')``
Or includes literals, which have ``None`` for an index value.
In place of input-key names, the first tuple element may also be a
``BlockwiseDep`` object.
numblocks: Mapping[key, Sequence[int]]
Number of blocks along each dimension for each input
concatenate: bool
Whether or not to pass contracted dimensions as a list of inputs or a
single input to the block function
new_axes: Mapping
New index dimensions that may have been created and their size,
e.g. ``{'j': 2, 'k': 3}``
output_blocks: set[tuple[int, ...]]
Specify a specific set of required output blocks. Since the graph
will only contain the necessary tasks to generate these outputs,
this kwarg can be used to "cull" the abstract layer (without needing
to materialize the low-level graph).
annotations: dict (optional)
Layer annotations
io_deps: dict[str, BlockwiseDep] (optional)
Dictionary containing the mapping between "place-holder" collection
keys and ``BlockwiseDep``-based objects.
**WARNING**: This argument should only be used internally (for culling,
fusion and cloning of existing Blockwise layers). Explicit use of this
argument will be deprecated in the future.
See Also
--------
dask.blockwise.blockwise
dask.array.blockwise
"""
output: str
output_indices: tuple[str, ...]
dsk: Mapping[str, tuple]
indices: tuple[tuple[str, tuple[str, ...] | None], ...]
numblocks: Mapping[str, Sequence[int]]
concatenate: bool | None
new_axes: Mapping[str, int]
output_blocks: set[tuple[int, ...]] | None
io_deps: Mapping[str, BlockwiseDep]
def __init__(
self,
output: str,
output_indices: Iterable[str],
dsk: Mapping[str, tuple],
indices: Iterable[tuple[str | BlockwiseDep, Iterable[str] | None]],
numblocks: Mapping[str, Sequence[int]],
concatenate: bool | None = None,
new_axes: Mapping[str, int] | None = None,
output_blocks: set[tuple[int, ...]] | None = None,
annotations: Mapping[str, Any] | None = None,
io_deps: Mapping[str, BlockwiseDep] | None = None,
):
super().__init__(annotations=annotations)
self.output = output
self.output_indices = tuple(output_indices)
self.output_blocks = output_blocks
self.dsk = dsk
# Remove `BlockwiseDep` arguments from input indices
# and add them to `self.io_deps`.
# TODO: Remove `io_deps` and handle indexable objects
# in `self.indices` throughout `Blockwise`.
_tmp_indices = []
if indices:
numblocks = ensure_dict(numblocks, copy=True)
io_deps = ensure_dict(io_deps or {}, copy=True)
for dep, ind in indices:
if isinstance(dep, BlockwiseDep):
name = tokenize(dep)
io_deps[name] = dep
numblocks[name] = dep.numblocks
else:
name = dep
_tmp_indices.append((name, tuple(ind) if ind is not None else ind))
self.numblocks = numblocks
self.io_deps = io_deps or {}
self.indices = tuple(_tmp_indices)
# optimize_blockwise won't merge where `concatenate` doesn't match, so
# enforce a canonical value if there are no axes for reduction.
output_indices_set = set(self.output_indices)
if concatenate is not None and all(
i in output_indices_set
for name, ind in self.indices
if ind is not None
for i in ind
):
concatenate = None
self.concatenate = concatenate
self.new_axes = new_axes or {}
@property
def dims(self):
"""Returns a dictionary mapping between each index specified in
`self.indices` and the number of output blocks for that indice.
"""
if not hasattr(self, "_dims"):
self._dims = _make_dims(self.indices, self.numblocks, self.new_axes)
return self._dims
def __repr__(self):
return f"Blockwise<{self.indices} -> {self.output}>"
@property
def _dict(self):
if hasattr(self, "_cached_dict"):
return self._cached_dict["dsk"]
else:
keys = tuple(map(blockwise_token, range(len(self.indices))))
dsk, _ = fuse(self.dsk, [self.output])
func = SubgraphCallable(dsk, self.output, keys)
dsk = make_blockwise_graph(
func,
self.output,
self.output_indices,
*list(toolz.concat(self.indices)),
new_axes=self.new_axes,
numblocks=self.numblocks,
concatenate=self.concatenate,
output_blocks=self.output_blocks,
dims=self.dims,
io_deps=self.io_deps,
)
self._cached_dict = {"dsk": dsk}
return self._cached_dict["dsk"]
def get_output_keys(self):
if self.output_blocks:
# Culling has already generated a list of output blocks
return {(self.output, *p) for p in self.output_blocks}
# Return all possible output keys (no culling)
return {
(self.output, *p)
for p in itertools.product(
*[range(self.dims[i]) for i in self.output_indices]
)
}
def __getitem__(self, key):
return self._dict[key]
def __iter__(self):
return iter(self._dict)
def __len__(self) -> int:
# same method as `get_output_keys`, without manifesting the keys themselves
return (
len(self.output_blocks)
if self.output_blocks
else prod(self.dims[i] for i in self.output_indices)
)
def is_materialized(self):
return hasattr(self, "_cached_dict")
def __dask_distributed_pack__(
self, all_hlg_keys, known_key_dependencies, client, client_keys
):
from distributed.protocol import to_serialize
from distributed.utils import CancelledError
from distributed.utils_comm import unpack_remotedata
from distributed.worker import dumps_function
keys = tuple(map(blockwise_token, range(len(self.indices))))
dsk, _ = fuse(self.dsk, [self.output])
# Embed literals in `dsk`
keys2 = []
indices2 = []
global_dependencies = set()
for key, (val, index) in zip(keys, self.indices):
if index is None:
try:
val_is_a_key = val in all_hlg_keys
except TypeError: # not hashable
val_is_a_key = False
if val_is_a_key:
keys2.append(key)
indices2.append((val, index))
global_dependencies.add(stringify(val))
else:
dsk[key] = val # Literal
else:
keys2.append(key)
indices2.append((val, index))
dsk = (SubgraphCallable(dsk, self.output, tuple(keys2)),)
dsk, dsk_unpacked_futures = unpack_remotedata(dsk, byte_keys=True)
# Handle `io_deps` serialization. Assume each element
# is a `BlockwiseDep`-based object.
packed_io_deps = {}
inline_tasks = False
for name, blockwise_dep in self.io_deps.items():
packed_io_deps[name] = {
"__module__": blockwise_dep.__module__,
"__name__": type(blockwise_dep).__name__,
# TODO: Pass a `required_indices` list to __pack__
"state": blockwise_dep.__dask_distributed_pack__(),
}
inline_tasks = inline_tasks or blockwise_dep.produces_tasks
# Dump (pickle + cache) the function here if we know `make_blockwise_graph`
# will NOT be producing "nested" tasks (via `__dask_distributed_unpack__`).
#
# If `make_blockwise_graph` DOES need to produce nested tasks later on, it
# will need to call `to_serialize` on the entire task. That will be a
# problem if the function was already pickled here. Therefore, we want to
# call `to_serialize` on the function if we know there will be nested tasks.
#
# We know there will be nested tasks if either:
# (1) `concatenate=True` # Check `self.concatenate`
# (2) `inline_tasks=True` # Check `BlockwiseDep.produces_tasks`
#
# We do not call `to_serialize` in ALL cases, because that code path does
# not cache the function on the scheduler or worker (or warn if there are
# large objects being passed into the graph). However, in the future,
# single-pass serialization improvements should allow us to remove this
# special logic altogether.
func = (
to_serialize(dsk[0])
if (self.concatenate or inline_tasks)
else dumps_function(dsk[0])
)
func_future_args = dsk[1:]
indices = list(toolz.concat(indices2))
indices, indices_unpacked_futures = unpack_remotedata(indices, byte_keys=True)
# Check the legality of the unpacked futures
for future in itertools.chain(dsk_unpacked_futures, indices_unpacked_futures):
if future.client is not client:
raise ValueError(
"Inputs contain futures that were created by another client."
)
if stringify(future.key) not in client.futures:
raise CancelledError(stringify(future.key))
# All blockwise tasks will depend on the futures in `indices`
global_dependencies |= {stringify(f.key) for f in indices_unpacked_futures}
return {
"output": self.output,
"output_indices": self.output_indices,
"func": func,
"func_future_args": func_future_args,
"global_dependencies": global_dependencies,
"indices": indices,
"is_list": [isinstance(x, list) for x in indices],
"numblocks": self.numblocks,
"concatenate": self.concatenate,
"new_axes": self.new_axes,
"output_blocks": self.output_blocks,
"dims": self.dims,
"io_deps": packed_io_deps,
}
@classmethod
def __dask_distributed_unpack__(cls, state, dsk, dependencies):
from distributed.protocol.serialize import import_allowed_module
# Make sure we convert list items back from tuples in `indices`.
# The msgpack serialization will have converted lists into
# tuples, and tuples may be stringified during graph
# materialization (bad if the item was not a key).
indices = [
list(ind) if is_list else ind
for ind, is_list in zip(state["indices"], state["is_list"])
]
# Unpack io_deps state
io_deps = {}
for replace_name, packed_dep in state["io_deps"].items():
mod = import_allowed_module(packed_dep["__module__"])
dep_cls = getattr(mod, packed_dep["__name__"])
io_deps[replace_name] = dep_cls.__dask_distributed_unpack__(
packed_dep["state"]
)
layer_dsk, layer_deps = make_blockwise_graph(
state["func"],
state["output"],
state["output_indices"],
*indices,
numblocks=state["numblocks"],
concatenate=state["concatenate"],
new_axes=state["new_axes"],
output_blocks=state["output_blocks"],
dims=state["dims"],
deserializing=True,
func_future_args=state["func_future_args"],
return_key_deps=True,
io_deps=io_deps,
)
g_deps = state["global_dependencies"]
# Stringify layer graph and dependencies
layer_dsk = {
stringify(k): stringify_collection_keys(v) for k, v in layer_dsk.items()
}
deps = {
stringify(k): {stringify(d) for d in v} | g_deps
for k, v in layer_deps.items()
}
return {"dsk": layer_dsk, "deps": deps}
def _cull_dependencies(self, all_hlg_keys, output_blocks):
"""Determine the necessary dependencies to produce `output_blocks`.
This method does not require graph materialization.
"""
# Check `concatenate` option
concatenate = None
if self.concatenate is True:
from dask.array.core import concatenate_axes as concatenate
# Generate coordinate map
(coord_maps, concat_axes, dummies) = _get_coord_mapping(
self.dims,
self.output,
self.output_indices,
self.numblocks,
self.indices,
concatenate,
)
# Gather constant dependencies (for all output keys)
const_deps = set()
for arg, ind in self.indices:
if ind is None:
try:
if arg in all_hlg_keys:
const_deps.add(arg)
except TypeError:
pass # unhashable
# Get dependencies for each output block
key_deps = {}
for out_coords in output_blocks:
deps = set()
coords = out_coords + dummies
for cmap, axes, (arg, ind) in zip(coord_maps, concat_axes, self.indices):
if ind is not None and arg not in self.io_deps:
arg_coords = tuple(coords[c] for c in cmap)
if axes:
tups = lol_product((arg,), arg_coords)
deps.update(flatten(tups))
if concatenate:
tups = (concatenate, tups, axes)
else:
tups = (arg,) + arg_coords
deps.add(tups)
key_deps[(self.output,) + out_coords] = deps | const_deps
# Add valid-key dependencies from io_deps
for key, io_dep in self.io_deps.items():
if io_dep.produces_keys:
for out_coords in output_blocks:
key = (self.output,) + out_coords
valid_key_dep = io_dep[out_coords]
key_deps[key] |= {valid_key_dep}
return key_deps
def _cull(self, output_blocks):
return Blockwise(
self.output,
self.output_indices,
self.dsk,
self.indices,
self.numblocks,
concatenate=self.concatenate,
new_axes=self.new_axes,
output_blocks=output_blocks,
annotations=self.annotations,
io_deps=self.io_deps,
)
def cull(
self, keys: set, all_hlg_keys: Iterable
) -> tuple[Layer, Mapping[Hashable, set]]:
# Culling is simple for Blockwise layers. We can just
# collect a set of required output blocks (tuples), and
# only construct graph for these blocks in `make_blockwise_graph`
output_blocks: set[tuple[int, ...]] = set()
for key in keys:
if key[0] == self.output:
output_blocks.add(tuple(map(int, key[1:])))
culled_deps = self._cull_dependencies(all_hlg_keys, output_blocks)
out_size_iter = (self.dims[i] for i in self.output_indices)
if prod(out_size_iter) != len(culled_deps):
culled_layer = self._cull(output_blocks)
return culled_layer, culled_deps
else:
return self, culled_deps
def clone(
self,
keys: set,
seed: Hashable,
bind_to: Hashable = None,
) -> tuple[Layer, bool]:
names = {get_name_from_key(k) for k in keys}
# We assume that 'keys' will contain either all or none of the output keys of
# each of the layers, because clone/bind are always invoked at collection level.
# Asserting this is very expensive, so we only check it during unit tests.
if "PYTEST_CURRENT_TEST" in os.environ:
assert not self.get_output_keys() - keys
for name, nb in self.numblocks.items():
if name in names:
for block in product(*(list(range(nbi)) for nbi in nb)):
assert (name, *block) in keys
is_leaf = True
indices = []
for k, idxv in self.indices:
if idxv is not None and k in names:
is_leaf = False
k = clone_key(k, seed)
indices.append((k, idxv))
numblocks = {}
for k, nbv in self.numblocks.items():
if k in names:
is_leaf = False
k = clone_key(k, seed)
numblocks[k] = nbv
dsk = {clone_key(k, seed): v for k, v in self.dsk.items()}
if bind_to is not None and is_leaf:
from dask.graph_manipulation import chunks
# It's always a Delayed generated by dask.graph_manipulation.checkpoint;
# the layer name always matches the key
assert isinstance(bind_to, str)
dsk = {k: (chunks.bind, v, f"_{len(indices)}") for k, v in dsk.items()}
indices.append((bind_to, None))
return (
Blockwise(
output=clone_key(self.output, seed),
output_indices=self.output_indices,
dsk=dsk,
indices=indices,
numblocks=numblocks,
concatenate=self.concatenate,
new_axes=self.new_axes,
output_blocks=self.output_blocks,
annotations=self.annotations,
io_deps=self.io_deps,
),
(bind_to is not None and is_leaf),
)
def _get_coord_mapping(
dims,
output,
out_indices,
numblocks,
argpairs,
concatenate,
):
"""Calculate coordinate mapping for graph construction.
This function handles the high-level logic behind Blockwise graph
construction. The output is a tuple containing: The mapping between
input and output block coordinates (`coord_maps`), the axes along
which to concatenate for each input (`concat_axes`), and the dummy
indices needed for broadcasting (`dummies`).
Used by `make_blockwise_graph` and `Blockwise._cull_dependencies`.
Parameters
----------
dims : dict
Mapping between each index specified in `argpairs` and
the number of output blocks for that index. Corresponds
to the Blockwise `dims` attribute.
output : str
Corresponds to the Blockwise `output` attribute.
out_indices : tuple
Corresponds to the Blockwise `output_indices` attribute.
numblocks : dict
Corresponds to the Blockwise `numblocks` attribute.
argpairs : tuple
Corresponds to the Blockwise `indices` attribute.
concatenate : bool
Corresponds to the Blockwise `concatenate` attribute.
"""
block_names = set()
all_indices = set()
for name, ind in argpairs:
if ind is not None:
block_names.add(name)
for x in ind:
all_indices.add(x)
assert set(numblocks) == block_names
dummy_indices = all_indices - set(out_indices)
# For each position in the output space, we'll construct a
# "coordinate set" that consists of
# - the output indices
# - the dummy indices
# - the dummy indices, with indices replaced by zeros (for broadcasting), we
# are careful to only emit a single dummy zero when concatenate=True to not
# concatenate the same array with itself several times.
# - a 0 to assist with broadcasting.
index_pos, zero_pos = {}, {}
for i, ind in enumerate(out_indices):
index_pos[ind] = i
zero_pos[ind] = -1
_dummies_list = []
for i, ind in enumerate(dummy_indices):
index_pos[ind] = 2 * i + len(out_indices)
zero_pos[ind] = 2 * i + 1 + len(out_indices)
reps = 1 if concatenate else dims[ind]
_dummies_list.append([list(range(dims[ind])), [0] * reps])
# ([0, 1, 2], [0, 0, 0], ...) For a dummy index of dimension 3
dummies = tuple(itertools.chain.from_iterable(_dummies_list))
dummies += (0,)
# For each coordinate position in each input, gives the position in
# the coordinate set.
coord_maps = []
# Axes along which to concatenate, for each input
concat_axes = []
for arg, ind in argpairs:
if ind is not None:
coord_maps.append(
[
zero_pos[i] if nb == 1 else index_pos[i]
for i, nb in zip(ind, numblocks[arg])
]
)
concat_axes.append([n for n, i in enumerate(ind) if i in dummy_indices])
else:
coord_maps.append(None)
concat_axes.append(None)
return coord_maps, concat_axes, dummies
def make_blockwise_graph(
func,
output,
out_indices,
*arrind_pairs,
numblocks=None,
concatenate=None,
new_axes=None,
output_blocks=None,
dims=None,
deserializing=False,
func_future_args=None,
return_key_deps=False,
io_deps=None,
):
"""Tensor operation
Applies a function, ``func``, across blocks from many different input
collections. We arrange the pattern with which those blocks interact with
sets of matching indices. E.g.::
make_blockwise_graph(func, 'z', 'i', 'x', 'i', 'y', 'i')
yield an embarrassingly parallel communication pattern and is read as
$$ z_i = func(x_i, y_i) $$
More complex patterns may emerge, including multiple indices::
make_blockwise_graph(func, 'z', 'ij', 'x', 'ij', 'y', 'ji')
$$ z_{ij} = func(x_{ij}, y_{ji}) $$
Indices missing in the output but present in the inputs results in many
inputs being sent to one function (see examples).
Examples
--------
Simple embarrassing map operation
>>> inc = lambda x: x + 1
>>> make_blockwise_graph(inc, 'z', 'ij', 'x', 'ij', numblocks={'x': (2, 2)}) # doctest: +SKIP
{('z', 0, 0): (inc, ('x', 0, 0)),
('z', 0, 1): (inc, ('x', 0, 1)),
('z', 1, 0): (inc, ('x', 1, 0)),
('z', 1, 1): (inc, ('x', 1, 1))}
Simple operation on two datasets
>>> add = lambda x, y: x + y
>>> make_blockwise_graph(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (2, 2),
... 'y': (2, 2)}) # doctest: +SKIP
{('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)),
('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)),
('z', 1, 0): (add, ('x', 1, 0), ('y', 1, 0)),
('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))}
Operation that flips one of the datasets
>>> addT = lambda x, y: x + y.T # Transpose each chunk
>>> # z_ij ~ x_ij y_ji
>>> # .. .. .. notice swap
>>> make_blockwise_graph(addT, 'z', 'ij', 'x', 'ij', 'y', 'ji', numblocks={'x': (2, 2),
... 'y': (2, 2)}) # doctest: +SKIP
{('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)),
('z', 0, 1): (add, ('x', 0, 1), ('y', 1, 0)),
('z', 1, 0): (add, ('x', 1, 0), ('y', 0, 1)),
('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))}
Dot product with contraction over ``j`` index. Yields list arguments
>>> make_blockwise_graph(dotmany, 'z', 'ik', 'x', 'ij', 'y', 'jk', numblocks={'x': (2, 2),
... 'y': (2, 2)}) # doctest: +SKIP
{('z', 0, 0): (dotmany, [('x', 0, 0), ('x', 0, 1)],
[('y', 0, 0), ('y', 1, 0)]),
('z', 0, 1): (dotmany, [('x', 0, 0), ('x', 0, 1)],
[('y', 0, 1), ('y', 1, 1)]),
('z', 1, 0): (dotmany, [('x', 1, 0), ('x', 1, 1)],
[('y', 0, 0), ('y', 1, 0)]),
('z', 1, 1): (dotmany, [('x', 1, 0), ('x', 1, 1)],
[('y', 0, 1), ('y', 1, 1)])}
Pass ``concatenate=True`` to concatenate arrays ahead of time
>>> make_blockwise_graph(f, 'z', 'i', 'x', 'ij', 'y', 'ij', concatenate=True,
... numblocks={'x': (2, 2), 'y': (2, 2,)}) # doctest: +SKIP
{('z', 0): (f, (concatenate_axes, [('x', 0, 0), ('x', 0, 1)], (1,)),
(concatenate_axes, [('y', 0, 0), ('y', 0, 1)], (1,)))
('z', 1): (f, (concatenate_axes, [('x', 1, 0), ('x', 1, 1)], (1,)),
(concatenate_axes, [('y', 1, 0), ('y', 1, 1)], (1,)))}
Supports Broadcasting rules
>>> make_blockwise_graph(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (1, 2),
... 'y': (2, 2)}) # doctest: +SKIP
{('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)),
('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)),
('z', 1, 0): (add, ('x', 0, 0), ('y', 1, 0)),
('z', 1, 1): (add, ('x', 0, 1), ('y', 1, 1))}
Support keyword arguments with apply
>>> def f(a, b=0): return a + b
>>> make_blockwise_graph(f, 'z', 'i', 'x', 'i', numblocks={'x': (2,)}, b=10) # doctest: +SKIP
{('z', 0): (apply, f, [('x', 0)], {'b': 10}),
('z', 1): (apply, f, [('x', 1)], {'b': 10})}
Include literals by indexing with ``None``
>>> make_blockwise_graph(add, 'z', 'i', 'x', 'i', 100, None, numblocks={'x': (2,)}) # doctest: +SKIP
{('z', 0): (add, ('x', 0), 100),
('z', 1): (add, ('x', 1), 100)}
See Also
--------
dask.array.blockwise
dask.blockwise.blockwise
"""
if numblocks is None:
raise ValueError("Missing required numblocks argument.")
new_axes = new_axes or {}
io_deps = io_deps or {}
argpairs = list(toolz.partition(2, arrind_pairs))
if return_key_deps:
key_deps = {}
if deserializing:
from distributed.protocol.serialize import to_serialize
if concatenate is True:
from dask.array.core import concatenate_axes as concatenate
# Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions
dims = dims or _make_dims(argpairs, numblocks, new_axes)
# Generate the abstract "plan" before constructing
# the actual graph
(coord_maps, concat_axes, dummies) = _get_coord_mapping(
dims,
output,
out_indices,
numblocks,
argpairs,
concatenate,
)
# Apply Culling.
# Only need to construct the specified set of output blocks.
# Note that we must convert itertools.product to list,
# because we may need to loop through output_blocks more than
# once below (itertools.product already uses an internal list,
# so this is not a memory regression)
output_blocks = output_blocks or list(
itertools.product(*[range(dims[i]) for i in out_indices])
)
dsk = {}
# Create argument lists
for out_coords in output_blocks:
deps = set()
coords = out_coords + dummies
args = []
for cmap, axes, (arg, ind) in zip(coord_maps, concat_axes, argpairs):
if ind is None:
if deserializing:
args.append(stringify_collection_keys(arg))
else:
args.append(arg)
else:
arg_coords = tuple(coords[c] for c in cmap)
if axes:
tups = lol_product((arg,), arg_coords)
if arg not in io_deps:
deps.update(flatten(tups))
if concatenate:
tups = (concatenate, tups, axes)
else:
tups = (arg,) + arg_coords
if arg not in io_deps:
deps.add(tups)
# Replace "place-holder" IO keys with "real" args
if arg in io_deps:
# We don't want to stringify keys for args
# we are replacing here
idx = tups[1:]
args.append(io_deps[arg].get(idx, idx))
elif deserializing:
args.append(stringify_collection_keys(tups))
else:
args.append(tups)
out_key = (output,) + out_coords
if deserializing:
deps.update(func_future_args)
args += list(func_future_args)
# Construct a function/args/kwargs dict if we
# do not have a nested task (i.e. concatenate=False).
# TODO: Avoid using the iterate_collection-version
# of to_serialize if we know that are no embedded
# Serialized/Serialize objects in args and/or kwargs.
if deserializing and isinstance(func, bytes):
dsk[out_key] = {"function": func, "args": to_serialize(args)}
else:
args.insert(0, func)
val = tuple(args)
# May still need to serialize (if concatenate=True)
dsk[out_key] = to_serialize(val) if deserializing else val
if return_key_deps:
key_deps[out_key] = deps
if return_key_deps:
# Add valid-key dependencies from io_deps
for key, io_dep in io_deps.items():
if io_dep.produces_keys:
for out_coords in output_blocks:
key = (output,) + out_coords
valid_key_dep = io_dep[out_coords]
key_deps[key] |= {valid_key_dep}
return dsk, key_deps
else:
return dsk
def lol_product(head, values):
"""List of list of tuple keys, similar to `itertools.product`.
Parameters
----------
head : tuple
Prefix prepended to all results.
values : sequence
Mix of singletons and lists. Each list is substituted with every
possible value and introduces another level of list in the output.
Examples
--------
>>> lol_product(('x',), (1, 2, 3))
('x', 1, 2, 3)
>>> lol_product(('x',), (1, [2, 3], 4, [5, 6])) # doctest: +NORMALIZE_WHITESPACE
[[('x', 1, 2, 4, 5), ('x', 1, 2, 4, 6)],
[('x', 1, 3, 4, 5), ('x', 1, 3, 4, 6)]]
"""
if not values:
return head
elif isinstance(values[0], list):
return [lol_product(head + (x,), values[1:]) for x in values[0]]
else:
return lol_product(head + (values[0],), values[1:])
def lol_tuples(head, ind, values, dummies):
"""List of list of tuple keys
Parameters
----------
head : tuple
The known tuple so far
ind : Iterable
An iterable of indices not yet covered
values : dict
Known values for non-dummy indices
dummies : dict
Ranges of values for dummy indices
Examples
--------
>>> lol_tuples(('x',), 'ij', {'i': 1, 'j': 0}, {})
('x', 1, 0)
>>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)})
[('x', 1, 0), ('x', 1, 1), ('x', 1, 2)]
>>> lol_tuples(('x',), 'ijk', {'i': 1}, {'j': [0, 1, 2], 'k': [0, 1]}) # doctest: +NORMALIZE_WHITESPACE
[[('x', 1, 0, 0), ('x', 1, 0, 1)],
[('x', 1, 1, 0), ('x', 1, 1, 1)],
[('x', 1, 2, 0), ('x', 1, 2, 1)]]
"""
if not ind:
return head
if ind[0] not in dummies:
return lol_tuples(head + (values[ind[0]],), ind[1:], values, dummies)
else:
return [
lol_tuples(head + (v,), ind[1:], values, dummies) for v in dummies[ind[0]]
]
def optimize_blockwise(graph, keys=()):
"""High level optimization of stacked Blockwise layers
For operations that have multiple Blockwise operations one after the other, like
``x.T + 123`` we can fuse these into a single Blockwise operation. This happens
before any actual tasks are generated, and so can reduce overhead.
This finds groups of Blockwise operations that can be safely fused, and then
passes them to ``rewrite_blockwise`` for rewriting.
Parameters
----------
graph : HighLevelGraph
keys : Iterable
The keys of all outputs of all collections.
Used to make sure that we don't fuse a layer needed by an output
Returns
-------
HighLevelGraph
See Also
--------
rewrite_blockwise
"""
out = _optimize_blockwise(graph, keys=keys)
while out.dependencies != graph.dependencies:
graph = out
out = _optimize_blockwise(graph, keys=keys)
return out
def _optimize_blockwise(full_graph, keys=()):
keep = {k[0] if type(k) is tuple else k for k in keys}
layers = full_graph.layers
dependents = reverse_dict(full_graph.dependencies)
roots = {k for k in full_graph.layers if not dependents.get(k)}
stack = list(roots)
out = {}
dependencies = {}
seen = set()
io_names = set()
while stack:
layer = stack.pop()
if layer in seen or layer not in layers:
continue
seen.add(layer)
# Outer loop walks through possible output Blockwise layers
if isinstance(layers[layer], Blockwise):
blockwise_layers = {layer}
deps = set(blockwise_layers)
io_names |= layers[layer].io_deps.keys()
while deps: # we gather as many sub-layers as we can
dep = deps.pop()
if dep not in layers:
stack.append(dep)
continue
if not isinstance(layers[dep], Blockwise):
stack.append(dep)
continue
if dep != layer and dep in keep:
stack.append(dep)
continue
if layers[dep].concatenate != layers[layer].concatenate:
stack.append(dep)
continue
if (
sum(k == dep for k, ind in layers[layer].indices if ind is not None)
> 1
):
stack.append(dep)
continue
if blockwise_layers and not _can_fuse_annotations(
layers[next(iter(blockwise_layers))].annotations,
layers[dep].annotations,
):
stack.append(dep)
continue
# passed everything, proceed
blockwise_layers.add(dep)
# traverse further to this child's children
for d in full_graph.dependencies.get(dep, ()):
# Don't allow reductions to proceed
output_indices = set(layers[dep].output_indices)
input_indices = {
i for _, ind in layers[dep].indices if ind for i in ind
}
if len(dependents[d]) <= 1 and output_indices.issuperset(
input_indices
):
deps.add(d)
else:
stack.append(d)
# Merge these Blockwise layers into one
new_layer = rewrite_blockwise([layers[l] for l in blockwise_layers])
out[layer] = new_layer
# Get the new (external) dependencies for this layer.
# This corresponds to the dependencies defined in
# full_graph.dependencies and are not in blockwise_layers
new_deps = set()
for l in blockwise_layers:
new_deps |= set(
{
d
for d in full_graph.dependencies[l]
if d not in blockwise_layers and d in full_graph.dependencies
}
)
for k, v in new_layer.indices:
if v is None:
new_deps |= keys_in_tasks(full_graph.dependencies, [k])
elif k not in io_names:
new_deps.add(k)
dependencies[layer] = new_deps
else:
out[layer] = layers[layer]
dependencies[layer] = full_graph.dependencies.get(layer, set())
stack.extend(full_graph.dependencies.get(layer, ()))
return HighLevelGraph(out, dependencies)
def _unique_dep(dep, ind):
# Append blockwise index information to dependency name
return dep + "_" + "_".join(str(i) for i in list(ind))
def _can_fuse_annotations(a: dict | None, b: dict | None) -> bool:
"""
Treat the special annotation keys, as fusable since we can apply simple
rules to capture their intent in a fused layer.
"""
if a == b:
return True
if dask.config.get("optimization.annotations.fuse") is False:
return False
fusable = {"retries", "priority", "resources", "workers", "allow_other_workers"}
if (not a or all(k in fusable for k in a)) and (
not b or all(k in fusable for k in b)
):
return True
return False
def _fuse_annotations(*args: dict) -> dict:
"""
Given an iterable of annotations dictionaries, fuse them according
to some simple rules.
"""
# First, do a basic dict merge -- we are presuming that these have already
# been gated by `_can_fuse_annotations`.
annotations = toolz.merge(*args)
# Max of layer retries
retries = [a["retries"] for a in args if "retries" in a]
if retries:
annotations["retries"] = max(retries)
# Max of layer priorities
priorities = [a["priority"] for a in args if "priority" in a]
if priorities:
annotations["priority"] = max(priorities)
# Max of all the layer resources
resources = [a["resources"] for a in args if "resources" in a]
if resources:
annotations["resources"] = toolz.merge_with(max, *resources)
# Intersection of all the worker restrictions
workers = [a["workers"] for a in args if "workers" in a]
if workers:
annotations["workers"] = list(set.intersection(*[set(w) for w in workers]))
# More restrictive of allow_other_workers
allow_other_workers = [
a["allow_other_workers"] for a in args if "allow_other_workers" in a
]
if allow_other_workers:
annotations["allow_other_workers"] = all(allow_other_workers)
return annotations
def rewrite_blockwise(inputs):
"""Rewrite a stack of Blockwise expressions into a single blockwise expression
Given a set of Blockwise layers, combine them into a single layer. The provided
layers are expected to fit well together. That job is handled by
``optimize_blockwise``
Parameters
----------
inputs : list[Blockwise]
Returns
-------
blockwise: Blockwise
See Also
--------
optimize_blockwise
"""
if len(inputs) == 1:
# Fast path: if there's only one input we can just use it as-is.
return inputs[0]
fused_annotations = _fuse_annotations(
*[i.annotations for i in inputs if i.annotations]
)
inputs = {inp.output: inp for inp in inputs}
dependencies = {
inp.output: {d for d, v in inp.indices if v is not None and d in inputs}
for inp in inputs.values()
}
dependents = reverse_dict(dependencies)
new_index_iter = (
c + (str(d) if d else "") # A, B, ... A1, B1, ...
for d in itertools.count()
for c in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
)
[root] = [k for k, v in dependents.items() if not v]
# Our final results. These will change during fusion below
indices = list(inputs[root].indices)
new_axes = inputs[root].new_axes
concatenate = inputs[root].concatenate
dsk = dict(inputs[root].dsk)
changed = True
while changed:
changed = False
for i, (dep, ind) in enumerate(indices):
if ind is None:
continue
if dep not in inputs:
continue
changed = True
# Change dep name to avoid fusing the same dep
# (in different iteration orders) into a single
# subgraph key/dependency
# (see: https://github.com/dask/dask/issues/8535)
local_dep = dep if dep == root else _unique_dep(dep, ind)
# Replace _n with dep name in existing tasks
# (inc, _0) -> (inc, 'b')
dsk = {k: subs(v, {blockwise_token(i): local_dep}) for k, v in dsk.items()}
# Remove current input from input indices
# [('a', 'i'), ('b', 'i')] -> [('a', 'i')]
_, current_dep_indices = indices.pop(i)
sub = {
blockwise_token(i): blockwise_token(i - 1)
for i in range(i + 1, len(indices) + 1)
}
dsk = subs(dsk, sub)
# Change new input_indices to match give index from current computation
# [('c', j')] -> [('c', 'i')]
new_indices = inputs[dep].indices
sub = dict(zip(inputs[dep].output_indices, current_dep_indices))
contracted = {
x
for _, j in new_indices
if j is not None
for x in j
if x not in inputs[dep].output_indices
}
extra = dict(zip(contracted, new_index_iter))
sub.update(extra)
new_indices = [(x, index_subs(j, sub)) for x, j in new_indices]
# Update new_axes
for k, v in inputs[dep].new_axes.items():
new_axes[sub[k]] = v
# Bump new inputs up in list
sub = {}
# Map from (id(key), inds or None) -> index in indices. Used to deduplicate indices.
index_map = {(id(k), inds): n for n, (k, inds) in enumerate(indices)}
for ii, index in enumerate(new_indices):
id_key = (id(index[0]), index[1])
if id_key in index_map: # use old inputs if available
sub[blockwise_token(ii)] = blockwise_token(index_map[id_key])
else:
index_map[id_key] = len(indices)
sub[blockwise_token(ii)] = blockwise_token(len(indices))
indices.append(index)
new_dsk = subs(inputs[dep].dsk, sub)
# Change new_dsk key to match local_dep
if dep != local_dep and dep in new_dsk:
new_dsk[local_dep] = new_dsk.pop(dep)
# indices.extend(new_indices)
dsk.update(new_dsk)
# De-duplicate indices like [(a, ij), (b, i), (a, ij)] -> [(a, ij), (b, i)]
# Make sure that we map everything else appropriately as we remove inputs
new_indices = []
seen = {}
sub = {} # like {_0: _0, _1: _0, _2: _1}
for i, x in enumerate(indices):
if x[1] is not None and x in seen:
sub[i] = seen[x]
else:
if x[1] is not None:
seen[x] = len(new_indices)
sub[i] = len(new_indices)
new_indices.append(x)
sub = {blockwise_token(k): blockwise_token(v) for k, v in sub.items()}
dsk = {k: subs(v, sub) for k, v in dsk.items() if k not in sub.keys()}
indices_check = {k for k, v in indices if v is not None}
numblocks = toolz.merge([inp.numblocks for inp in inputs.values()])
numblocks = {k: v for k, v in numblocks.items() if v is None or k in indices_check}
# Update IO-dependency information
io_deps = {}
for v in inputs.values():
io_deps.update(v.io_deps)
return Blockwise(
root,
inputs[root].output_indices,
dsk,
new_indices,
numblocks=numblocks,
new_axes=new_axes,
concatenate=concatenate,
annotations=fused_annotations,
io_deps=io_deps,
)
@_deprecated()
def zero_broadcast_dimensions(lol, nblocks):
"""
>>> lol = [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)]
>>> nblocks = (4, 1, 2) # note singleton dimension in second place
>>> lol = [[('x', 1, 0, 0), ('x', 1, 0, 1)],
... [('x', 1, 1, 0), ('x', 1, 1, 1)],
... [('x', 1, 2, 0), ('x', 1, 2, 1)]]
>>> zero_broadcast_dimensions(lol, nblocks) # doctest: +SKIP
[[('x', 1, 0, 0), ('x', 1, 0, 1)],
[('x', 1, 0, 0), ('x', 1, 0, 1)],
[('x', 1, 0, 0), ('x', 1, 0, 1)]]
See Also
--------
lol_tuples
"""
f = lambda t: (t[0],) + tuple(0 if d == 1 else i for i, d in zip(t[1:], nblocks))
return homogeneous_deepmap(f, lol)
def broadcast_dimensions(argpairs, numblocks, sentinels=(1, (1,)), consolidate=None):
"""Find block dimensions from arguments
Parameters
----------
argpairs : iterable
name, ijk index pairs
numblocks : dict
maps {name: number of blocks}
sentinels : iterable (optional)
values for singleton dimensions
consolidate : func (optional)
use this to reduce each set of common blocks into a smaller set
Examples
--------
>>> argpairs = [('x', 'ij'), ('y', 'ji')]
>>> numblocks = {'x': (2, 3), 'y': (3, 2)}
>>> broadcast_dimensions(argpairs, numblocks)
{'i': 2, 'j': 3}
Supports numpy broadcasting rules
>>> argpairs = [('x', 'ij'), ('y', 'ij')]
>>> numblocks = {'x': (2, 1), 'y': (1, 3)}
>>> broadcast_dimensions(argpairs, numblocks)
{'i': 2, 'j': 3}
Works in other contexts too
>>> argpairs = [('x', 'ij'), ('y', 'ij')]
>>> d = {'x': ('Hello', 1), 'y': (1, (2, 3))}
>>> broadcast_dimensions(argpairs, d)
{'i': 'Hello', 'j': (2, 3)}
"""
# List like [('i', 2), ('j', 1), ('i', 1), ('j', 2)]
argpairs2 = [(a, ind) for a, ind in argpairs if ind is not None]
L = toolz.concat(
[
zip(inds, dims)
for (x, inds), (x, dims) in toolz.join(
toolz.first, argpairs2, toolz.first, numblocks.items()
)
]
)
g = toolz.groupby(0, L)
g = {k: {d for i, d in v} for k, v in g.items()}
g2 = {k: v - set(sentinels) if len(v) > 1 else v for k, v in g.items()}
if consolidate:
return toolz.valmap(consolidate, g2)
if g2 and not set(map(len, g2.values())) == {1}:
raise ValueError("Shapes do not align %s" % g)
return toolz.valmap(toolz.first, g2)
def _make_dims(indices, numblocks, new_axes):
"""Returns a dictionary mapping between each index specified in
`indices` and the number of output blocks for that indice.
"""
dims = broadcast_dimensions(indices, numblocks)
for k, v in new_axes.items():
dims[k] = len(v) if isinstance(v, tuple) else 1
return dims
def fuse_roots(graph: HighLevelGraph, keys: list):
"""
Fuse nearby layers if they don't have dependencies
Often Blockwise sections of the graph fill out all of the computation
except for the initial data access or data loading layers::
Large Blockwise Layer
| | |
X Y Z
This can be troublesome because X, Y, and Z tasks may be executed on
different machines, and then require communication to move around.
This optimization identifies this situation, lowers all of the graphs to
concrete dicts, and then calls ``fuse`` on them, with a width equal to the
number of layers like X, Y, and Z.
This is currently used within array and dataframe optimizations.
Parameters
----------
graph : HighLevelGraph
The full graph of the computation
keys : list
The output keys of the computation, to be passed on to fuse
See Also
--------
Blockwise
fuse
"""
layers = ensure_dict(graph.layers, copy=True)
dependencies = ensure_dict(graph.dependencies, copy=True)
dependents = reverse_dict(dependencies)
for name, layer in graph.layers.items():
deps = graph.dependencies[name]
if (
isinstance(layer, Blockwise)
and len(deps) > 1
and not any(dependencies[dep] for dep in deps) # no need to fuse if 0 or 1
and all(len(dependents[dep]) == 1 for dep in deps)
and all(layer.annotations == graph.layers[dep].annotations for dep in deps)
):
new = toolz.merge(layer, *[layers[dep] for dep in deps])
new, _ = fuse(new, keys, ave_width=len(deps))
for dep in deps:
del layers[dep]
del dependencies[dep]
layers[name] = new
dependencies[name] = set()
return HighLevelGraph(layers, dependencies)
|