m7mdal7aj commited on
Commit
59561ad
·
verified ·
1 Parent(s): 7bb2c40

Update my_model/tabs/results.py

Browse files
Files changed (1) hide show
  1. my_model/tabs/results.py +6 -6
my_model/tabs/results.py CHANGED
@@ -49,14 +49,16 @@ class ResultDemonstrator(KBVQAEvaluator):
49
  st.pyplot(fig)
50
 
51
  ############
52
-
53
  # Load data from Excel
54
  d = pd.read_excel('my_model/results/evaluation_results.xlsx', sheet_name="Main Data")
 
 
55
 
56
  # Assume 'accuracies' and 'token_counts' need to be computed or are columns in the DataFrame
57
  # Compute colors and labels for the plot (assuming these columns are already in the DataFrame)
58
- d['color'] = d['accuracy'].apply(lambda x: 'green' if x == 1 else 'orange' if round(x, 2) == 0.67 else 'red')
59
- d['label'] = d['accuracy'].apply(lambda x: 'Correct' if x == 1 else 'Partially Correct' if x == 0.67 else 'Incorrect')
60
 
61
  # Creating the scatter plot
62
  scatter_chart = alt.Chart(d).mark_circle(size=20).encode(
@@ -72,11 +74,9 @@ class ResultDemonstrator(KBVQAEvaluator):
72
 
73
  ####################
74
  scores = d['vqa_score_13b_caption+detic']
75
- token_counts = d['trimmed_tokens_count_caption_detic']
76
 
77
  # Define colors and labels for the legend
78
- colors = ['green' if score == 1 else 'orange' if round(score,2) == 0.67 else 'red' for score in scores]
79
- labels = ['Correct' if score == 1 else 'Partially Correct' if score == 0.67 else 'Incorrect' for score in scores]
80
  plt.figure(figsize=(10, 6))
81
  # Create a scatter plot with smaller dots using the 's' parameter
82
  scatter = plt.scatter(range(len(token_counts)), token_counts, c=colors, s=20, label=labels)
 
49
  st.pyplot(fig)
50
 
51
  ############
52
+
53
  # Load data from Excel
54
  d = pd.read_excel('my_model/results/evaluation_results.xlsx', sheet_name="Main Data")
55
+
56
+ token_counts = d['trimmed_tokens_count_caption_detic']
57
 
58
  # Assume 'accuracies' and 'token_counts' need to be computed or are columns in the DataFrame
59
  # Compute colors and labels for the plot (assuming these columns are already in the DataFrame)
60
+ d['color'] = d['vqa_score_13b_caption+detic'].apply(lambda x: 'green' if x == 1 else 'orange' if round(x, 2) == 0.67 else 'red')
61
+ d['label'] = d['vqa_score_13b_caption+detic'].apply(lambda x: 'Correct' if x == 1 else 'Partially Correct' if x == 0.67 else 'Incorrect')
62
 
63
  # Creating the scatter plot
64
  scatter_chart = alt.Chart(d).mark_circle(size=20).encode(
 
74
 
75
  ####################
76
  scores = d['vqa_score_13b_caption+detic']
 
77
 
78
  # Define colors and labels for the legend
79
+
 
80
  plt.figure(figsize=(10, 6))
81
  # Create a scatter plot with smaller dots using the 's' parameter
82
  scatter = plt.scatter(range(len(token_counts)), token_counts, c=colors, s=20, label=labels)