Spaces:
Sleeping
Sleeping
Upload 2 files
Browse filescompleted the detection code and updated some utils functions
- My_Model/object_detection.py +162 -0
- My_Model/utilities.py +277 -0
My_Model/object_detection.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
import os
|
| 6 |
+
from utilities import get_path, show_image, show_image_with_matplotlib
|
| 7 |
+
import transformers
|
| 8 |
+
|
| 9 |
+
class ObjectDetector:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
self.model = None
|
| 12 |
+
self.processor = None
|
| 13 |
+
self.model_name = None
|
| 14 |
+
|
| 15 |
+
def load_model(self, model_name='detic', pretrained=True, model_version='yolov5s'):
|
| 16 |
+
"""
|
| 17 |
+
Load the specified object detection model.
|
| 18 |
+
:param model_name: Name of the model to load.
|
| 19 |
+
:param pretrained: Boolean indicating if pretrained model should be used.
|
| 20 |
+
:param model_version: Version of the model, applicable for YOLOv5.
|
| 21 |
+
"""
|
| 22 |
+
self.model_name = model_name
|
| 23 |
+
if model_name == 'detic':
|
| 24 |
+
self.load_detic_model(pretrained)
|
| 25 |
+
elif model_name == 'yolov5':
|
| 26 |
+
self.load_yolov5_model(pretrained, model_version)
|
| 27 |
+
else:
|
| 28 |
+
raise ValueError("Unsupported model name")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def load_detic_model(self, pretrained):
|
| 32 |
+
"""Load the Detic model."""
|
| 33 |
+
try:
|
| 34 |
+
model_path = get_path('deformable-detr-detic', 'Models')
|
| 35 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 36 |
+
self.processor = AutoImageProcessor.from_pretrained(model_path)
|
| 37 |
+
self.model = AutoModelForObjectDetection.from_pretrained(model_path)
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"Error loading Detic model: {e}")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def load_yolov5_model(self, pretrained, model_version):
|
| 43 |
+
"""Load the YOLOv5 model."""
|
| 44 |
+
try:
|
| 45 |
+
model_path = get_path('yolov5', 'Models')
|
| 46 |
+
if model_path and os.path.exists(model_path):
|
| 47 |
+
with os.scandir(model_path) as main_dir:
|
| 48 |
+
self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source="local")
|
| 49 |
+
else:
|
| 50 |
+
self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained)
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"Error loading YOLOv5 model: {e}")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def process_image(self, image_path: str) -> Image.Image:
|
| 56 |
+
"""
|
| 57 |
+
Process the image from the given path.
|
| 58 |
+
:param image_path: Path to the image file.
|
| 59 |
+
:return: Processed image.
|
| 60 |
+
"""
|
| 61 |
+
with Image.open(image_path) as image:
|
| 62 |
+
return image.convert("RGB")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def detect_objects(self, image: Image.Image, threshold: float = 0.4):
|
| 66 |
+
"""
|
| 67 |
+
Detect objects in the given image.
|
| 68 |
+
:param image: Image in which to detect objects.
|
| 69 |
+
:param threshold: Detection threshold.
|
| 70 |
+
:return: Tuple of detected objects string and list.
|
| 71 |
+
"""
|
| 72 |
+
detected_objects_str, detected_objects_list = "", []
|
| 73 |
+
if self.model_name == 'detic':
|
| 74 |
+
detected_objects_str, detected_objects_list = self.detect_with_detic(image, threshold)
|
| 75 |
+
elif self.model_name == 'yolov5':
|
| 76 |
+
detected_objects_str, detected_objects_list = self.detect_with_yolov5(image, threshold)
|
| 77 |
+
return detected_objects_str.strip(), detected_objects_list
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def detect_with_detic(self, image: Image.Image, threshold: float):
|
| 81 |
+
"""Detect objects using Detic model."""
|
| 82 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 83 |
+
outputs = self.model(**inputs)
|
| 84 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 85 |
+
results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[
|
| 86 |
+
0]
|
| 87 |
+
|
| 88 |
+
detected_objects_str = ""
|
| 89 |
+
detected_objects_list = []
|
| 90 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 91 |
+
if score >= threshold:
|
| 92 |
+
label_name = self.model.config.id2label[label.item()]
|
| 93 |
+
box_rounded = [round(coord, 2) for coord in box.tolist()]
|
| 94 |
+
certainty = round(score.item() * 100, 2)
|
| 95 |
+
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
|
| 96 |
+
detected_objects_list.append((label_name, box_rounded, certainty))
|
| 97 |
+
return detected_objects_str, detected_objects_list
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def detect_with_yolov5(self, image: Image.Image, threshold: float):
|
| 101 |
+
"""Detect objects using YOLOv5 model."""
|
| 102 |
+
|
| 103 |
+
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 104 |
+
results = self.model(cv2_img)
|
| 105 |
+
|
| 106 |
+
detected_objects_str = ""
|
| 107 |
+
detected_objects_list = []
|
| 108 |
+
for *bbox, conf, cls in results.xyxy[0]:
|
| 109 |
+
if conf >= threshold:
|
| 110 |
+
label_name = results.names[int(cls)]
|
| 111 |
+
box_rounded = [round(coord.item(), 2) for coord in bbox] # Convert each tensor to float and round
|
| 112 |
+
certainty = round(conf.item() * 100, 2)
|
| 113 |
+
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
|
| 114 |
+
detected_objects_list.append((label_name, box_rounded, certainty))
|
| 115 |
+
return detected_objects_str, detected_objects_list
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def draw_boxes(self, image: Image.Image, detected_objects: list, show_confidence: bool = True) -> Image.Image:
|
| 119 |
+
"""
|
| 120 |
+
Draw bounding boxes around detected objects in the image.
|
| 121 |
+
:param image: Image on which to draw.
|
| 122 |
+
:param detected_objects: List of detected objects.
|
| 123 |
+
:param show_confidence: Boolean to show confidence scores.
|
| 124 |
+
:return: Image with drawn boxes.
|
| 125 |
+
"""
|
| 126 |
+
draw = ImageDraw.Draw(image)
|
| 127 |
+
try:
|
| 128 |
+
font = ImageFont.truetype("arial.ttf", 15)
|
| 129 |
+
except IOError:
|
| 130 |
+
font = ImageFont.load_default()
|
| 131 |
+
|
| 132 |
+
colors = ["red", "green", "blue", "yellow", "purple", "orange"]
|
| 133 |
+
label_color_map = {}
|
| 134 |
+
|
| 135 |
+
for label_name, box, score in detected_objects:
|
| 136 |
+
if label_name not in label_color_map:
|
| 137 |
+
label_color_map[label_name] = colors[len(label_color_map) % len(colors)]
|
| 138 |
+
|
| 139 |
+
color = label_color_map[label_name]
|
| 140 |
+
draw.rectangle(box, outline=color, width=3)
|
| 141 |
+
|
| 142 |
+
label_text = f"{label_name}"
|
| 143 |
+
if show_confidence:
|
| 144 |
+
label_text += f" ({round(score, 2)}%)"
|
| 145 |
+
draw.text((box[0], box[1]), label_text, fill=color, font=font)
|
| 146 |
+
|
| 147 |
+
return image
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
if __name__=="__main__":
|
| 151 |
+
|
| 152 |
+
detector = ObjectDetector()
|
| 153 |
+
image_path = get_path('horse.jpg', 'Sample_Images')
|
| 154 |
+
|
| 155 |
+
detector.load_model('yolov5') # pass either 'detic' or 'yolov5'
|
| 156 |
+
|
| 157 |
+
image = detector.process_image(image_path)
|
| 158 |
+
detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=0.2)
|
| 159 |
+
image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=False)
|
| 160 |
+
print(detected_objects_string)
|
| 161 |
+
show_image(image_with_boxes)
|
| 162 |
+
#show_image_with_matplotlib(image_path)
|
My_Model/utilities.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from collections import Counter
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import IPython.display
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from IPython import get_ipython
|
| 10 |
+
import sys
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class VQADataProcessor:
|
| 14 |
+
"""
|
| 15 |
+
A class to process OKVQA dataset.
|
| 16 |
+
|
| 17 |
+
Attributes:
|
| 18 |
+
questions_file_path (str): The file path for the questions JSON file.
|
| 19 |
+
annotations_file_path (str): The file path for the annotations JSON file.
|
| 20 |
+
questions (list): List of questions extracted from the JSON file.
|
| 21 |
+
annotations (list): List of annotations extracted from the JSON file.
|
| 22 |
+
df_questions (DataFrame): DataFrame created from the questions list.
|
| 23 |
+
df_answers (DataFrame): DataFrame created from the annotations list.
|
| 24 |
+
merged_df (DataFrame): DataFrame resulting from merging questions and answers.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self, questions_file_path, annotations_file_path):
|
| 28 |
+
"""
|
| 29 |
+
Initializes the VQADataProcessor with file paths for questions and annotations.
|
| 30 |
+
|
| 31 |
+
Parameters:
|
| 32 |
+
questions_file_path (str): The file path for the questions JSON file.
|
| 33 |
+
annotations_file_path (str): The file path for the annotations JSON file.
|
| 34 |
+
"""
|
| 35 |
+
self.questions_file_path = questions_file_path
|
| 36 |
+
self.annotations_file_path = annotations_file_path
|
| 37 |
+
self.questions, self.annotations = self.read_json_files()
|
| 38 |
+
self.df_questions = pd.DataFrame(self.questions)
|
| 39 |
+
self.df_answers = pd.DataFrame(self.annotations)
|
| 40 |
+
self.merged_df = None
|
| 41 |
+
|
| 42 |
+
def read_json_files(self):
|
| 43 |
+
"""
|
| 44 |
+
Reads the JSON files for questions and annotations.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
tuple: A tuple containing two lists: questions and annotations.
|
| 48 |
+
"""
|
| 49 |
+
with open(self.questions_file_path, 'r') as file:
|
| 50 |
+
data = json.load(file)
|
| 51 |
+
questions = data['questions']
|
| 52 |
+
|
| 53 |
+
with open(self.annotations_file_path, 'r') as file:
|
| 54 |
+
data = json.load(file)
|
| 55 |
+
annotations = data['annotations']
|
| 56 |
+
|
| 57 |
+
return questions, annotations
|
| 58 |
+
|
| 59 |
+
@staticmethod
|
| 60 |
+
def find_most_frequent(my_list):
|
| 61 |
+
"""
|
| 62 |
+
Finds the most frequent item in a list.
|
| 63 |
+
|
| 64 |
+
Parameters:
|
| 65 |
+
my_list (list): A list of items.
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
The most frequent item in the list. Returns None if the list is empty.
|
| 69 |
+
"""
|
| 70 |
+
if not my_list:
|
| 71 |
+
return None
|
| 72 |
+
counter = Counter(my_list)
|
| 73 |
+
most_common = counter.most_common(1)
|
| 74 |
+
return most_common[0][0]
|
| 75 |
+
|
| 76 |
+
def merge_dataframes(self):
|
| 77 |
+
"""
|
| 78 |
+
Merges the questions and answers DataFrames on 'question_id' and 'image_id'.
|
| 79 |
+
"""
|
| 80 |
+
self.merged_df = pd.merge(self.df_questions, self.df_answers, on=['question_id', 'image_id'])
|
| 81 |
+
|
| 82 |
+
def join_words_with_hyphen(self, sentence):
|
| 83 |
+
|
| 84 |
+
return '-'.join(sentence.split())
|
| 85 |
+
|
| 86 |
+
def process_answers(self):
|
| 87 |
+
"""
|
| 88 |
+
Processes the answers by extracting raw and processed answers and finding the most frequent ones.
|
| 89 |
+
"""
|
| 90 |
+
if self.merged_df is not None:
|
| 91 |
+
self.merged_df['raw_answers'] = self.merged_df['answers'].apply(lambda x: [ans['raw_answer'] for ans in x])
|
| 92 |
+
self.merged_df['processed_answers'] = self.merged_df['answers'].apply(
|
| 93 |
+
lambda x: [ans['answer'] for ans in x])
|
| 94 |
+
self.merged_df['most_frequent_raw_answer'] = self.merged_df['raw_answers'].apply(self.find_most_frequent)
|
| 95 |
+
self.merged_df['most_frequent_processed_answer'] = self.merged_df['processed_answers'].apply(
|
| 96 |
+
self.find_most_frequent)
|
| 97 |
+
self.merged_df.drop(columns=['answers'], inplace=True)
|
| 98 |
+
else:
|
| 99 |
+
print("DataFrames have not been merged yet.")
|
| 100 |
+
|
| 101 |
+
# Apply the function to the 'most_frequent_processed_answer' column
|
| 102 |
+
self.merged_df['single_word_answers'] = self.merged_df['most_frequent_processed_answer'].apply(
|
| 103 |
+
self.join_words_with_hyphen)
|
| 104 |
+
|
| 105 |
+
def get_processed_data(self):
|
| 106 |
+
"""
|
| 107 |
+
Retrieves the processed DataFrame.
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
DataFrame: The processed DataFrame. Returns None if the DataFrame is empty or not processed.
|
| 111 |
+
"""
|
| 112 |
+
if self.merged_df is not None:
|
| 113 |
+
return self.merged_df
|
| 114 |
+
else:
|
| 115 |
+
print("DataFrame is empty or not processed yet.")
|
| 116 |
+
return None
|
| 117 |
+
|
| 118 |
+
def save_to_csv(self, df, saved_file_name):
|
| 119 |
+
|
| 120 |
+
if saved_file_name is not None:
|
| 121 |
+
if ".csv" not in saved_file_name:
|
| 122 |
+
df.to_csv(os.path.join(saved_file_name, ".csv"), index=None)
|
| 123 |
+
|
| 124 |
+
else:
|
| 125 |
+
df.to_csv(saved_file_name, index=None)
|
| 126 |
+
|
| 127 |
+
else:
|
| 128 |
+
df.to_csv("data.csv", index=None)
|
| 129 |
+
|
| 130 |
+
def display_dataframe(self):
|
| 131 |
+
"""
|
| 132 |
+
Displays the processed DataFrame.
|
| 133 |
+
"""
|
| 134 |
+
if self.merged_df is not None:
|
| 135 |
+
print(self.merged_df)
|
| 136 |
+
else:
|
| 137 |
+
print("DataFrame is empty.")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def process_okvqa_dataset(questions_file_path, annotations_file_path, save_to_csv=False, saved_file_name=None):
|
| 141 |
+
"""
|
| 142 |
+
Processes the OK-VQA dataset given the file paths for questions and annotations.
|
| 143 |
+
|
| 144 |
+
Parameters:
|
| 145 |
+
questions_file_path (str): The file path for the questions JSON file.
|
| 146 |
+
annotations_file_path (str): The file path for the annotations JSON file.
|
| 147 |
+
|
| 148 |
+
Returns:
|
| 149 |
+
DataFrame: The processed DataFrame containing merged and processed VQA data.
|
| 150 |
+
"""
|
| 151 |
+
# Create an instance of the class
|
| 152 |
+
processor = VQADataProcessor(questions_file_path, annotations_file_path)
|
| 153 |
+
|
| 154 |
+
# Process the data
|
| 155 |
+
processor.merge_dataframes()
|
| 156 |
+
processor.process_answers()
|
| 157 |
+
|
| 158 |
+
# Retrieve the processed DataFrame
|
| 159 |
+
processed_data = processor.get_processed_data()
|
| 160 |
+
|
| 161 |
+
if save_to_csv:
|
| 162 |
+
processor.save_to_csv(processed_data, saved_file_name)
|
| 163 |
+
|
| 164 |
+
return processed_data
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def show_image(image):
|
| 168 |
+
"""
|
| 169 |
+
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
| 170 |
+
Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor).
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display.
|
| 174 |
+
"""
|
| 175 |
+
in_jupyter = is_jupyter_notebook()
|
| 176 |
+
|
| 177 |
+
# Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor
|
| 178 |
+
if isinstance(image, str):
|
| 179 |
+
|
| 180 |
+
if os.path.isfile(image):
|
| 181 |
+
image = Image.open(image)
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError("File path provided does not exist.")
|
| 184 |
+
elif isinstance(image, np.ndarray):
|
| 185 |
+
|
| 186 |
+
if image.ndim == 3 and image.shape[2] in [3, 4]:
|
| 187 |
+
|
| 188 |
+
image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image)
|
| 189 |
+
else:
|
| 190 |
+
|
| 191 |
+
image = Image.fromarray(image)
|
| 192 |
+
elif torch.is_tensor(image):
|
| 193 |
+
|
| 194 |
+
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
|
| 195 |
+
|
| 196 |
+
# Display the image
|
| 197 |
+
if in_jupyter:
|
| 198 |
+
|
| 199 |
+
from IPython.display import display
|
| 200 |
+
display(image)
|
| 201 |
+
else:
|
| 202 |
+
|
| 203 |
+
image.show()
|
| 204 |
+
|
| 205 |
+
import matplotlib.pyplot as plt
|
| 206 |
+
|
| 207 |
+
def show_image_with_matplotlib(image):
|
| 208 |
+
if isinstance(image, str):
|
| 209 |
+
image = Image.open(image)
|
| 210 |
+
elif isinstance(image, np.ndarray):
|
| 211 |
+
image = Image.fromarray(image)
|
| 212 |
+
elif torch.is_tensor(image):
|
| 213 |
+
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
|
| 214 |
+
|
| 215 |
+
plt.imshow(image)
|
| 216 |
+
plt.axis('off') # Turn off axis numbers
|
| 217 |
+
plt.show()
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def is_jupyter_notebook():
|
| 221 |
+
"""
|
| 222 |
+
Check if the code is running in a Jupyter notebook.
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
bool: True if running in a Jupyter notebook, False otherwise.
|
| 226 |
+
"""
|
| 227 |
+
try:
|
| 228 |
+
from IPython import get_ipython
|
| 229 |
+
if 'IPKernelApp' not in get_ipython().config:
|
| 230 |
+
return False
|
| 231 |
+
if 'ipykernel' in str(type(get_ipython())):
|
| 232 |
+
return True # Running in Jupyter Notebook
|
| 233 |
+
except (NameError, AttributeError):
|
| 234 |
+
return False # Not running in Jupyter Notebook
|
| 235 |
+
|
| 236 |
+
return False # Default to False if none of the above conditions are met
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def is_pycharm():
|
| 240 |
+
return 'PYCHARM_HOSTED' in os.environ
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def is_google_colab():
|
| 244 |
+
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def get_path(name, path_type):
|
| 248 |
+
"""
|
| 249 |
+
Generates a path for models, images, or data based on the specified type.
|
| 250 |
+
|
| 251 |
+
Args:
|
| 252 |
+
name (str): The name of the model, image, or data folder/file.
|
| 253 |
+
path_type (str): The type of path needed ('models', 'images', or 'data').
|
| 254 |
+
|
| 255 |
+
Returns:
|
| 256 |
+
str: The full path to the specified resource.
|
| 257 |
+
"""
|
| 258 |
+
# Get the current working directory (assumed to be inside 'code' folder)
|
| 259 |
+
current_dir = os.getcwd()
|
| 260 |
+
|
| 261 |
+
# Get the directory one level up (the parent directory)
|
| 262 |
+
parent_dir = os.path.dirname(current_dir)
|
| 263 |
+
|
| 264 |
+
# Construct the path to the specified folder
|
| 265 |
+
folder_path = os.path.join(parent_dir, path_type)
|
| 266 |
+
|
| 267 |
+
# Construct the full path to the specific resource
|
| 268 |
+
full_path = os.path.join(folder_path, name)
|
| 269 |
+
|
| 270 |
+
return full_path
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
if __name__ == "__main__":
|
| 275 |
+
pass
|
| 276 |
+
#val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_val.csv")
|
| 277 |
+
#train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_train.csv")
|