import os import time print(f"Starting up: {time.strftime('%Y-%m-%d %H:%M:%S')}") #os.system("pip uninstall -y gradio") #os.system("pip install --upgrade gradio") #os.system("pip install datamapplot==0.3.0") #os.system("pip install numba==0.59.1") #os.system("pip install umap-learn==0.5.6") #os.system("pip install pynndescent==0.5.12") # hello world import spaces from pathlib import Path from fastapi import FastAPI from fastapi.staticfiles import StaticFiles import uvicorn import gradio as gr from datetime import datetime import sys from sentence_transformers import SentenceTransformer gr.set_static_paths(paths=["static/"]) # create a FastAPI app app = FastAPI() # create a static directory to store the static files static_dir = Path('./static') static_dir.mkdir(parents=True, exist_ok=True) # mount FastAPI StaticFiles server app.mount("/static", StaticFiles(directory=static_dir), name="static") # Gradio stuff import datamapplot import numpy as np import requests import io import pandas as pd from pyalex import Works, Authors, Sources, Institutions, Concepts, Publishers, Funders from itertools import chain from compress_pickle import load, dump from urllib.parse import urlparse, parse_qs import re import pyalex pyalex.config.email = "maximilian.noichl@uni-bamberg.de" from transformers import AutoTokenizer from adapters import AutoAdapterModel import torch from tqdm import tqdm from numba.typed import List import pickle import pynndescent import umap print(f"Imports are done: {time.strftime('%Y-%m-%d %H:%M:%S')}") def openalex_url_to_pyalex_query(url): """ Convert an OpenAlex search URL to a pyalex query. Args: url (str): The OpenAlex search URL. Returns: tuple: (Works object, dict of parameters) """ parsed_url = urlparse(url) query_params = parse_qs(parsed_url.query) # Initialize the Works object query = Works() # Handle filters if 'filter' in query_params: filters = query_params['filter'][0].split(',') for f in filters: if ':' in f: key, value = f.split(':', 1) if key == 'default.search': query = query.search(value) else: query = query.filter(**{key: value}) # Handle sort if 'sort' in query_params: sort_params = query_params['sort'][0].split(',') for s in sort_params: if s.startswith('-'): query = query.sort(**{s[1:]: 'desc'}) else: query = query.sort(**{s: 'asc'}) # Handle other parameters params = {} for key in ['page', 'per-page', 'sample', 'seed']: if key in query_params: params[key] = query_params[key][0] return query, params def invert_abstract(inv_index): if inv_index is not None: l_inv = [(w, p) for w, pos in inv_index.items() for p in pos] return " ".join(map(lambda x: x[0], sorted(l_inv, key=lambda x: x[1]))) else: return ' ' def get_pub(x): try: source = x['source']['display_name'] if source not in ['parsed_publication','Deleted Journal']: return source else: return ' ' except: return ' ' def get_field(x): try: field = x['primary_topic']['subfield']['display_name'] if field is not None: return field else: return np.nan except: return np.nan print(f"Setting up language model: {time.strftime('%Y-%m-%d %H:%M:%S')}") #device = torch.device("mps" if torch.backends.mps.is_available() else "cuda") #print(f"Using device: {device}") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") #tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_aug2023refresh_base') #model = AutoAdapterModel.from_pretrained('allenai/specter2_aug2023refresh_base') model = SentenceTransformer("m7n/discipline-tuned_specter_2_024") @spaces.GPU(duration=60) def create_embeddings(texts_to_embedd): embeddings = model.encode(texts_to_embedd,show_progress_bar=True,batch_size=192) return embeddings print(f"Language model is set up: {time.strftime('%Y-%m-%d %H:%M:%S')}") def predict(text_input, sample_size_slider, reduce_sample_checkbox,sample_reduction_method, progress=gr.Progress()): print('getting data to project') progress(0, desc="Starting...") query, params = openalex_url_to_pyalex_query(text_input) query_length = query.count() print(f'Requesting {query_length} entries...') records = [] for i, record in enumerate(chain(*query.paginate(per_page=200))): records.append(record) # Update progress bar progress(0.3 * i / query_length, desc="Getting queried data...") records_df = pd.DataFrame(records) records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']] records_df['parsed_publication'] = [get_pub(x) for x in records_df['primary_location']] records_df['parsed_publication'] = records_df['parsed_publication'].fillna(' ') records_df['abstract'] = records_df['abstract'].fillna(' ') records_df['title'] = records_df['title'].fillna(' ') if reduce_sample_checkbox: sample_size = min(sample_size_slider, len(records_df)) if sample_reduction_method == "Random": records_df = records_df.sample(sample_size) elif sample_reduction_method == "Order of Results": records_df = records_df.iloc[:sample_size] print(records_df) progress(0.3, desc="Embedding Data...") texts_to_embedd = [title + ' ' + abstract for title, publication, abstract in zip(records_df['title'],records_df['parsed_publication'], records_df['abstract'])] embeddings = create_embeddings(texts_to_embedd) print(embeddings) progress(0.5, desc="Project into UMAP-embedding...") umap_embeddings = mapper.transform(embeddings) records_df[['x','y']] = umap_embeddings basedata_df['color'] = '#ced4d211' records_df['color'] = '#f98e31' progress(0.6, desc="Set up data...") stacked_df = pd.concat([basedata_df,records_df], axis=0, ignore_index=True) stacked_df = stacked_df.fillna("Unlabelled") stacked_df = stacked_df.reset_index(drop=True) stacked_df['parsed_field'] = [get_field(row) for ix, row in stacked_df.iterrows()] print(stacked_df) extra_data = pd.DataFrame(stacked_df['doi']) file_name = f"{datetime.utcnow().strftime('%s')}.html" file_path = static_dir / file_name print(file_path) # progress(0.7, desc="Plotting...") custom_css = """ #title-container { background: #edededaa; border-radius: 2px; box-shadow: 2px 3px 10px #aaaaaa00; } #search-container { position: fixed !important; top: 20px !important; right: 20px !important; left: auto !important; width: 200px !important; z-index: 9999 !important; } #search { // padding: 8px 8px !important; // border: none !important; // border-radius: 20px !important; background-color: #ffffffaa !important; font-family: 'Roboto Condensed', sans-serif !important; font-size: 14px; // box-shadow: 0 0px 0px #aaaaaa00 !important; } """ plot = datamapplot.create_interactive_plot( stacked_df[['x','y']].values, # np.array(stacked_df['cluster_1_labels']),np.array(stacked_df['cluster_2_labels']),np.array(stacked_df['cluster_3_labels']), np.array(['Unlabelled' if pd.isna(x) else x for x in stacked_df['parsed_field']]), hover_text=[str(row['title']) for ix, row in stacked_df.iterrows()], marker_color_array=stacked_df['color'], use_medoids=True, width=1000, height=1000, # title='The Science of Consciousness ', # sub_title=f'