m7mdal7aj commited on
Commit
d8ae9c3
·
verified ·
1 Parent(s): a43af3f

Create tabs/run_inference.py

Browse files
Files changed (1) hide show
  1. my_model/tabs/run_inference.py +0 -188
my_model/tabs/run_inference.py CHANGED
@@ -1,188 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- import bitsandbytes
4
- import accelerate
5
- import scipy
6
- import copy
7
- from PIL import Image
8
- import torch.nn as nn
9
- import pandas as pd
10
- from my_model.object_detection import detect_and_draw_objects
11
- from my_model.captioner.image_captioning import get_caption
12
- from my_model.gen_utilities import free_gpu_resources
13
- from my_model.KBVQA import KBVQA, prepare_kbvqa_model
14
- from my_model.utilities.st_utils import UIManager, StateManager
15
-
16
-
17
-
18
- def answer_question(caption, detected_objects_str, question, model):
19
-
20
- answer = model.generate_answer(question, caption, detected_objects_str)
21
- return answer
22
-
23
-
24
- # Sample images (assuming these are paths to your sample images)
25
- sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
26
- "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
27
- "Files/sample7.jpg"]
28
-
29
-
30
-
31
- def analyze_image(image, model):
32
-
33
- img = copy.deepcopy(image) # we dont wanna apply changes to the original image
34
- caption = model.get_caption(img)
35
- image_with_boxes, detected_objects_str = model.detect_objects(img)
36
- st.text("I am ready, let's talk!")
37
- free_gpu_resources()
38
-
39
- return caption, detected_objects_str, image_with_boxes
40
-
41
-
42
- def image_qa_app(kbvqa):
43
- if 'images_data' not in st.session_state:
44
- st.session_state['images_data'] = {}
45
-
46
- # Display sample images as clickable thumbnails
47
- st.write("Choose from sample images:")
48
- cols = st.columns(len(sample_images))
49
- for idx, sample_image_path in enumerate(sample_images):
50
- with cols[idx]:
51
- image = Image.open(sample_image_path)
52
- st.image(image, use_column_width=True)
53
- if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
54
- process_new_image(sample_image_path, image, kbvqa)
55
-
56
- # Image uploader
57
- uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
58
- if uploaded_image is not None:
59
- process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
60
-
61
- # Display and interact with each uploaded/selected image
62
- for image_key, image_data in st.session_state['images_data'].items():
63
- st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
64
- if not image_data['analysis_done']:
65
- st.text("Cool image, please click 'Analyze Image'..")
66
- if st.button('Analyze Image', key=f'analyze_{image_key}'):
67
- caption, detected_objects_str, image_with_boxes = analyze_image(image_data['image'], kbvqa) # we can use the image_with_boxes later if we want to show it.
68
- image_data['caption'] = caption
69
- image_data['detected_objects_str'] = detected_objects_str
70
- image_data['analysis_done'] = True
71
-
72
- # Initialize qa_history for each image
73
- qa_history = image_data.get('qa_history', [])
74
-
75
- if image_data['analysis_done']:
76
- question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
77
- if st.button('Get Answer', key=f'answer_{image_key}'):
78
- if question not in [q for q, _ in qa_history]:
79
- answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
80
- qa_history.append((question, answer))
81
- image_data['qa_history'] = qa_history
82
- else:
83
- st.info("This question has already been asked.")
84
-
85
- # Display Q&A history for each image
86
- for q, a in qa_history:
87
- st.text(f"Q: {q}\nA: {a}\n")
88
-
89
-
90
- def process_new_image(image_key, image, kbvqa):
91
- """Process a new image and update the session state."""
92
- if image_key not in st.session_state['images_data']:
93
- st.session_state['images_data'][image_key] = {
94
- 'image': image,
95
- 'caption': '',
96
- 'detected_objects_str': '',
97
- 'qa_history': [],
98
- 'analysis_done': False
99
- }
100
-
101
- def run_inference():
102
- st.title("Run Inference")
103
- st.write("Please note that this is not a general purpose model, it is specifically trained on OK-VQA dataset and is designed to give direct and short answers to the given questions.")
104
-
105
- method = st.selectbox(
106
- "Choose a method:",
107
- ["Fine-Tuned Model", "In-Context Learning (n-shots)"],
108
- index=0
109
- )
110
-
111
- detection_model = st.selectbox(
112
- "Choose a model for objects detection:",
113
- ["yolov5", "detic"],
114
- index=1 # "detic" is selected by default
115
- )
116
-
117
- default_confidence = 0.2 if detection_model == "yolov5" else 0.4
118
- confidence_level = st.slider(
119
- "Select minimum detection confidence level",
120
- min_value=0.1,
121
- max_value=0.9,
122
- value=default_confidence,
123
- step=0.1
124
- )
125
-
126
- if 'model_settings' not in st.session_state:
127
- st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
128
-
129
- settings_changed = (st.session_state['model_settings']['detection_model'] != detection_model or
130
- st.session_state['model_settings']['confidence_level'] != confidence_level)
131
-
132
- need_model_reload = settings_changed and 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
133
-
134
- if need_model_reload:
135
- st.text("Model Settings have changed, please reload the model, this will take no time :)")
136
-
137
- button_label = "Reload Model" if need_model_reload else "Load Model"
138
-
139
- if method == "Fine-Tuned Model":
140
- if 'kbvqa' not in st.session_state:
141
- st.session_state['kbvqa'] = None
142
-
143
- if st.button(button_label):
144
-
145
- free_gpu_resources()
146
- if st.session_state['kbvqa'] is not None:
147
- if not settings_changed:
148
- st.write("Model already loaded.")
149
- else:
150
- free_gpu_resources()
151
- detection_model = st.session_state['model_settings']['detection_model']
152
- confidence_level = st.session_state['model_settings']['confidence_level']
153
- prepare_kbvqa_model(detection_model, only_reload_detection_model=True) # only reload detection model with new settings
154
- st.session_state['kbvqa'].detection_confidence = confidence_level
155
- free_gpu_resources()
156
- else:
157
- st.text("Loading the model will take no more than a few minutes . .")
158
- st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
159
- st.session_state['kbvqa'].detection_confidence = confidence_level
160
- st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
161
- st.write("Model is ready for inference.")
162
- free_gpu_resources()
163
-
164
-
165
-
166
- if st.session_state['kbvqa']:
167
- display_model_settings()
168
- display_session_state()
169
- image_qa_app(st.session_state['kbvqa'])
170
-
171
- else:
172
- st.write('Model is not ready yet, will be updated later.')
173
-
174
-
175
- def display_model_settings():
176
- st.write("### Current Model Settings:")
177
- st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
178
-
179
- def display_session_state():
180
- st.write("### Current Session State:")
181
- # Convert session state to a list of dictionaries, each representing a row
182
- data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
183
- # Create a DataFrame from the list
184
- df = pd.DataFrame(data)
185
- st.table(df)
186
-
187
-
188
-