Spaces:
Sleeping
Sleeping
File size: 6,731 Bytes
bc7d231 c7c92f9 dfda773 356a130 58e3cb5 63fc765 5554139 e9d7d81 1a06525 8cf7678 a650af8 498c16a a650af8 16f7989 a650af8 da19917 a650af8 16f7989 a650af8 bc7d231 a650af8 498c16a 73c26b4 498c16a bc7d231 9d4c7bc f20e4a0 0fa8d68 73c26b4 9d4c7bc d40826b 7391509 d40826b f4d54e4 73c26b4 da19917 73c26b4 f4d54e4 c311ba0 d40826b 498c16a c311ba0 d40826b 0fa8d68 c311ba0 9d4c7bc a650af8 d40826b c311ba0 7391509 d40826b a650af8 d40826b 42aac8e a650af8 42aac8e 7b1993c a650af8 c7b31a6 16f7989 c7b31a6 16f7989 a650af8 682bc75 d40826b c6252cf 2d605ad c6252cf a650af8 c6252cf a650af8 c6252cf a650af8 f35e4aa a650af8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
import my_model.utilities.st_config as st_config
def analyze_image(image, model, show_processed_image=False):
img = copy.deepcopy(image)
caption = model.get_caption(img)
image_with_boxes, detected_objects_str = model.detect_objects(img)
if show_processed_image:
st.image(image_with_boxes, use_column_width=True)
return caption, detected_objects_str
class QuestionAnswering:
@staticmethod
def answer_question(image, question, caption, detected_objects_str, model):
answer = model.generate_answer(question, caption, detected_objects_str)
st.image(image, use_column_width=True)
st.write(caption)
st.write("----------------")
st.write(detected_objects_str)
return answer
def load_kbvqa_model(detection_model):
"""Load KBVQA Model based on the selected detection model."""
if st.session_state.get('kbvqa') is not None:
st.write("Model already loaded.")
else:
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
if st.session_state['kbvqa']:
st.write("Model is ready for inference.")
return True
return False
def set_model_confidence(detection_model):
"""Set the confidence level for the detection model."""
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
confidence_level = st.slider(
"Select Detection Confidence Level",
min_value=0.1,
max_value=0.9,
value=default_confidence,
step=0.1
)
st.session_state['kbvqa'].detection_confidence = confidence_level
def image_qa_app(kbvqa_model):
"""Streamlit app interface for image QA."""
sample_images = st_config.SAMPLE_IMAGES
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
st.session_state['current_image'] = sample_image_path
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
st.image(uploaded_image, use_column_width=True)
if uploaded_image is not None:
st.session_state['current_image'] = uploaded_image
st.session_state['qa_history'] = []
st.session_state['analysis_done'] = False
st.session_state['answer_in_progress'] = False
# Display the image if it's in the session state
if 'current_image' in st.session_state and st.session_state['current_image'] is not None:
if isinstance(st.session_state['current_image'], str):
# If it's a file path from sample images
image_to_display = Image.open(st.session_state['current_image'])
else:
# If it's an uploaded file
image_to_display = Image.open(st.session_state['current_image'])
st.image(image_to_display, use_column_width=True)
else:
st.write("No image selected or uploaded.")
if st.session_state.get('current_image') and not st.session_state.get('analysis_done', False):
if st.button('Analyze Image'):
caption, detected_objects_str = analyze_image(st.session_state['current_image'], kbvqa_model)
st.session_state['caption'] = caption
st.session_state['detected_objects_str'] = detected_objects_str
st.session_state['analysis_done'] = True
if st.session_state.get('analysis_done', False):
question = st.text_input("Ask a question about this image:")
if st.button('Get Answer'):
answer = QuestionAnswering.answer_question(
st.session_state['current_image'],
question,
st.session_state.get('caption', ''),
st.session_state.get('detected_objects_str', ''),
kbvqa_model
)
st.session_state['qa_history'].append((question, answer))
for q, a in st.session_state.get('qa_history', []):
st.text(f"Q: {q}\nA: {a}\n")
def run_inference():
"""Main function to run inference based on the selected method."""
st.title("Run Inference")
method = st.selectbox(
"Choose a method:",
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
index=0
)
if method == "Fine-Tuned Model":
detection_model = st.selectbox(
"Choose a model for object detection:",
["yolov5", "detic"],
index=0
)
if 'kbvqa' not in st.session_state or st.session_state['detection_model'] != detection_model:
st.session_state['detection_model'] = detection_model
if 'model' not in st.session_state:
if st.button('Load Model'):
if load_kbvqa_model(detection_model):
set_model_confidence(detection_model)
image_qa_app(st.session_state['kbvqa'])
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"])
if selection == "Home":
st.title("MultiModal Learning for Knowledge-Based Visual Question Answering")
st.write("Home page content goes here...")
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
run_inference()
if __name__ == "__main__":
main()
|