Spaces:
Sleeping
Sleeping
Update my_model/KBVQA.py
Browse files- my_model/KBVQA.py +300 -200
my_model/KBVQA.py
CHANGED
|
@@ -1,7 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
-
import copy
|
| 4 |
-
import os
|
| 5 |
from PIL import Image
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 7 |
from typing import Tuple, Optional
|
|
@@ -11,11 +49,10 @@ from my_model.detector.object_detection import ObjectDetector
|
|
| 11 |
import my_model.config.kbvqa_config as config
|
| 12 |
|
| 13 |
|
| 14 |
-
|
| 15 |
class KBVQA:
|
| 16 |
"""
|
| 17 |
-
The KBVQA class encapsulates the functionality for the Knowledge-Based Visual Question Answering (KBVQA) model.
|
| 18 |
-
It integrates various components such as an image captioning model, object detection model, and a fine-tuned
|
| 19 |
language model (LLAMA2) on OK-VQA dataset for generating answers to visual questions.
|
| 20 |
|
| 21 |
Attributes:
|
|
@@ -49,14 +86,17 @@ class KBVQA:
|
|
| 49 |
generate_answer: Generates an answer to a given question using the KBVQA model.
|
| 50 |
"""
|
| 51 |
|
| 52 |
-
def __init__(self):
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
if st.session_state["method"] == "7b-Fine-Tuned Model":
|
| 55 |
self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME_7b
|
| 56 |
elif st.session_state["method"] == "13b-Fine-Tuned Model":
|
| 57 |
self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME_13b
|
| 58 |
self.quantization: str = config.QUANTIZATION
|
| 59 |
-
self.max_context_window: int = config.MAX_CONTEXT_WINDOW
|
| 60 |
self.add_eos_token: bool = config.ADD_EOS_TOKEN
|
| 61 |
self.trust_remote: bool = config.TRUST_REMOTE
|
| 62 |
self.use_fast: bool = config.USE_FAST
|
|
@@ -70,234 +110,270 @@ class KBVQA:
|
|
| 70 |
self.bnb_config: BitsAndBytesConfig = self.create_bnb_config()
|
| 71 |
self.access_token: str = config.HUGGINGFACE_TOKEN
|
| 72 |
self.current_prompt_length = None
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def create_bnb_config(self) -> BitsAndBytesConfig:
|
| 76 |
-
"""
|
| 77 |
-
Creates a BitsAndBytes configuration based on the quantization setting.
|
| 78 |
-
Returns:
|
| 79 |
-
BitsAndBytesConfig: Configuration for BitsAndBytes optimized model.
|
| 80 |
-
"""
|
| 81 |
-
if self.quantization == '4bit':
|
| 82 |
-
return BitsAndBytesConfig(
|
| 83 |
-
load_in_4bit=True,
|
| 84 |
-
bnb_4bit_use_double_quant=True,
|
| 85 |
-
bnb_4bit_quant_type="nf4",
|
| 86 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 87 |
-
)
|
| 88 |
-
elif self.quantization == '8bit':
|
| 89 |
-
return BitsAndBytesConfig(
|
| 90 |
-
load_in_8bit=True,
|
| 91 |
-
bnb_8bit_use_double_quant=True,
|
| 92 |
-
bnb_8bit_quant_type="nf4",
|
| 93 |
-
bnb_8bit_compute_dtype=torch.bfloat16
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def load_caption_model(self) -> None:
|
| 98 |
-
"""
|
| 99 |
-
Loads the image captioning model into the KBVQA instance.
|
| 100 |
-
"""
|
| 101 |
-
|
| 102 |
-
self.captioner = ImageCaptioningModel()
|
| 103 |
-
self.captioner.load_model()
|
| 104 |
-
free_gpu_resources()
|
| 105 |
|
| 106 |
-
def get_caption(self, img: Image.Image) -> str:
|
| 107 |
-
"""
|
| 108 |
-
Generates a caption for a given image using the image captioning model.
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
|
| 128 |
-
self.detector = ObjectDetector()
|
| 129 |
-
self.detector.load_model(model)
|
| 130 |
-
free_gpu_resources()
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
detected_objects_string, detected_objects_list = self.detector.detect_objects(image, threshold=st.session_state['confidence_level'])
|
| 146 |
-
free_gpu_resources()
|
| 147 |
-
image_with_boxes = self.detector.draw_boxes(img, detected_objects_list)
|
| 148 |
-
free_gpu_resources()
|
| 149 |
-
return image_with_boxes, detected_objects_string
|
| 150 |
|
| 151 |
-
def load_fine_tuned_model(self) -> None:
|
| 152 |
-
"""
|
| 153 |
-
Loads the fine-tuned KBVQA model along with its tokenizer.
|
| 154 |
-
"""
|
| 155 |
-
|
| 156 |
-
self.kbvqa_model = AutoModelForCausalLM.from_pretrained(self.kbvqa_model_name,
|
| 157 |
-
device_map="auto",
|
| 158 |
-
low_cpu_mem_usage=True,
|
| 159 |
-
quantization_config=self.bnb_config,
|
| 160 |
-
token=self.access_token)
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
use_fast=self.use_fast,
|
| 166 |
-
low_cpu_mem_usage=True,
|
| 167 |
-
trust_remote_code=self.trust_remote,
|
| 168 |
-
add_eos_token=self.add_eos_token,
|
| 169 |
-
token=self.access_token)
|
| 170 |
-
free_gpu_resources()
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
"""
|
| 175 |
-
Checks if all the required models (KBVQA, captioner, detector) are loaded.
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
return self.kbvqa_model is not None and self.captioner is not None and self.detector is not None
|
| 182 |
-
|
| 183 |
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
def format_prompt(self, current_query: str, history: Optional[str] = None, sys_prompt: Optional[str] = None, caption: str = None, objects: Optional[str] = None) -> str:
|
| 186 |
-
"""
|
| 187 |
-
Formats the prompt for the KBVQA model based on the provided parameters.
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
sys_prompt (str, optional): The system prompt or instructions for the model.
|
| 193 |
-
caption (str, optional): The caption of the image.
|
| 194 |
-
objects (str, optional): The detected objects in the image.
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
else:
|
| 221 |
-
p = f"""{
|
| 222 |
-
|
| 223 |
-
|
| 224 |
|
| 225 |
-
|
| 226 |
-
def trim_objects(detected_objects_str):
|
| 227 |
-
"""
|
| 228 |
-
Trim the last object from the detected objects string.
|
| 229 |
-
|
| 230 |
-
Args:
|
| 231 |
-
- detected_objects_str (str): String containing detected objects.
|
| 232 |
-
|
| 233 |
-
Returns:
|
| 234 |
-
- (str): The string with the last object removed.
|
| 235 |
-
"""
|
| 236 |
-
objects = detected_objects_str.strip().split("\n")
|
| 237 |
-
if len(objects) >= 1:
|
| 238 |
-
return "\n".join(objects[:-1])
|
| 239 |
-
return ""
|
| 240 |
|
| 241 |
-
def generate_answer(self, question: str, caption: str, detected_objects_str: str) -> str:
|
| 242 |
-
"""
|
| 243 |
-
Generates an answer to a given question using the KBVQA model.
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str)
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
trim = False
|
| 260 |
-
if self.current_prompt_length > self.max_context_window:
|
| 261 |
-
trim = True
|
| 262 |
-
st.warning(f"Prompt length is {self.current_prompt_length} which is larger than the maximum context window of LLaMA-2, objects detected with low confidence will be removed one at a time until the prompt length is within the maximum context window ...")
|
| 263 |
-
while self.current_prompt_length > self.max_context_window:
|
| 264 |
-
detected_objects_str = self.trim_objects(detected_objects_str)
|
| 265 |
-
prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str)
|
| 266 |
-
self.current_prompt_length = len(self.kbvqa_tokenizer.tokenize(prompt))
|
| 267 |
-
|
| 268 |
-
if detected_objects_str == "":
|
| 269 |
-
break # Break if no objects are left
|
| 270 |
-
if trim:
|
| 271 |
-
st.warning(f"New prompt length is: {self.current_prompt_length}")
|
| 272 |
-
trim = False
|
| 273 |
-
|
| 274 |
-
model_inputs = self.kbvqa_tokenizer(prompt, add_special_tokens=False, return_tensors="pt").to('cuda')
|
| 275 |
-
free_gpu_resources()
|
| 276 |
-
input_ids = model_inputs["input_ids"]
|
| 277 |
-
output_ids = self.kbvqa_model.generate(input_ids)
|
| 278 |
-
free_gpu_resources()
|
| 279 |
-
index = input_ids.shape[1] # needed to avoid printing the input prompt
|
| 280 |
-
history = self.kbvqa_tokenizer.decode(output_ids[0], skip_special_tokens=False)
|
| 281 |
-
output_text = self.kbvqa_tokenizer.decode(output_ids[0][index:], skip_special_tokens=True)
|
| 282 |
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload: bool = False) -> KBVQA:
|
| 286 |
"""
|
| 287 |
Prepares the KBVQA model for use, including loading necessary sub-models.
|
| 288 |
|
|
|
|
|
|
|
| 289 |
Args:
|
| 290 |
only_reload_detection_model (bool): If True, only the object detection model is reloaded.
|
|
|
|
| 291 |
|
| 292 |
Returns:
|
| 293 |
KBVQA: An instance of the KBVQA model ready for inference.
|
| 294 |
"""
|
| 295 |
-
|
| 296 |
if force_reload:
|
| 297 |
free_gpu_resources()
|
| 298 |
loading_message = 'Reloading model.. this should take no more than 2 or 3 minutes!'
|
| 299 |
try:
|
| 300 |
-
del kbvqa
|
| 301 |
free_gpu_resources()
|
| 302 |
free_gpu_resources()
|
| 303 |
except:
|
|
@@ -305,14 +381,15 @@ def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload:
|
|
| 305 |
free_gpu_resources()
|
| 306 |
pass
|
| 307 |
free_gpu_resources()
|
| 308 |
-
|
| 309 |
-
else:
|
|
|
|
| 310 |
|
| 311 |
free_gpu_resources()
|
| 312 |
kbvqa = KBVQA()
|
| 313 |
kbvqa.detection_model = st.session_state.detection_model
|
| 314 |
# Progress bar for model loading
|
| 315 |
-
|
| 316 |
with st.spinner(loading_message):
|
| 317 |
if not only_reload_detection_model:
|
| 318 |
progress_bar = st.progress(0)
|
|
@@ -330,11 +407,34 @@ def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload:
|
|
| 330 |
progress_bar = st.progress(0)
|
| 331 |
kbvqa.load_detector(kbvqa.detection_model)
|
| 332 |
progress_bar.progress(100)
|
| 333 |
-
|
| 334 |
if kbvqa.all_models_loaded:
|
| 335 |
st.success('Model loaded successfully and ready for inferecne!')
|
| 336 |
kbvqa.kbvqa_model.eval()
|
| 337 |
free_gpu_resources()
|
| 338 |
return kbvqa
|
| 339 |
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Main script for KBVQA: Knowledge-Based Visual Question Answering Module
|
| 2 |
+
|
| 3 |
+
# This module is the central component for implementing the designed model architecture for the Knowledge-Based Visual
|
| 4 |
+
# Question Answering (KB-VQA) project. It integrates various sub-modules, including image captioning, object detection,
|
| 5 |
+
# and a fine-tuned language model, to provide a comprehensive solution for answering questions based on visual input.
|
| 6 |
+
|
| 7 |
+
# --- Description ---
|
| 8 |
+
# **KBVQA class**:
|
| 9 |
+
# The KBVQA class encapsulates the functionality needed to perform visual question answering using a combination of
|
| 10 |
+
# multimodal models.
|
| 11 |
+
# The class handles the following tasks:
|
| 12 |
+
# - Loading and managing a fine-tuned language model (LLaMA-2) for question answering.
|
| 13 |
+
# - Integrating an image captioning model to generate descriptive captions for input images.
|
| 14 |
+
# - Utilizing an object detection model to identify and describe objects within the images.
|
| 15 |
+
# - Formatting and generating prompts for the language model based on the image captions and detected objects.
|
| 16 |
+
# - Providing methods to analyze images and generate answers to user-provided questions.
|
| 17 |
+
|
| 18 |
+
# **prepare_kbvqa_model function**:
|
| 19 |
+
# - The prepare_kbvqa_model function orchestrates the loading and initialization of the KBVQA class, ensuring it is
|
| 20 |
+
# ready for inference.
|
| 21 |
+
|
| 22 |
+
# ---Instructions---
|
| 23 |
+
# **Model Preparation**:
|
| 24 |
+
# Use the prepare_kbvqa_model function to prepare and initialize the KBVQA system, ensuring all required models are
|
| 25 |
+
# loaded and ready for use.
|
| 26 |
+
|
| 27 |
+
# **Image Processing and Question Answering**:
|
| 28 |
+
# Use the get_caption method to generate captions for input images.
|
| 29 |
+
# Use the detect_objects method to identify and describe objects in the images.
|
| 30 |
+
# Use the generate_answer method to answer questions based on the image captions and detected objects.
|
| 31 |
+
|
| 32 |
+
# This module forms the backbone of the KB-VQA project, integrating advanced models to provide an end-to-end solution
|
| 33 |
+
# for visual question answering tasks.
|
| 34 |
+
# Ensure all dependencies are installed and the required configuration file is in place before running this script.
|
| 35 |
+
# The configurations for the KBVQA class are defined in the 'my_model/config/kbvqa_config.py' file.
|
| 36 |
+
|
| 37 |
+
# ---------- Please run this module to utilize the full KB-VQA functionality ----------#
|
| 38 |
+
# ---------- Please ensure this is run on a GPU ----------#
|
| 39 |
+
|
| 40 |
+
|
| 41 |
import streamlit as st
|
| 42 |
import torch
|
|
|
|
|
|
|
| 43 |
from PIL import Image
|
| 44 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 45 |
from typing import Tuple, Optional
|
|
|
|
| 49 |
import my_model.config.kbvqa_config as config
|
| 50 |
|
| 51 |
|
|
|
|
| 52 |
class KBVQA:
|
| 53 |
"""
|
| 54 |
+
The KBVQA class encapsulates the functionality for the Knowledge-Based Visual Question Answering (KBVQA) model.
|
| 55 |
+
It integrates various components such as an image captioning model, object detection model, and a fine-tuned
|
| 56 |
language model (LLAMA2) on OK-VQA dataset for generating answers to visual questions.
|
| 57 |
|
| 58 |
Attributes:
|
|
|
|
| 86 |
generate_answer: Generates an answer to a given question using the KBVQA model.
|
| 87 |
"""
|
| 88 |
|
| 89 |
+
def __init__(self) -> None:
|
| 90 |
+
"""
|
| 91 |
+
Initializes the KBVQA instance with configuration parameters.
|
| 92 |
+
"""
|
| 93 |
|
| 94 |
if st.session_state["method"] == "7b-Fine-Tuned Model":
|
| 95 |
self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME_7b
|
| 96 |
elif st.session_state["method"] == "13b-Fine-Tuned Model":
|
| 97 |
self.kbvqa_model_name: str = config.KBVQA_MODEL_NAME_13b
|
| 98 |
self.quantization: str = config.QUANTIZATION
|
| 99 |
+
self.max_context_window: int = config.MAX_CONTEXT_WINDOW # set to 4,000 tokens
|
| 100 |
self.add_eos_token: bool = config.ADD_EOS_TOKEN
|
| 101 |
self.trust_remote: bool = config.TRUST_REMOTE
|
| 102 |
self.use_fast: bool = config.USE_FAST
|
|
|
|
| 110 |
self.bnb_config: BitsAndBytesConfig = self.create_bnb_config()
|
| 111 |
self.access_token: str = config.HUGGINGFACE_TOKEN
|
| 112 |
self.current_prompt_length = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
def create_bnb_config(self) -> BitsAndBytesConfig:
|
| 116 |
+
"""
|
| 117 |
+
Creates a BitsAndBytes configuration based on the quantization setting.
|
| 118 |
+
Returns:
|
| 119 |
+
BitsAndBytesConfig: Configuration for BitsAndBytes optimized model.
|
| 120 |
+
"""
|
| 121 |
|
| 122 |
+
if self.quantization == '4bit':
|
| 123 |
+
return BitsAndBytesConfig(
|
| 124 |
+
load_in_4bit=True,
|
| 125 |
+
bnb_4bit_use_double_quant=True,
|
| 126 |
+
bnb_4bit_quant_type="nf4",
|
| 127 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 128 |
+
)
|
| 129 |
+
elif self.quantization == '8bit':
|
| 130 |
+
return BitsAndBytesConfig(
|
| 131 |
+
load_in_8bit=True,
|
| 132 |
+
bnb_8bit_use_double_quant=True,
|
| 133 |
+
bnb_8bit_quant_type="nf4",
|
| 134 |
+
bnb_8bit_compute_dtype=torch.bfloat16
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def load_caption_model(self) -> None:
|
| 139 |
+
"""
|
| 140 |
+
Loads the image captioning model into the KBVQA instance.
|
| 141 |
|
| 142 |
+
Returns:
|
| 143 |
+
None
|
| 144 |
+
"""
|
| 145 |
|
| 146 |
+
self.captioner = ImageCaptioningModel()
|
| 147 |
+
self.captioner.load_model()
|
| 148 |
+
free_gpu_resources()
|
| 149 |
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
def get_caption(self, img: Image.Image) -> str:
|
| 152 |
+
"""
|
| 153 |
+
Generates a caption for a given image using the image captioning model.
|
| 154 |
|
| 155 |
+
Args:
|
| 156 |
+
img (PIL.Image.Image): The image for which to generate a caption.
|
| 157 |
|
| 158 |
+
Returns:
|
| 159 |
+
str: The generated caption for the image.
|
| 160 |
+
"""
|
| 161 |
+
caption = self.captioner.generate_caption(img)
|
| 162 |
+
free_gpu_resources()
|
| 163 |
+
return caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
def load_detector(self, model: str) -> None:
|
| 167 |
+
"""
|
| 168 |
+
Loads the object detection model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
Args:
|
| 171 |
+
model (str): The name of the object detection model to load.
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
Returns:
|
| 174 |
+
None
|
| 175 |
+
"""
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
self.detector = ObjectDetector()
|
| 178 |
+
self.detector.load_model(model)
|
| 179 |
+
free_gpu_resources()
|
| 180 |
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
def detect_objects(self, img: Image.Image) -> Tuple[Image.Image, str]:
|
| 183 |
+
"""
|
| 184 |
+
Detects objects in a given image using the loaded object detection model.
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
Args:
|
| 187 |
+
img (PIL.Image.Image): The image in which to detect objects.
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
tuple: A tuple containing the image with detected objects drawn and a string representation of detected objects.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
image = self.detector.process_image(img)
|
| 194 |
+
free_gpu_resources()
|
| 195 |
+
detected_objects_string, detected_objects_list = self.detector.detect_objects(image, threshold=st.session_state[
|
| 196 |
+
'confidence_level'])
|
| 197 |
+
free_gpu_resources()
|
| 198 |
+
image_with_boxes = self.detector.draw_boxes(img, detected_objects_list)
|
| 199 |
+
free_gpu_resources()
|
| 200 |
+
return image_with_boxes, detected_objects_string
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def load_fine_tuned_model(self) -> None:
|
| 204 |
+
"""
|
| 205 |
+
Loads the fine-tuned KBVQA model along with its tokenizer.
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
None
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
self.kbvqa_model = AutoModelForCausalLM.from_pretrained(self.kbvqa_model_name,
|
| 212 |
+
device_map="auto",
|
| 213 |
+
low_cpu_mem_usage=True,
|
| 214 |
+
quantization_config=self.bnb_config,
|
| 215 |
+
token=self.access_token)
|
| 216 |
+
|
| 217 |
+
free_gpu_resources()
|
| 218 |
+
|
| 219 |
+
self.kbvqa_tokenizer = AutoTokenizer.from_pretrained(self.kbvqa_model_name,
|
| 220 |
+
use_fast=self.use_fast,
|
| 221 |
+
low_cpu_mem_usage=True,
|
| 222 |
+
trust_remote_code=self.trust_remote,
|
| 223 |
+
add_eos_token=self.add_eos_token,
|
| 224 |
+
token=self.access_token)
|
| 225 |
+
free_gpu_resources()
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
@property
|
| 229 |
+
def all_models_loaded(self) -> bool:
|
| 230 |
+
"""
|
| 231 |
+
Checks if all the required models (KBVQA, captioner, detector) are loaded.
|
| 232 |
+
|
| 233 |
+
Returns:
|
| 234 |
+
bool: True if all models are loaded, False otherwise.
|
| 235 |
+
"""
|
| 236 |
+
|
| 237 |
+
return self.kbvqa_model is not None and self.captioner is not None and self.detector is not None
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def format_prompt(self, current_query: str, history: Optional[str] = None, sys_prompt: Optional[str] = None,
|
| 241 |
+
caption: str = None, objects: Optional[str] = None) -> str:
|
| 242 |
+
"""
|
| 243 |
+
Formats the prompt for the KBVQA model based on the provided parameters.
|
| 244 |
+
|
| 245 |
+
This implements the Prompt Engineering Module of the Overall KB-VQA Archetecture.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
current_query (str): The current question to be answered.
|
| 249 |
+
history (str, optional): The history of previous interactions.
|
| 250 |
+
sys_prompt (str, optional): The system prompt or instructions for the model.
|
| 251 |
+
caption (str, optional): The caption of the image.
|
| 252 |
+
objects (str, optional): The detected objects in the image.
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
str: The formatted prompt for the KBVQA model.
|
| 256 |
+
"""
|
| 257 |
+
|
| 258 |
+
# These are the special tokens designed for the model to be fine-tuned on.
|
| 259 |
+
B_CAP = '[CAP]'
|
| 260 |
+
E_CAP = '[/CAP]'
|
| 261 |
+
B_QES = '[QES]'
|
| 262 |
+
E_QES = '[/QES]'
|
| 263 |
+
B_OBJ = '[OBJ]'
|
| 264 |
+
E_OBJ = '[/OBJ]'
|
| 265 |
+
|
| 266 |
+
# These are the default special tokens of LLaMA-2 Chat Model.
|
| 267 |
+
B_SENT = '<s>'
|
| 268 |
+
E_SENT = '</s>'
|
| 269 |
+
B_INST = '[INST]'
|
| 270 |
+
E_INST = '[/INST]'
|
| 271 |
+
B_SYS = '<<SYS>>\n'
|
| 272 |
+
E_SYS = '\n<</SYS>>\n\n'
|
| 273 |
+
|
| 274 |
+
current_query = current_query.strip()
|
| 275 |
+
if sys_prompt is None:
|
| 276 |
+
sys_prompt = config.SYSTEM_PROMPT.strip()
|
| 277 |
+
|
| 278 |
+
# History can be used to facilitate multi turn chat, not used for the Run Inference tool within the demo app.
|
| 279 |
+
if history is None:
|
| 280 |
+
if objects is None:
|
| 281 |
+
p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_QES}{current_query}{E_QES}{E_INST}"""
|
| 282 |
else:
|
| 283 |
+
p = f"""{B_SENT}{B_INST} {B_SYS}{sys_prompt}{E_SYS}{B_CAP}{caption}{E_CAP}{B_OBJ}{objects}{E_OBJ}{B_QES}taking into consideration the objects with high certainty, {current_query}{E_QES}{E_INST}"""
|
| 284 |
+
else:
|
| 285 |
+
p = f"""{history}\n{B_SENT}{B_INST} {B_QES}{current_query}{E_QES}{E_INST}"""
|
| 286 |
|
| 287 |
+
return p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
@staticmethod
|
| 291 |
+
def trim_objects(detected_objects_str: str) -> str:
|
| 292 |
+
"""
|
| 293 |
+
Trim the last object from the detected objects string.
|
| 294 |
+
This is implemented to ensure that the prompt length is within the context window, threshold set to 4,000 tokens.
|
| 295 |
|
| 296 |
+
Args:
|
| 297 |
+
detected_objects_str (str): String containing detected objects.
|
| 298 |
+
|
| 299 |
+
Returns:
|
| 300 |
+
str: The string with the last object removed.
|
| 301 |
+
"""
|
| 302 |
+
|
| 303 |
+
objects = detected_objects_str.strip().split("\n")
|
| 304 |
+
if len(objects) >= 1:
|
| 305 |
+
return "\n".join(objects[:-1])
|
| 306 |
+
return ""
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def generate_answer(self, question: str, caption: str, detected_objects_str: str) -> str:
|
| 310 |
+
"""
|
| 311 |
+
Generates an answer to a given question using the KBVQA model.
|
| 312 |
+
|
| 313 |
+
Args:
|
| 314 |
+
question (str): The question to be answered.
|
| 315 |
+
caption (str): The caption of the image related to the question.
|
| 316 |
+
detected_objects_str (str): The string representation of detected objects in the image.
|
| 317 |
+
|
| 318 |
+
Returns:
|
| 319 |
+
str: The generated answer to the question.
|
| 320 |
+
"""
|
| 321 |
+
|
| 322 |
+
free_gpu_resources()
|
| 323 |
+
prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str)
|
| 324 |
+
num_tokens = len(self.kbvqa_tokenizer.tokenize(prompt))
|
| 325 |
+
self.current_prompt_length = num_tokens
|
| 326 |
+
trim = False # flag used to check if prompt trim is required or no.
|
| 327 |
+
# max_context_window is set to 4,000 tokens, refer to the config file.
|
| 328 |
+
if self.current_prompt_length > self.max_context_window:
|
| 329 |
+
trim = True
|
| 330 |
+
st.warning(
|
| 331 |
+
f"Prompt length is {self.current_prompt_length} which is larger than the maximum context window of LLaMA-2,"
|
| 332 |
+
f" objects detected with low confidence will be removed one at a time until the prompt length is within the"
|
| 333 |
+
f" maximum context window ...")
|
| 334 |
+
# an object is trimmed from the bottom of the list until the overall prompt length is within the context window.
|
| 335 |
+
while self.current_prompt_length > self.max_context_window:
|
| 336 |
+
detected_objects_str = self.trim_objects(detected_objects_str)
|
| 337 |
prompt = self.format_prompt(question, caption=caption, objects=detected_objects_str)
|
| 338 |
+
self.current_prompt_length = len(self.kbvqa_tokenizer.tokenize(prompt))
|
| 339 |
+
|
| 340 |
+
if detected_objects_str == "":
|
| 341 |
+
break # Break if no objects are left
|
| 342 |
+
if trim:
|
| 343 |
+
st.warning(f"New prompt length is: {self.current_prompt_length}")
|
| 344 |
trim = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
+
model_inputs = self.kbvqa_tokenizer(prompt, add_special_tokens=False, return_tensors="pt").to('cuda')
|
| 347 |
+
free_gpu_resources()
|
| 348 |
+
input_ids = model_inputs["input_ids"]
|
| 349 |
+
output_ids = self.kbvqa_model.generate(input_ids)
|
| 350 |
+
free_gpu_resources()
|
| 351 |
+
index = input_ids.shape[1] # needed to avoid printing the input prompt
|
| 352 |
+
history = self.kbvqa_tokenizer.decode(output_ids[0], skip_special_tokens=False)
|
| 353 |
+
output_text = self.kbvqa_tokenizer.decode(output_ids[0][index:], skip_special_tokens=True)
|
| 354 |
+
|
| 355 |
+
return output_text.capitalize()
|
| 356 |
+
|
| 357 |
|
| 358 |
def prepare_kbvqa_model(only_reload_detection_model: bool = False, force_reload: bool = False) -> KBVQA:
|
| 359 |
"""
|
| 360 |
Prepares the KBVQA model for use, including loading necessary sub-models.
|
| 361 |
|
| 362 |
+
This serves as the main function for loading and reloading the KB-VQA model.
|
| 363 |
+
|
| 364 |
Args:
|
| 365 |
only_reload_detection_model (bool): If True, only the object detection model is reloaded.
|
| 366 |
+
force_reload (bool): If True, forces the reload of all models.
|
| 367 |
|
| 368 |
Returns:
|
| 369 |
KBVQA: An instance of the KBVQA model ready for inference.
|
| 370 |
"""
|
| 371 |
+
|
| 372 |
if force_reload:
|
| 373 |
free_gpu_resources()
|
| 374 |
loading_message = 'Reloading model.. this should take no more than 2 or 3 minutes!'
|
| 375 |
try:
|
| 376 |
+
del st.session_state['kbvqa']
|
| 377 |
free_gpu_resources()
|
| 378 |
free_gpu_resources()
|
| 379 |
except:
|
|
|
|
| 381 |
free_gpu_resources()
|
| 382 |
pass
|
| 383 |
free_gpu_resources()
|
| 384 |
+
|
| 385 |
+
else:
|
| 386 |
+
loading_message = 'Looading model.. this should take no more than 2 or 3 minutes!'
|
| 387 |
|
| 388 |
free_gpu_resources()
|
| 389 |
kbvqa = KBVQA()
|
| 390 |
kbvqa.detection_model = st.session_state.detection_model
|
| 391 |
# Progress bar for model loading
|
| 392 |
+
|
| 393 |
with st.spinner(loading_message):
|
| 394 |
if not only_reload_detection_model:
|
| 395 |
progress_bar = st.progress(0)
|
|
|
|
| 407 |
progress_bar = st.progress(0)
|
| 408 |
kbvqa.load_detector(kbvqa.detection_model)
|
| 409 |
progress_bar.progress(100)
|
| 410 |
+
|
| 411 |
if kbvqa.all_models_loaded:
|
| 412 |
st.success('Model loaded successfully and ready for inferecne!')
|
| 413 |
kbvqa.kbvqa_model.eval()
|
| 414 |
free_gpu_resources()
|
| 415 |
return kbvqa
|
| 416 |
|
| 417 |
+
|
| 418 |
+
if __name__ == "__main__":
|
| 419 |
+
pass
|
| 420 |
+
|
| 421 |
+
#### Example on how to use the module ####
|
| 422 |
+
|
| 423 |
+
# Prepare the KBVQA model
|
| 424 |
+
# kbvqa = prepare_kbvqa_model()
|
| 425 |
+
|
| 426 |
+
# Load an image
|
| 427 |
+
# image = Image.open('path_to_image.jpg')
|
| 428 |
+
|
| 429 |
+
# Generate a caption for the image
|
| 430 |
+
# caption = kbvqa.get_caption(image)
|
| 431 |
+
|
| 432 |
+
# Detect objects in the image
|
| 433 |
+
# image_with_boxes, detected_objects_str = kbvqa.detect_objects(image)
|
| 434 |
+
|
| 435 |
+
# Generate an answer to a question about the image
|
| 436 |
+
# question = "What is the object in the image?"
|
| 437 |
+
# answer = kbvqa.generate_answer(question, caption, detected_objects_str)
|
| 438 |
+
|
| 439 |
+
# print(f"Answer: {answer}")
|
| 440 |
+
|