Spaces:
Sleeping
Sleeping
| Directory Overview: This directory contains all the atreamlit application pages: | |
| ################################################################################################################################ | |
| ## 1. home.py | |
| the `home.py` displays an introduction to the application with brief background and description of the application tools. | |
| ################################################################################################################################ | |
| ## 2. results.py | |
| The `results.py` module manages the interactive Streamlit demo for visualizing model evaluation results and analysis. | |
| It provides an interface for users to explore different aspects of model performance and evaluation samples. | |
| Notes: | |
| Ensure the necessary dependencies are installed and properly configured. | |
| The `run_demo` function relies on the ResultDemonstrator class to generate plots and display results. | |
| ################################################################################################################################ | |
| ## 3. run_inference.py | |
| The `run_inference.py` is responsible for the running inference to test and use the fine-tuned models. | |
| It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question | |
| Answering (KBVQA) application. | |
| This module handles image uploads, displays sample images, and facilitates the question-answering process | |
| using the KBVQA model. | |
| Notes: | |
| - Ensure the necessary dependencies are installed and properly configured. | |
| - The `InferenceRunner` class relies on the KBVQA model to generate answers to questions based on image analysis. | |
| ################################################################################################################################ | |
| ## 4. model_arch.py | |
| The `model_arch.py` displays the model architecture and accompanying abstract and design details for the | |
| Knowledge-Based Visual Question Answering (KB-VQA) model. | |
| ################################################################################################################################ | |
| ## 5. dataset_analysis.py | |
| The dataset_analysis.py module provides tools for analyzing and visualizing distributions of question types | |
| within given question datasets for Knowledge-Based Visual Question Answering (KBVQA). It supports operations | |
| such as data loading, categorization of questions, visualization, and exporting data to CSV files. This module | |
| leverages Streamlit for interactive visualization and Altair for plotting. | |
| Notes: | |
| Ensure the necessary dependencies are installed and properly configured. | |
| The `OKVQADatasetAnalyzer` class leverages `Altair` for creating interactive visualizations and `Streamlit` for displaying these visualizations in a web app format. | |
| The `run_dataset_analyzer` function provides an overview of the dataset and utilizes the OKVQADatasetAnalyzer to visualize the data. | |
| This module has a dependency on the `process_okvqa_dataset` function from `my_model.dataset.dataset_processor`. | |