Update app.py
Browse files
app.py
CHANGED
@@ -150,43 +150,6 @@ def get_field(x):
|
|
150 |
return np.nan
|
151 |
|
152 |
|
153 |
-
#def query_records(search_term):
|
154 |
-
|
155 |
-
|
156 |
-
# # Fetch records based on the search term in the abstract!
|
157 |
-
# query = Works().search([search_term])
|
158 |
-
# query_length = Works().search([search_term]).count()
|
159 |
-
|
160 |
-
# records = []
|
161 |
-
# #total_pages = (query_length + 199) // 200 # Calculate total number of pages
|
162 |
-
# progress=gr.Progress()
|
163 |
-
|
164 |
-
# for i, record in progress.tqdm(enumerate(chain(*query.paginate(per_page=200)))):
|
165 |
-
# records.append(record)
|
166 |
-
|
167 |
-
# # Calculate progress from 0 to 0.1
|
168 |
-
# #achieved_progress = min(0.1, (i + 1) / query_length * 0.1)
|
169 |
-
|
170 |
-
# # Update progress bar
|
171 |
-
# #progress(achieved_progress, desc="Getting queried data...")
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
# records_df = pd.DataFrame(records)
|
176 |
-
# records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']]
|
177 |
-
|
178 |
-
# records_df['parsed_publication'] = [get_pub(x) for x in records_df['primary_location']]
|
179 |
-
|
180 |
-
|
181 |
-
# records_df['parsed_publication'] = records_df['parsed_publication'].fillna(' ')
|
182 |
-
# records_df['abstract'] = records_df['abstract'].fillna(' ')
|
183 |
-
# records_df['title'] = records_df['title'].fillna(' ')
|
184 |
-
|
185 |
-
|
186 |
-
# return records_df
|
187 |
-
|
188 |
-
|
189 |
-
################# Setting up the model for specter2 embeddings ###################
|
190 |
|
191 |
|
192 |
|
@@ -206,7 +169,7 @@ model = SentenceTransformer("m7n/discipline-tuned_specter_2_024")
|
|
206 |
@spaces.GPU(duration=60)
|
207 |
def create_embeddings(texts_to_embedd):
|
208 |
|
209 |
-
embeddings = model.encode(texts_to_embedd,show_progress_bar=True,batch_size=
|
210 |
|
211 |
return embeddings
|
212 |
|
|
|
150 |
return np.nan
|
151 |
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
|
155 |
|
|
|
169 |
@spaces.GPU(duration=60)
|
170 |
def create_embeddings(texts_to_embedd):
|
171 |
|
172 |
+
embeddings = model.encode(texts_to_embedd,show_progress_bar=True,batch_size=192)
|
173 |
|
174 |
return embeddings
|
175 |
|