Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,39 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
return answer
|
| 8 |
|
| 9 |
st.title("Image Question Answering")
|
|
@@ -19,7 +49,8 @@ if st.button("Get Answer"):
|
|
| 19 |
# Display the image
|
| 20 |
st.image(image, use_column_width=True)
|
| 21 |
# Get and display the answer
|
| 22 |
-
|
|
|
|
| 23 |
st.write(answer)
|
| 24 |
else:
|
| 25 |
st.write("Please upload an image and enter a question.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
|
| 4 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 5 |
|
| 6 |
+
global device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 7 |
+
|
| 8 |
+
def load_caption_model():
|
| 9 |
+
# Quantization Config
|
| 10 |
+
bnb_config = BitsAndBytesConfig(
|
| 11 |
+
load_in_8bit=True,
|
| 12 |
+
bnb_8bit_quant_type="nf4",
|
| 13 |
+
bnb_8bit_compute_dtype=torch.float16,
|
| 14 |
+
bnb_8bit_use_double_quant=False
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 21 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map="auto")
|
| 22 |
+
|
| 23 |
+
return, model, processor
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def answer_question(image, question, model, processor):
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
image = Image.open(image).convert('RGB')
|
| 31 |
+
|
| 32 |
+
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)
|
| 33 |
+
|
| 34 |
+
out = model.generate(**inputs, max_length=200, min_length=20, num_beams=1)
|
| 35 |
+
|
| 36 |
+
answer = processor.decode(out[0], skip_special_tokens=True).strip()
|
| 37 |
return answer
|
| 38 |
|
| 39 |
st.title("Image Question Answering")
|
|
|
|
| 49 |
# Display the image
|
| 50 |
st.image(image, use_column_width=True)
|
| 51 |
# Get and display the answer
|
| 52 |
+
model, processor = load_caption_model()
|
| 53 |
+
answer = answer_question(image, question, model, processor)
|
| 54 |
st.write(answer)
|
| 55 |
else:
|
| 56 |
st.write("Please upload an image and enter a question.")
|