|
import os |
|
os.system("pip uninstall -y gradio") |
|
os.system("pip install --upgrade gradio") |
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from fastapi import FastAPI |
|
from fastapi.staticfiles import StaticFiles |
|
import uvicorn |
|
import gradio as gr |
|
from datetime import datetime |
|
import sys |
|
|
|
|
|
|
|
gr.set_static_paths(paths=["static/"]) |
|
|
|
|
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
static_dir = Path('./static') |
|
static_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
app.mount("/static", StaticFiles(directory=static_dir), name="static") |
|
|
|
|
|
|
|
|
|
|
|
import datamapplot |
|
import numpy as np |
|
import requests |
|
import io |
|
|
|
|
|
|
|
def predict(text_input): |
|
file_name = f"{datetime.utcnow().strftime('%s')}.html" |
|
file_path = static_dir / file_name |
|
print(file_path) |
|
|
|
base_url = "https://github.com/TutteInstitute/datamapplot" |
|
data_map_file = requests.get( |
|
f"{base_url}/raw/main/examples/arxiv_ml_data_map.npy" |
|
) |
|
arxivml_data_map = np.load(io.BytesIO(data_map_file.content)) |
|
arxivml_label_layers = [] |
|
for layer_num in range(5): |
|
label_file = requests.get( |
|
f"{base_url}/raw/interactive/examples/arxiv_ml_layer{layer_num}_cluster_labels.npy" |
|
) |
|
arxivml_label_layers.append(np.load(io.BytesIO(label_file.content), allow_pickle=True)) |
|
|
|
|
|
|
|
hover_data_file = requests.get( |
|
f"{base_url}/raw/interactive/examples/arxiv_ml_hover_data.npy" |
|
) |
|
arxiv_hover_data = np.load(io.BytesIO(hover_data_file.content), allow_pickle=True) |
|
|
|
|
|
plot = datamapplot.create_interactive_plot( |
|
arxivml_data_map, |
|
arxivml_label_layers[0], |
|
arxivml_label_layers[2], |
|
arxivml_label_layers[4], |
|
hover_text = arxiv_hover_data, |
|
font_family="Roboto Condensed", |
|
) |
|
|
|
|
|
|
|
plot.save(file_path) |
|
|
|
|
|
|
|
iframe = f"""<iframe src="/static/{file_name}" width="100%" height="500px"></iframe>""" |
|
link = f'<a href="/static/{file_name}" target="_blank">{file_name}</a>' |
|
return link, iframe |
|
|
|
with gr.Blocks() as block: |
|
gr.Markdown(""" |
|
## Gradio + FastAPI + Static Server |
|
This is a demo of how to use Gradio with FastAPI and a static server. |
|
The Gradio app generates dynamic HTML files and stores them in a static directory. FastAPI serves the static files. |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
text_input = gr.Textbox(label="Name") |
|
markdown = gr.Markdown(label="Output Box") |
|
new_btn = gr.Button("New") |
|
with gr.Column(): |
|
html = gr.HTML(label="HTML preview", show_label=True) |
|
|
|
new_btn.click(fn=predict, inputs=[text_input], outputs=[markdown, html]) |
|
|
|
|
|
app = gr.mount_gradio_app(app, block, path="/") |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|
|
|
|
|
|
|
|
|
|