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Abstract 

Navigating the frontier of the Visual Turing Test, this research delves into multimodal learning to bridge the gap 

between visual perception and linguistic interpretation, a foundational challenge in artificial intelligence. It 

scrutinizes the integration of visual cognition and external knowledge, emphasizing the pivotal role of the 

Transformer model in enhancing language processing and supporting complex multimodal tasks. 

This research explores the task of Knowledge-Based Visual Question Answering (KB-VQA), it examines the 

influence of Pre-Trained Large Language Models (PT-LLMs) and Pre-Trained Multimodal Models (PT-LMMs), 

which have transformed the machine learning landscape by utilizing expansive, pre-trained knowledge 

repositories to tackle complex tasks, thereby enhancing KB-VQA systems. 

An examination of existing Knowledge-Based Visual Question Answering (KB-VQA) methodologies led to a 

refined approach that converts visual content into the linguistic domain, creating detailed captions and object 

enumerations. This process leverages the implicit knowledge and inferential capabilities of PT-LLMs. The 

research refines the fine-tuning of PT-LLMs by integrating specialized tokens, enhancing the models’ ability to 

interpret visual contexts. The research also reviews current image representation techniques and knowledge 

sources, advocating for the utilization of implicit knowledge in PT-LLMs, especially for tasks that do not require 

specialized expertise. 

Rigorous ablation experiments conducted to assess the impact of various visual context elements on model 

performance, with a particular focus on the importance of image descriptions generated during the captioning 

phase. The study includes a comprehensive analysis of major KB-VQA datasets, specifically the OK-VQA corpus, 

and critically evaluates the metrics used, incorporating semantic evaluation with GPT-4 to align the assessment 

with practical application needs. 

The evaluation results underscore the developed model’s competent and competitive performance. It achieves 

a VQA score of 63.57% under syntactic evaluation and excels with an Exact Match (EM) score of 68.36%. Further, 

semantic evaluations yield even more impressive outcomes, with VQA and EM scores of 71.09% and 72.55%, 

respectively. These results demonstrate that the model effectively applies reasoning over the visual context 

and successfully retrieves the necessary knowledge to answer visual questions.  
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Chapter 1 

1. Introduction 
 

Our perception of the world is inherently multimodal, blending various sensory inputs to create a rich tapestry 

of experiences. Sight, sound, and touch converge, transforming our environment into a vibrant narrative where 

our senses actively participate in shaping our understanding. We seamlessly integrate these senses to navigate 

and interpret our surroundings, relying on vision to perceive objects, auditory cues to detect sounds, and tactile 

sensations to recognize textures. 

The term ‘modality’ broadly refers to the ways in which phenomena manifest and are perceived, closely 

associated with sensory channels that underpin our primary modes of communication and sensation, notably 

vision and hearing. In the field of Artificial Intelligence (AI), a problem or dataset that incorporates a variety of 

such modalities is described as multimodal (Baltrusaitis, Ahuja and Morency, 2018). 

The potential of multimodal learning spans a multitude of tasks, each highlighting its versatility and depth. For 

example: Visual Question Answering (VQA) (Antol et al., 2015) leverages both visual and textual cues to respond 

to queries about images, while Image Captioning (Vinyals et al., 2015) generates descriptive text for visual 

content. Text-to-Image Retrieval (Lin et al., 2014) and Text-to-Image Generation (Reed et al., 2016) explore the 

relationship between linguistic concepts and visual representations, enriching our understanding of both 

modalities. Additionally, Audio-Visual Speech Recognition ( Kim et al., 2013 ; cited in Baltrusaitis, Ahuja and 

Morency, 2018) and Audio-Visual Emotion Recognition (Yuhas et al., 1989 ; cited in Baltrusaitis, Ahuja and 

Morency, 2018) combine auditory and visual cues to enhance communication and emotional understanding, 

while Video Analysis (Xu, Zhu and Clifton, 2023) synthesizes temporal and spatial data to interpret complex 

visual content. 

While images and text are both interpreted visually, they represent distinct modalities with unique processing 

demands. Images are processed holistically, providing spatial information and context instantaneously. 

Conversely, text is a symbolic, sequential medium that requires abstract cognitive functions for decoding 

linguistic structures. This distinction underscores the challenges and methodologies necessary for integrating 

these modalities within AI. 

By emulating the human ability to integrate sensory inputs, multimodal learning equips machines with 

enhanced capabilities to interpret and interact with their environments. For instance, an AI-powered navigation 

robot utilizes multimodal sensors—integrating visual, auditory, and tactile inputs—to navigate its surroundings 

effectively. This comprehensive sensory integration enhances the robot's performance and adaptability, 

showcasing the practical benefits of multimodal learning in sophisticated AI systems. 
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1.1. Visual Question Answering (VQA) 

Since its inception by Alan Turing in 1950, the Turing Test (Turing, 1950) has been a fundamental benchmark for 

evaluating machine intelligence against human standards. As technology evolves, so too must the criteria for 

assessing AI. The Visual Turing Test (Geman et al., 2015) represents a modern extension that includes visual 

cognition within the scope of AI evaluation. At the forefront of this advancement is Visual Question Answering 

(VQA) (Antol et al., 2015), a field that challenges AI systems to perceive, comprehend, and articulate insights 

about visual inputs in natural language. This progression reflects the complex interplay between perception and 

cognition that characterizes human intelligence, positioning VQA as a crucial metric for gauging AI’s ability to 

emulate human-like understanding. 

Mature VQA systems hold transformative potential across various domains. In robotics, VQA systems can 

enhance autonomous decision-making by enabling robots to interpret and respond to visual cues. In medical 

imaging and diagnosis, VQA systems can assist healthcare professionals by accurately interpreting complex 

medical images and providing insightful answers to diagnostic questions, thereby enhancing both the speed and 

accuracy of medical assessments. In manufacturing, VQA systems can optimize quality control processes by 

enabling automated systems to identify defects and ensure product consistency with minimal human 

intervention. These advancements underscore the importance of developing robust VQA capabilities, as they 

push the boundaries of the Visual Turing Test and bring us closer to achieving true human-like AI cognition. 

Although manifestation of the VQA task has appeared prior to 2015 as an intersection between Computer Vision 

(CV), Natural Language Processing (NLP), and Knowledge Representation (de Faria et al., 2023), the term “Visual 

Question Answering” (VQA) was coined by Antol et al. (2015), where they proposed the task of free-form and 

open-ended VQA, defining it as a challenge where a computer is given an image and a natural language question 

about that image, and it must provide an accurate natural language answer, to support that, they created the 

first large-scale dataset to evaluate the ability of VQA methods, some examples are shown in Figure 1-1. 

 

Unlike other vision-language tasks, VQA requires many CV sub-tasks to be solved in the process, some of which 

are summarized by (Manmadhan and Kovoor, 2020) in Table 1-1 These VQA tasks often do not require external 

factual knowledge and only in rare cases require common-sense reasoning (Wu et al., 2022; Reichman et al., 

2023). Furthermore, VQA models cannot derive additional knowledge from existing VQA datasets should a 

question require it (Wu et al., 2022), therefore Knowledge-Based Visual Question Answering has been proposed 

(Marino et al., 2019). 

 
Figure 1-1: Examples from VQA dataset v1. 

Source: (Antol et al., 2015). 

CV Task Representative VQA Question 
Object recognition What is in the image?  

Object detection Are there any elephants in the picture? 

Attribute classification What color is the dog? 

Scene classification Is it raining? 

Counting How many people are there in the 

image? Activity recognition Is the child crying? 

Spatial relationships among objects What is between the cat and the TV? 

common-sense reasoning Does this person have a perfect vision? 

Table 1-1 Computer vision sub-tasks required to be solved by VQA. 

Source: (Manmadhan and Kovoor, 2020). 



Multimodal Learning for Visual Question Answering using World Knowledge 

 

3 
 

1.2. Knowledge-Based Visual Question Answering (KB-VQA) 

In traditional VQA task, the machine is expected to answer a question about 

an image where the answer requires no more factual information other 

than what is in the image. For example, when asked ‘How many TVs are 

there in this room?' in reference to an image of a living room, the VQA 

model can provide the correct answer without needing external factual 

information. However, in reality, humans combine visual observation and 

logical reasoning with external knowledge when answering questions as 

illustrated in Figure 1-2.  

Consider the image-question pair example in Figure 1-3; the model 

performing all downstream vision tasks on this image would never be able 

to know what colour the bus should be without external knowledge linking 

school buses to the colour yellow. 

Knowledge-Based Visual Question Answering (KB-VQA) is a relatively new 

extension to VQA ( Marino et al., 2019; Reichman et al., 2023) with 

datasets representing a knowledge-based VQA task where the visual 

question cannot be answered without external knowledge (Marino et al., 

2019), where the essence of this task is centred around knowledge 

acquisition and integration with the visual contents of the image. 

Knowledge sources used for KB-VQA can be arguably categorized into four 

categories (Lymperaiou and Stamou, 2023) that are not mutually 

exclusive:  

1. Implicit Knowledge: Non-symbolic knowledge stored within machine learning models, like the weights of 

pre-trained neural networks, derived from extensive linguistic and visual data during pre-training. This 

unstructured knowledge base enhances the model's generic understanding and adaptability to various tasks 

(Radford et al., 2019; Brown et al., 2020). However, its "black box" nature raises concerns about 

interpretability and perpetuation of biases or errors from pre-training data, potentially limiting applicability 

in certain scenarios. 

2. Explicit Knowledge: Structured information directly accessible and interpretable by a KB-VQA system, often 

in machine and human-readable formats like ConceptNet (Speer, Chin and Havasi, 2017). It effectively fills 

gaps in transfer learning addressing unseen concepts and relationships during training, improving 

understanding of novel concepts and reducing computational demands associated with pre-training 

(Lymperaiou and Stamou, 2023). However, data collection and curation efforts, especially in specialized 

domains, are substantial. Aligning and integrating different knowledge graphs can also pose challenges and 

potentially limit their practical benefits (Ilievski et al., 2021). 

3. Web-Crawled Knowledge: Gathered from the public internet, structured or unstructured, such as Wikipedia. 

A significant challenge lies in validating data quality, which can adversely affect the model efficacy 

(Lymperaiou and Stamou, 2023). Methods for autonomously ensuring data quality are necessary but time-

consuming. While offering transparency, explicitness of reasoning in web-sourced knowledge is less 

pronounced compared to structured knowledge graphs. 

4. Internal Knowledge: This is the knowledge that the model has learned from the data itself (image-question 

pair), from visual to the textual embeddings. This type of knowledge is the extent of the vanilla VQA models. 

This research investigates the integration of multimodal learning frameworks with advanced machine learning 

techniques to enhance Knowledge-Based Visual Question Answering systems. By leveraging pre-trained models 

and incorporating sophisticated inferential mechanisms, the study aims to bridge the gap between visual data 

interpretation and linguistic analysis, providing a deeper understanding of both the technical challenges and 

potential solutions within this field.  

 

 
Figure 1-2 Human process to handle KB-VQA.  

Source: (Chen et al., 2023). 

 

 

 

Q: What colour would this be if it were 

transporting students?  
A: Yellow 

Figure 1-3 KB-VQA sample.  

Source: (Marino et al., 2019). 
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Chapter 2 

2. Literature & Technology Survey 
 

2.1. Evolution of Machine Learning 

Machine Learning (ML) has evolved significantly over the years, driven by innovations and breakthroughs that 

have shaped its trajectory. The journey from its early beginnings to the emergence of Transformers has been a 

captivating one, with each phase contributing to the field's progress.  

In its nascent stage, ML emerged as a concept in the mid-20th century, with Alan Turing’s seminal work that laid 

the foundation for artificial intelligence. Turing’s introduction of the Turing Test in 1950 sought to evaluate a 

machine’s ability to exhibit intelligent behaviour, a concept that would become a cornerstone of ML (Turing, 

1950). 

The 1960s and 1970s saw the rise of symbolic AI and expert systems, which utilized rule-based reasoning. 

However, these systems faced limitations in scalability and handling uncertainty. The Perceptron (Rosenblatt, 

1958), an early neural network model, was introduced but soon encountered the XOR problem, which 

underscored the limitations of linear models and led to a temporary decline in neural network research (Minsky 

and Papert, 1969). 

The 1980s marked a resurgence in neural network research, spurred by the rediscovery of the backpropagation 

algorithm. This algorithm allowed for the efficient training of multi-layer neural networks, establishing the 

connectionist paradigm and emphasizing the distributed and parallel nature of neural computation (Rumelhart, 

Hinton and Williams, 1986). 

The 1990s introduced Support Vector Machines (SVMs) (Cortes and Vapnik, 1995) as powerful tools for binary 

classification tasks, showcasing exceptional proficiency in areas such as image and speech recognition. 

Concurrently, this era marked the formalization and widespread adoption of Reinforcement Learning (RL), a 

paradigm shift eloquently described by Sutton and Barto (1998) which enabled computational models to learn 

and adapt based on their actions and associated rewards. Furthermore, the application of machine learning to 

Natural Language Processing (NLP) was significantly advanced, as evidenced in the works of Manning and 

Schiitze (1999), particularly in tasks like part-of-speech tagging, parsing, and information extraction, thereby 

enriching the field’s capability in understanding and processing human language. 

The 2000s represented a seminal era in the progression of ML, ensemble methods such as Random Forests 

(Breiman, 2001) emerged as a predominant force in ML, exhibiting superior performance across a spectrum of 

tasks including classification, regression and feature selection. The latter part of the 2000s marked the inception 

of Big Data era, propelled by an exponential increase in digital data generation. 

The 2010s was marked by a significant shift towards deep learning, particularly with the rise of Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) (LeCun, Bengio and Hinton, 2015). The 

ImageNet challenge in 2012 became a pivotal moment when a deep CNN, AlexNet (Krizhevsky, Sutskever and 

Hinton, 2012), drastically outperformed traditional ML. This event catalyzed deep learning research, with CNNs 
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becoming a staple in computer vision applications. RNN variants like Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) gained prominence in NLP, powering chatbots, translation services, and sentiment analysis 

(Sutskever, Vinyals and Le, 2014). However, the true revolution in NLP arrived with the introduction of the 

Transformer architecture (Vaswani et al., 2017), originally introduced for machine translation tasks. 

Transformers marked a departure from recurrent structures, introducing attention mechanisms and self-

attention. This breakthrough enabled machines to capture intricate relationships within data more effectively 

and transformed sequence-to-sequence tasks (Vaswani et al., 2017). 

 

2.2. Transformer 

The significance of Transformers lies in their ability to capture context and dependencies in data efficiently. The 

attention mechanisms allow models to weigh the importance of different parts of the input sequence, making 

them highly effective in tasks involving sequential data, such as language processing and time series analysis. 

2.2.1. Attention Mechanism 

The concept of attention in neural networks, inspired by the cognitive ability to focus selectively on certain 

aspects of the environment while ignoring others, represents a fundamental shift in the way artificial intelligence 

systems process information (Itti and Koch, 2001; Mnih, Heess and Graves, 2014). In the human brain, attention 

allows for the efficient processing of the vast array of sensory inputs by focusing on the most relevant pieces of 

information. Similarly, in neural networks, attention mechanisms enable the model to dynamically prioritize 

certain parts of the input data over others, thereby enhancing the efficiency and effectiveness of the processing 

(Vaswani et al., 2017). 

The roots of attention mechanisms can be traced to cognitive science, where attention is recognized as a crucial 

component of human perception, memory, and decision-making (Posner, 1980). This selective focus capability 

of the human brain has been a source of inspiration for developing computational models that can mimic this 

aspect of human cognition. 

The early implementation of attention mechanisms in neural networks was proposed by Graves (2013) for tasks 

such as handwriting recognition and synthesis. This marked the first step in applying the concept of selective 

focus in computational models. 

Another important development in the application of attention mechanisms to neural machine translation was 

made by Bahdanau, Cho and Bengio (2014) who proposed a novel alignment model that learns to align and 

translate jointly. Unlike the previous models that encoded the whole input sentence into a single fixed-length 

vector (Graves, 2013), Bahdanau, Cho and Bengio (2014) introduced the idea of creating context vectors 

dynamically for each output timestep, effectively addressing the challenge of encoding entire input sequences 

into fixed-length vectors, a limitation in earlier seq2seq models. This attention mechanism was a breakthrough 

in handling long-range dependencies in complex sentence structures, significantly improving the capabilities of 

machine translation models. 

The most substantial advancement in attention mechanisms was achieved by Vaswani et al. (2017) with the 

introduction of the Transformer model, which incorporated a novel structure known as the scaled dot-product 

attention. This architecture marked a departure from recurrent layers, instead processing the entire input 

sequence in parallel, substantially improving efficiency and model performance, especially in handling long-

range dependencies within the data. The Transformer has since become the foundation for a multitude of state-

of-the-art NLP architectures, revolutionizing the field with its innovative approach to sequence modelling. 
 

2.2.1.1. Queries, Keys, and Values (𝒒, 𝒌, 𝒗): 

The attention mechanism stands as a significant innovation, facilitating nuanced data processing. Central to this 

mechanism are three components: queries, keys, and values, each playing a distinct role in how the model 

processes and interprets sequences. 
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Queries (𝒒): In the technical framework of attention mechanisms, queries represent the current element or 

aspect of data that the model focuses on (Bahdanau, Cho and Bengio, 2014; Vaswani et al., 2017). Analogous 

to a conscious decision in cognitive processing, a query in this context is akin to a focal point in a sequence, such 

as a specific word or phrase in a sentence that the model aims to interpret or generate (Ul Abideen, 2023). 

Keys (𝒌): Serve as indicators or markers within the data, used to assess the relevance or importance of different 

parts of the input sequence in relation to the query (Bahdanau, Cho and Bengio, 2014; Vaswani et al., 2017). 

They can be compared to subconscious cues in human cognition, which, although not always in the forefront 

of conscious thought, significantly influence attention and interpretation (Ul Abideen, 2023). In computational 

terms, keys are derived from the input data and are used to calculate attention scores, reflecting their relevance 

to the query (Bahdanau, Cho and Bengio, 2014; Vaswani et al., 2017). 

Values (𝒗): Represent the actual content or information contained in the input data. They are conceptually 

similar to the information stored within the subconscious mind, which becomes accessible and pertinent when 

triggered by relevant cues. In the mechanism of attention, values are weighted in accordance with the attention 

scores derived from the interaction between queries and keys. The aggregation of these weighted values forms 

the resultant output of the attention step, yielding a representation that is contextually enriched and emphasizes 

the input aspects deemed most significant (Bahdanau, Cho and Bengio, 2014; Vaswani et al., 2017). 

As shown in Figure 2-1, the attention mechanism operates by using queries to interact with keys, determining 

relevance and thereby assigning weights to the values. The model then aggregates these weighted values to form 

a contextually enriched output, which incorporates the most relevant information from the input as determined 

by the queries and keys. This process allows the model to focus on specific parts of the input data, enhancing its 

ability to process and interpret large and complex data effectively. 
 

2.2.1.2. Attention Scoring Functions 

A crucial aspect of the attention mechanism is the Attention Scoring Function, which plays a pivotal role in 

determining how the model assigns relevance to different parts of the input data. This function calculates scores 

that are used to generate the attention weights, directly influencing the formation of the context vector (output 

of the attention mechanism). The scoring function evaluates the compatibility or alignment between a query 

(𝑞) and each key (𝑘) in the input data. This evaluation results in a set of scores, each representing the relevance 

of a corresponding value (𝑣) in the input sequence to the query (𝑞). There are several types of attention scoring 

functions that have been used since the introduction of attention mechanism in neural network, most common 

of which include: 

 

 
Figure 2-1 Attention Mechanism. 
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1. Additive/Concatenative Scoring: Introduced by Bahdanau, Cho and Bengio (2014), this approach involves 

concatenating the query and key then feeding them into a feed-forward neural network to produce a score 

as shown in Equation 2-1. This method allows for the scoring of sequences of different lengths and 
dimensions. 

Where 𝑞 is the query, 𝑘 is the key and 𝑤𝑞 , 𝑤𝑘  are learnable parameters. 

2. Dot-Product Scoring: Popularized by Luong, Pham and Manning (2015), this method calculates the score as 

the dot product of the query and key as sown in Equation 2-2. It’s a simpler approach but requires the query 

and key to be of the same dimension. 

Where 𝑞 is the query and 𝑘 is the key. 

3. Scaled Dot-Product Scoring: Central to the Transformer model by (Vaswani et al., 2017), this approach scales 

the dot product by the inverse square root of the dimension of the key vectors as shown in Equation 2-3. 

This operation mitigates the potential escalation of SoftMax function inputs to excessively large magnitudes, 

a scenario that can precipitate gradient instability during the training phase, manifesting as vanishing or 

exploding gradients. The implementation of this scaling factor is instrumental in maintaining the dot products 

within a numerically feasible range, thereby ensuring a more robust and efficient training process for the 

model. 

Where 𝑞 is the query, 𝑘 is the key and 𝑑𝑘  is the key vector dimension. 

Normalization: Once the scores are calculated, they are normalized, typically using a SoftMax function 

(Bahdanau, Cho and Bengio, 2014; Vaswani et al., 2017), to form a probability distribution known as attention 

weights. The SoftMax function guarantees that the total of all attention scores equals one, enabling their 

interpretation as probabilities or weights (Ul Abideen, 2023). These weights determine how much each part of 

the input contributes to the context vector (output of the attention mechanism (Bahdanau, Cho and Bengio, 

2014; Vaswani et al., 2017; Ul Abideen, 2023). 
 

2.2.1.3. Attention Pooling 

Attention pooling plays a pivotal role following the assignment of attention weights. This process involves the 

multiplication of each value in the input sequence (𝑣) by its corresponding attention weight, a step crucial in 

scaling the values based on their assigned importance (Vaswani et al., 2017). The culmination of attention 

pooling is the weighted summation of these scaled values (Bahdanau, Cho and Bengio, 2014). This summation 

effectively aggregates the information from the entire input sequence, with the weights directing focus to the 

most relevant parts. The outcome of this aggregation is the context vector, a comprehensive representation that 

encapsulates the most significant information from the input as determined by the model’s attention 

mechanism (Bahdanau, Cho and Bengio, 2014; Vaswani et al., 2017). This context vector serves as a crucial 

element in subsequent processing steps, embodying the distilled essence of the input data for informed 

decision-making or output generation (Ul Abideen, 2023). 

 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑞, 𝑘ሻ = 𝑤𝑣
𝑇 𝑡𝑎𝑛ℎ൫𝑤𝑞𝑞 + 𝑤𝑘𝑘൯ ∈ 𝑅 

 

Equation 2-1 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑞, 𝑘ሻ = 𝑞𝑇𝑘 

𝑞 𝑖𝑠 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦 , 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑒𝑦

Equation 2-2 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑞, 𝑘ሻ =  
𝑞𝑘𝑇

ඥ𝑑𝑘

 Equation 2-3 
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2.2.2. Transformer Architecture 

The introduction of the Transformer model by (Vaswani et al., 2017) 

marked a paradigm shift in the approach to sequence modelling, 

particularly in the field of natural language processing. Prior to the 

Transformer, Recurrent Neural Networks (RNNs), often in tandem with 

attention mechanisms, were the standard for handling sequential data 

(Bahdanau, Cho and Bengio, 2014; Luong, Pham and Manning, 2015). 

However, the Transformer architecture innovated by eschewing RNNs in 

favour of an entirely attention-based approach, thereby addressing 

some of the inherent limitations of recurrent models. 

Most leading neural models designed for sequence transduction adopt 

an encoder-decoder framework (Bahdanau, Cho and Bengio, 2014). In 

this structure, the encoder transforms a sequence of symbol 

representations ሺ𝑥1, 𝑥2, … , 𝑥𝑛ሻ into a series of continuous 

representations 𝑧 = ሺ𝑧1, 𝑧2, … , 𝑧𝑛ሻ. Utilizing z, the decoder sequentially 

produces an output sequence ሺ𝑦1, 𝑦, … , 𝑦𝑚ሻ of symbols, generating 

each element individually. The model operates in an autoregressive 

manner, incorporating previously generated symbols as additional input 

to produce subsequent ones (Vaswani et al., 2017). 

Employing this foundational structure and as shown in Figure 2-2, the Transformer model utilizes layers of 

stacked self-attention and pointwise, fully connected components within both its encoder and decoder blocks 

(Vaswani et al., 2017). The decoder then takes this condensed representation and endeavours to construct the 

target sentence from it (Bansal, 2023). 
 

2.2.2.1. Transformer Encoder  

The block on the left side of the Transformer architecture shown in Figure 2-2 is the encoder. It consists of 6 

identical layers, each layer has two sub-layers: a multi-head self-attention mechanism, and a position-wise fully 

connected feed-forward network. It employs a residual connection around each sub-layer followed by layer 

normalization. All sub-layers and embedding layers produce outputs of dimension ሺ𝑑𝑚𝑜𝑑𝑒𝑙 = 512ሻ. The 

encoder's function is to map the input sequences into continuous representations that hold the learned 

information including positional encodings (Vaswani et al., 2017). 
 

2.2.2.2. Transformer Decoder  

The block on the right side of the Transformer architecture shown in Figure 2-2 is the decoder. It consists of 6 

identical layers, it has 3 sub-layers:  a masked-multi-head self-attention mechanism and a position-wise fully 

connected feed-forward network, and between these two sub-layers, the encoder has a third sub-layer, which 

performs multi-head attention over the output of the encoder stack, with residual connections around each 

sub-layer. The decoder interprets the encoded input and autoregressively generates the output sequence, 

predicting each token based on the encoder’s output and the previously generated tokens in the sequence. 
 

2.2.2.3. Multi-Head Self-Attention 

Self-Attention represents a significant shift from traditional vanilla attention mechanisms (Vaswani et al., 2017). 

Unlike conventional methods that map queries to keys from different sequences, as commonly seen in encoder-

decoder models (Bahdanau, Cho and Bengio, 2014), self-attention in the Transformer evaluates relationships 

within the same sequence. This involves transforming each token in the input sequence into a trio of vectors: 

queries, keys, and values. The self-attention mechanism then calculates attention scores by taking the scaled 

dot product of the query with all keys, even with itself, which are then passed through a SoftMax function to 

derive the weights. These attention weights are used to produce a weighted sum of the values, resulting in an 

 
Figure 2-2 Transformer architecture with single layer of 

encoder and decoder. 

Source: (Vaswani et al., 2017) 
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output vector that encapsulates information from the entire sequence, for each element (Vaswani et al., 2017; 

Voita et al., 2019). 

Further enhancing this approach, the Transformer employs multi-head self-

attention. This mechanism multiplies the self-attention process across several 

independent heads ሺℎሻ as shown in Figure 2-3, enabling parallel computation 

of different representational aspects of the sequence (Vaswani et al., 2017; 

Voita et al., 2019). The outputs of various attention heads are merged and 

subsequently transformed via linear projections, culminating in an integrated 

representation that encapsulates information from a multitude of perspectives 

(Vaswani et al., 2017). 
 

2.2.2.4. Positional Encoding 

Given that self-attention, the core mechanism of the Transformer, is inherently order-invariant and does not 

differentiate the positions of symbols, positional encoding becomes essential. It explicitly incorporates position 

information into the input embeddings, addressing this limitation of self-attention (Vaswani et al., 2017). 

The implementation of positional encoding in the Transformer utilizes Sinusoidal functions with varying 

frequencies. Each positional encoding vector, which aligns dimensionally with the input embedding vector, is 

added to the input embedding. This combined vector is then processed by the self-attention layer. The positional 

encoding vector follows the formulas: 

Where ሺ𝑝𝑜𝑠ሻ is the position, ሺ𝑖ሻ is the dimension index, and ሺ𝑑𝑚𝑜𝑑𝑒𝑙ሻ is the dimension of the input 

embedding vector (Vaswani et al., 2017). 

The benefits of positional encoding for the Transformer model are multifold. Primarily, it enables the model to 

recognize the order and position of symbols, fostering a more effective learning of data structure and meaning. 

Additionally, it enhances the model's performance and generalization capabilities by reducing ambiguity in the 

self-attention mechanism. Importantly, it also circumvents the need for recurrent or convolutional layers to 

encode positional information, which suffer from vanishing gradients, and are often computationally intensive 

and challenging to parallelize (Vaswani et al., 2017). 

 

2.2.2.5. Residual Connections, Layer Normalization and Feed Forward Network 

Residual connections, also known as skip connections (Orhan and Pitkow, 2018; Kim, 2019), allow the output of 

one layer to bypass one or more subsequent layers and be added directly to the output of a later layer. This 

approach facilitates smoother gradient flow across layers during backpropagation (Drozdzal et al., 2016). Layer 

normalization, on the other hand, is applied immediately after residual connections. It normalizes the output 

across the features for each data sample, stabilizing the learning process by maintaining a consistent scale of 

activations throughout the network (Xu et al., 2019). 

The position-wise feed-forward network within the Transformer architecture constitutes a critical sublayer 

applied independently and uniformly to each position in both the input and output sequences. Structurally, this 

network encompasses two linear transformations with a Rectified Linear Unit (ReLU) activation function situated 

between them. Its primary function is to process each position in the sequence individually, applying the same 

transformation across all positions irrespective of their respective contexts. This uniform application across 

positions serves to enhance the local features of the input and output representations, introducing a necessary 

element of non-linearity into the overall model architecture. Notably, while the position-wise feed-forward 

network maintains consistent parameters across all positions within a given layer, these parameters differ 

 
Figure 2-3 Multi-Head Attention. 

Source: (Vaswani et al., 2017). 

 

𝑃𝐸ሺ𝑝𝑜𝑠, 2𝑖ሻ = 𝑠𝑖𝑛 ቌ
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between layers in both the encoder and the decoder. This design enables the network to provide distinct 

transformations at each layer, thereby enriching the model's capacity to capture and integrate complex features 

and dependencies present in the data (Vaswani et al., 2017). 

 

2.2.2.6. Masked Multi-Head Self-Attention 

The masked multi-head self-attention component is a distinctive feature of the decoder. Its primary function is 

to ensure that the prediction for a specific token is conditioned only on preceding tokens, maintaining the 

autoregressive nature of the decoder. This is achieved by masking the model’s ability to attend to future tokens 

in the sequence during training. In practical terms, the masking mechanism modifies the attention scores such 

that each token can only attend to tokens that precede it, effectively preventing information flow from future 

tokens. This is done by adding (−∞ሻ to the attention scores for the future tokens, which makes them zero after 

applying the SoftMax function. 

 

2.2.2.7. Training and Inference 

During training, the Transformer's encoder receives an input sequence, which is first converted into embeddings 

and subsequently augmented with positional encodings to preserve the sequential information. This composite 

data passes through multiple encoder layers, each applying self-attention and position-wise feed-forward 

networks, progressively refining the input’s representation. Simultaneously, the decoder is fed with a right-

shifted version of the output sequence, again transformed into embeddings, and enriched with positional 

encodings. The decoder's layers work to predict the next token in the sequence. The masked self-attention 

ensures that each position in the decoder can only attend to earlier positions in the output sequence, thereby 

preserving the autoregressive property. The encoder-decoder attention mechanism (middle sub-layer) allows 

the decoder to focus on relevant parts of the input sequence, utilizing the full context provided by the encoder 

(Vaswani et al., 2017; Alammar, 2018; Bansal, 2023). 

During inference, the process is inherently iterative: starting with an initial token (like a start-of-sequence token), 

the decoder generates one token at a time, each time reprocessing the sequence of generated tokens and using 

the encoder's output to predict the next token, until an end-of-sequence token is generated. This sequential 

generation, informed by the rich context encoded by the encoder and the sequential dependencies learned by 

the decoder, allows the Transformer to produce coherent and contextually relevant output sequences (Vaswani 

et al., 2017; Alammar, 2018; Bansal, 2023). 

 

2.3. Pre-Trained Large Language Models (PT-LLMs): 

Language stands as a cornerstone of human capability, enabling expression and communication. This ability 

emerges in the early stages of childhood and continually refines throughout one's life. Unlike humans, machines 

inherently lack the proficiency to understand and communicate using human language. To bridge this gap, they 

require the integration of advanced artificial intelligence (AI) algorithms. The quest to empower machines with 

the ability to read, write, and converse in a manner akin to human interaction has been a focal point of research 

for many years. This pursuit not only challenges our understanding of language itself but also pushes the 

boundaries of technological innovation in the realm of AI. Central to these efforts is the domain of Language 

Modelling (LM). Technically, LM provides the foundation to enhance the linguistic intelligence of machines, 

serving as a critical approach to replicate and potentially surpass human-like language comprehension and 

generation. 

A Language Model (LM) is a probabilistic machine learning model used to predict the next word in a sequence. 

LM aims to model the likelihood-of sequences to predict the probabilities of future (or missing) tokens. It 

captures the statistical properties of the text in a given language and can be utilized for a range of tasks such as 

speech recognition, machine translation, and text generation (Zhao et al., 2023). Language models can be either 

https://bing.com/search?q=masked+multi-head+self-attention+negative+infinity
https://bing.com/search?q=masked+multi-head+self-attention+negative+infinity


Multimodal Learning for Visual Question Answering using World Knowledge 

 

11 
 

generative or discriminative, depending on whether they model the joint probability 𝑃ሺ𝑤1, 𝑤2 … 𝑤𝑛ሻ or the 

conditional probability 𝑃൫𝑤𝑛|𝑤1 … 𝑤ሺ𝑛−1ሻ൯  of the tokens (Ng and Jordan, 2001). 

Large Language Models (LLMs) refer to LMs that have undergone extensive training on wide-ranging textual 

data, allowing them to internalize the subtleties and probabilistic structure of natural language (Brown et al., 

2020). These models are identified by their expansive architectures, typically containing tens or hundreds of 

billions of parameters1. Through training on vast text corpora, LLMs acquire the ability to discern fine-grained 

nuances and generate text sequences that are not only coherent but also contextually relevant. The 

predominant architecture employed in these models is the Transformer-based neural network (Vaswani et al., 

2017) which contributes to their significant computational demands during both the training phase and 

subsequent operations. Despite these demands, LLMs demonstrate an impressive capacity for natural language 

comprehension and the aptitude to tackle and solve complex linguistic tasks (Zhao et al., 2023). 

Pre-Trained Large Language Model (PT-LLM) is a Large Language Model that has been previously trained on a 

large-scale corpora, such as Wikipedia, Common Crawl, or Books Corpus, to learn general linguistic patterns and 

representations (Mikolov et al., 2013; Pennington, Socher and Manning, 2014; Devlin et al., 2018). These models 

can then be fine-tuned or adapted for specific downstream tasks, such as text summarization, question 

answering, or sentiment analysis, by using a smaller amount of task-specific data (Howard and Ruder, 2018; 

Radford et al., 2019; Liu et al., 2019). The main motivation for using PT-LLMs is to leverage the rich knowledge 

and semantic information encoded in the pre-trained parameters, which can significantly reduce the data and 

computational requirements for achieving high performance on various natural language processing (NLP) tasks 

(Radford et al., 2019; Brown et al., 2020). 

Qiu et al. (2020) outline several advantages of utilizing PT-LLM for downstream tasks, including better 

representations learned from the huge text corpus, better model initialization and therefore better 

generalization, and leveraging the PT-LLM as a regularization to avoid overfitting on the specific task small data.  

Word2Vec (Mikolov et al., 2013) and GloVe (Global Vectors for Word Representation) (Pennington, Socher and 

Manning, 2014) are examples of the early attempts to pre-train word embedding models on large text corpora 

which can be used as inputs for LLMs, focusing on word-level representations that captured syntactic and 

semantic word relationships. These techniques were foundational and played an important role in various NLP 

tasks, but they did not account for the context of word usage, which limited their effectiveness for complex 

language understanding tasks (Xu Han et al., 2021). ELMo (Embeddings from Language Models) (Peters et al., 

2018) was proposed to capture context-aware word representations by pre-training a bidirectional Long Short-

Term Memory (biLSTM) network to generate dynamic word embeddings that reflect the surrounding words, 

rather than relying on static representations. These context-sensitive embeddings were then tailored to enhance 

performance on a variety of specialized tasks through further task-specific training. 

The seminal development of the Transformer architecture (Vaswani et al., 2017) catalyzed significant 

advancements in the field of Natural Language Processing (NLP), facilitating the emergence of sophisticated 

models. BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018) stands as a pivotal 

achievement in this domain, employing a bidirectional Transformer network and a novel masked language 

modelling objective to set new standards across various NLP tasks. The impact of BERT precipitated a wave of 

innovations, with models such as RoBERTa (A Robustly Optimized BERT Pretraining Approach) (Liu et al., 2019), 

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) (Clark et al., 2020), 

ERNIE (Enhanced Language Representation with Informative Entities) (Zhang et al., 2019), and DeBERTa 

(Decoding-Enhanced BERT with Disentangled Attention) (He et al., 2021) enhancing the foundational design 

through expanded datasets, optimized training processes, and inventive pre-training objectives, which 

collectively acheived enhanced performance metrics. 

In parallel, the Generative Pre-Trained Transformer, known as GPT, introduced by Radford et al. (2018), marked 

a departure from BERT's bidirectionality, adopting an autoregressive, unidirectional mechanism specifically 

geared towards text generation. The subsequent iterations, GPT-2 (Radford et al., 2019) and GPT-3 (Brown et 

 
1 While the literature does not uniformly agree on a definitive scale limit for LLMs, the predominant discussions often center around models featuring billions of parameters 
(Zhao et al., 2023). 

https://www.scribbr.com/citing-sources/in-text-citation-styles/
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al., 2020), chronicled a significant progression, showcasing that increased model dimensions and training data 

could significantly advance language task capabilities (Brown et al., 2020; Xu Han et al., 2021; Zhao et al., 2023).  

Notably, GPT-3, with its vast 175 billion parameters, underscored the vast capabilities of PT-LLMs, demonstrating 

aptitudes across a spectrum of complex tasks, mirroring human-like proficiency in translation and creative 

writing (Brown et al., 2020; Zhao et al., 2023). 

Another generation of PT-LLMs was T5 (Text-To-Text Transfer Transformer) (Raffel et al., 2019) and BART (Lewis 

et al., 2019) which introduced variations of the Transformer that combined both autoencoding and 

autoregressive techniques, showing that different pre-training objectives could lead to improvements in certain 

types of language understanding and generation tasks. These models were pre-trained on a denoising objective, 

where the model learns to reconstruct the original text from a corrupted version, which helps the model learn 

from diverse and noisy data sources. 

More recently, several new PT-LLMs have emerged, such as PaLM (Pathways Language Model ) (Chowdhery et 

al., 2022) that uses pathways to scale language modelling with the Transformer architecture. Pathways are a 

new ML system that enables highly efficient training across multiple TPU Pods, reducing the communication 

overhead and improving the throughput, and it gets better with its smaller multilingual variant PaLM-2 (Anil et 

al., 2023) that demonstrated better performance than PaLM with reduced training and inference cost (Naveed 

et al., 2023). LLaMA (Large Language Model Meta AI) (Touvron et al., 2023a) is trained on a large and diverse 

dataset of 101 languages, and it incorporates human feedback into its learning process, and LLaMA-2 (Touvron 

et al., 2023b) is a fine-tuned version of LLaMA, optimized for dialogue use cases with a larger context length and 

grouped-query attention. LLaMA-2 outperforms open-source chat models on most benchmarks and is designed 

to be helpful and safe and considered popular in the research community for parameter-efficient and instruction 

tuning (Naveed et al., 2023). FALCON (Fused Attention for Language understanding and CONversation) (Penedo 

et al., 2023) is an autoencoding model that uses a novel objective called Fused Attention and combines masked 

language modelling, next sentence prediction, and response prediction to learn from both monologue and 

dialogue data, it achieves state-of-the-art results on several dialogue tasks. BLOOM (Big Language Open-Source 

Model) (Scao et al., 2023) is an autoregressive model that uses a sparse attention mechanism to handle long-

range dependencies and large inputs, it is trained on a massive dataset of 1.6 trillion tokens, including web texts, 

books, and images. 

The evolution of PT-LLMs continues to be a vibrant area of research, with models becoming ever more 

sophisticated, and their applications increasingly widespread. Each new model builds upon the insights and 

lessons learned from its predecessors, driving forward the capabilities of machine understanding and generation 

of human language. 

 

2.4. Pre-Trained Large Multimodal Models (PT-LMMs): 

While LLMs have exhibited remarkable capabilities in zero or few-shot reasoning across a wide range of NLP 

tasks, they are limited in their inability to process visual information, as they are designed to interpret only 

textual data. Simultaneously, significant advancements are being made in large vision foundation models in 

terms of perception capabilities. In response to this gap, unimodal LLMs and vision models are converging, 

leading to the emergence of the field of Large Multimodal Models (LMMs). From the perspective of developing 

Artificial General Intelligence (AGI), LMMs represent a significant advancement over LLMs for several reasons 

(Yin et al., 2023): LMMs align more closely with human perception, which naturally involves receiving and 

integrating multisensory inputs that are often complementary and synergistic, potentially making LMMs more 

intelligent; LMMs offer a more user-friendly interface, as their support for multimodal inputs allows users to 

interact and communicate with intelligent assistants in a more flexible manner; and LMMs are more versatile in 

task-solving, being able to support a broader range of tasks beyond the typical NLP tasks manageable by LLMs. 

Inspired by the advancement of Transformer-based models in NLP, researcher started to see the potential of 

large-scale Transformer-based vision models. Vision Transformers (ViTs) (Dosovitskiy et al., 2021) are a 

testament to this potential. Bypassing convolutional layers, they interpret images as non-overlapping patch 
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sequences that are embedded and processed by Transformer layers achieving superior performance compared 

to CNNs, especially when trained on large data. Swin-Transformer (Shifted Window Transformer) (Liu et al., 

2021) is another milestone in computer vision, it uses shifted windows to partition the image into overlapping 

patches of different scales for representation learning. 

Building upon the specialized capabilities of NLP and vision pre-trained models, researchers have started to 

explore multi-modal pre-trained models designed to understand and generate content across multiple data 

types (Zhou et al., 2020; Han et al., 2023). These models aim to unify the strengths of NLP and computer vision 

techniques, delivering more comprehensive and nuanced performance on complex tasks that involve both text 

and images such as VQA and KB-VQA. One of the early attempts in this direction can be attributed to VLP (Vision-

Language Pre-training) (Zhou et al., 2020). This model integrates visual and textual modalities using a 

Transformer-based architecture and has been effective in various cross-modal tasks such as image captioning 

and visual question answering. Following VLP, CLIP (Contrastive Language–Image Pretraining) (Radford et al., 

2021) made its mark in 2021. CLIP integrates visual and textual information within a unified Transformer 

framework. It employs a contrastive loss function that encourages the model to produce similar embeddings 

for semantically correlated text and image data, thereby achieving remarkable results on zero-shot learning 

tasks (Zero-Shot learning allows a model to transfer knowledge gained during training to new, unseen 

scenarios). Also in 2021, DALL-E (Ramesh et al., 2021) emerged as a variant of the GPT-3 model trained to 

generate high-quality images from textual descriptions. While primarily an image generation model, its training 

methodology exemplifies how multi-modal learning can facilitate the synthesis of content across different data 

types. The most recent addition to the roster is GPT-4 (OpenAI, 2023), which was trained using an extraordinary 

scale of compute and data. GPT-4 is a large multimodal model that can takes image and text inputs and produce 

text outputs. In addition to its linguistic proficiency, GPT-4 is capable of tackling a wide range of complex and 

new tasks, encompassing fields like mathematics, computer programming, visual perception, healthcare, legal 

studies, and psychology, all without requiring specialized prompting. 

Recent work like BLIP (Bootstrapping Language-Image Pre-training) (J. Li et al., 2022) has demonstrated the 

ability to perform various multi-modal tasks, including Image-Text retrieval and Image Captioning. BLIP 

effectively utilizes noisy web data by bootstrapping the captions, where a captioner generates synthetic 

captions and a filter removes the noisy ones, achieving promising results on a wide range of vision-language 

tasks. BLIP-2 (Li et al., 2023) builds upon this by introducing a new visual-language pre-training paradigm that 

leverages any combination of pre-trained vision encoder and LLM without having to pre-train the whole 

architecture end-to-end. This model bridges the modality gap with a lightweight Querying Transformer (Q-

Former), enabling state-of-the-art results on multiple visual-language tasks while reducing pre-training costs. 

InstructBLIP (Dai et al., 2023) takes the concept of instruction tuning from language models and applies it to 

vision-language models. It introduces an instruction-aware Query Transformer, which extracts informative 

features tailored to the given instruction, leading to state-of-the-art zero-shot performance across various 

tasks. LLaVA (Liu et al., 2023) represents a novel end-to-end trained large multimodal model that combines a 

vision encoder with an LLM by linearly projecting the visual features into the LLM embedding space, achieving 

impressive chat capabilities and setting a new state-of-the-art accuracy on Science QA dataset (Lu et al., 2022). 

It is a cost-efficient approach to building general-purpose multimodal assistants. 

Adding to these, Gemini (Google, 2023) emerges as a family of highly capable multimodal models that exhibit 

remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, 

Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-

constrained use-cases.  

Almost all vision-language pre-trained models utilize a Transformer-based pre-trained Model as a text encoder, 

but how to learn visual representations based on visual contents is still an open problem (Du et al., 2022). 

 

https://pyimagesearch.com/2024/01/01/introduction-to-gemini-pro-vision/
https://pyimagesearch.com/2024/01/01/introduction-to-gemini-pro-vision/
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2.5. Knowledge-Based Visual Question Answering (KB-VQA): 

(Reichman et al., 2023) has categorized the current approaches to solving KB-VQA task based on the knowledge 

sources they use:  

1. Knowledge Graphs (Explicit Knowledge): These are structured databases that store information about the 

world. They are a popular choice for knowledge sourcing because they are easy to access and interpret by 

ML models (Gui et al., 2022). 

2. Passage Retrieval (Web-Crawled): This involves using a search engine to retrieve relevant passages from 

text documents. The passages are then used to answer the questions (Gao et al., 2022a). 

3. Fine-tuning Vision-Language Models (Implicit Knowledge): These are pre-trained models that have been 

trained on a large dataset of images and text. They can be fine-tuned to answer questions about images 

by using a knowledge graph or other knowledge sources (Ding et al., 2022). 

4. Prompt-Based Large Language Models (e.g., GPT-3) to access the knowledge from the models (Implicit 

Knowledge): These models are trained to generate text in response to prompts. The prompts can be 

designed to guide the models to answer questions about images (Shao et al., 2023). 

KB-VQA constitutes a challenging task for AI models, it necessitates the capability to understand and analyze 

visual and textual data while also utilizing external knowledge to derive precise answers (Marino et al., 2019). 

Various research efforts have explored different approaches to tackle the task of KB-VQA, AHAB2 (Wang et al., 

2017) was one of the early efforts, it processes the inputs into structured queries and retrieves supporting 

knowledge from fixed knowledge bases to obtain the answers. Further efforts focused on acquiring the 

knowledge from open-domain sources such as Wikipedia and ConceptNet (Speer, Chin and Havasi, 2017), then 

perform joint reasoning over the retrieved knowledge, image, and question to predict the answer. ConceptBERT 

(Gardères et al., 2020) represents an initial foray into an end-to-end transformer-based approach that is fully 

reliant on open-domain explicit knowledge, where it simultaneously leverages multiple modalities for learning. 

The process begins with generating representations for each modality separately. Image is represented as a list 

of objects with their bounding-boxes using Faster R-CNN (Ren et al., 2016), while BERT (Devlin et al., 2018) 

embeddings are employed for question representation and ConceptNet (Speer, Chin and Havasi, 2017) serves 

as the source of common-sense knowledge. The model comprises two primary modules: a vision-language 

module, and a concept-language module based on a bidirectional transformer architecture. These modules 

interact to form a unified concept-vision-language representation, which is then processed through a classifier 

to produce the final answer. However, the model struggles with questions that require complex reasoning. 

The performance of these methods is often limited, either by the non-existence of required knowledge for that 

specific question or the irrelevant noisy knowledge that is inevitably retrieved (Shao et al., 2023). In an attempt 

to better utilize the noisy retrieved knowledge, MAVEx (Multi-modal Answer Validation using External 

knowledge) (Wu et al., 2021) added an answer validation mechanism, but that’s only useful if the knowledge 

exists!. 

Inspired by the success of Transformer-based pre-trained models, multiple efforts have focused on using 

implicit knowledge. KRISP (Knowledge Reasoning with Implicit and Symbolic rePresentations) (Marino et al., 

2021) uses a transformer-based model  and utilizes object regions to learn implicit knowledge stored in BERT 

(Devlin et al., 2018) as a supplementary knowledge resource to the structured knowledge base. However, the 

complexity of combining diverse knowledge sources may lead to challenges in maintaining the explicit 

semantics of symbolic knowledge. 

PICa (Prompting GPT-3 via the use of Image Captioning) (Yang et al., 2022) combined acquiring the implicit 

knowledge in KRISP (Marino et al., 2021) and the validation stage in MAVEx (Wu et al., 2021) by unlocking the 

first use of GPT-3 (Brown et al., 2020) for multimodal tasks using frozen GPT-3 model as an implicit and 

unstructured knowledge base, PICa first converts the image into a list of tags using Microdoft Azure Tagging 

API3 and uses VinVL (Zhang et al., 2021) to generate image captions that GPT-3 can understand, then utilizes 

 
2 AHAB: the captain in the novel “Moby Dick” (Wang et al., 2017). 
3Public Azure Tagging & Captioning API: https://westus.dev.cognitive.microsoft.com/docs/services/computer-vision-v3-2 
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GPT-3 to solve the VQA task in a few-shot manner by just providing a few in-context VQA examples. KAT 

(Knowledge Augmented Transformer) (Gui et al., 2022) integrates implicit and explicit knowledge in an encoder-

decoder architecture, while still jointly reasoning over both knowledge sources during answer generation. KAT 

generates image tags that are used for explicit knowledge retrieval leveraging contrastive learning between 

image [CLS]4 token produced by CLIP (Radford et al., 2021) and knowledge entries representations in the explicit 

knowledge bases, it also leverages GPT-3 as an implicit knowledge source and treats VQA as an open-ended text 

generation task. REVIVE (REgional VIsual Representation for knowledge-based Visual quEstion answering) (Lin 

et al., 2022) uses an object detector to locate the objects in the image using GLIP (Grounded Language-Image 

Pre-training) (L.H. Li et al., 2022), then crops the objects bounding-boxes and uses the cropped region proposals 

to retrieve different types of external knowledge, then GPT-3 (Brown et al., 2020) is prompted with regional 

tags, question and a caption generated by VinVL (Zhang et al., 2021) to retrieve the implicit knowledge, the 

model then integrates both knowledge inputs with the regional visual features into a unified transformer based 

answering model for final answer generation. MuKEA (MUltimodal Knowledge Extraction and Accumulation 

framework) (Ding et al., 2022) accumulates multimodal knowledge from VQA samples, without relying on 

existing Knowledges-Bases, it represents multimodal knowledge by triplets that correlate visual objects and fact 

answers with implicit relations. It uses a pre-training and fine-tuning strategy to learn the triplet representations 

from different views, such as embedding structure, topological relation, and semantic space. TRiG (Transform-

Retrieve-Generate) (Gao et al., 2022b) employs a methodology that converts all visual context into textual 

representations utilizing a combination of a captioner (Li et al., 2020), an object detector (Han et al., 2021), and 

Optical Character Recognition (OCR)5 modules. Subsequently, it conducts downstream tasks exclusively within 

the linguistic domain. Specifically, it utilizes the textual representation of the visual context to retrieve the top-

k knowledge passages from Wikipedia. This retrieval is facilitated by calculating the dot product between the 

CLS token of the encoded visual context, which is processed by BERT (Devlin et al., 2018), and the embeddings 

of various knowledge passages. Furthermore, TRiG encodes both the question and the visual context alongside 

each passage among the top-k selected knowledge passages using the T5 (Raffel et al., 2019) encoder. It then 

concatenates the embeddings of the tuples (question, visual context, knowledge) and inputs them into the T5 

decoder. The decoder, trained autoregressively, is tasked with generating the answer. 

IPVR (Interactive Prompting Visual Reasoner) (Z. Chen et al., 2023) tries to mimic human process to solving KB-

VQA task by introducing three modules: See – Think – Confirm, the See module detects the objects in the image 

and translate the image into a global description using Faster R-CNN variant (Xiaotian Han et al., 2021), Think 

module adopts OPT (Zhang et al., 2022) to select semantically relevant visual concepts extracted by the See 

module corresponding to the given task, then transforms them into textual descriptions using BLIP (J. Li et al., 

2022), lastly, OPT predicts the answer based on the attended visual context. Confirm module is used for 

rationale, it requires the LLM to continue generating answer’s supporting rationale which is verified using CLIP 

(Radford et al., 2021). The Think – Confirm process iteratively continues until the answer predictions in two 

consecutive iterations are consistent. 

(Shao et al., 2023) argues that all previous approaches that utilized GPT-3 have not fully activated the capacity 

of the giant model as the provided input information to the model is insufficient and proposes PROPHET 

(PROmPt GPT-3 with answer HEurisTics for knowledge-based VQA), initially, they modified MCAN-Large (Yu et 

al., 2019) with a grid-based features extracted from CLIP (Radford et al., 2021) visual encoder instead of the 

original bottom-up-attention region-based features and a BERT-Large (Devlin et al., 2018) instead of the original 

LSTM network and used it as a vanilla VQA model that is then trained on a KB-VQA dataset without the aid of 

external information, following this, two mutually complementary answer heuristics—answer candidates and 

answer-aware examples—are extracted from the trained model. Lastly, these heuristics are incorporated into 

the prompt structure to augment GPT-3's understanding of the task, thereby improving its performance 

capabilities.  

 
4Classification token used in transformer-based models and added to the beginning of the sentence tokens in text and the beginning of the sequence of image patches 
(tokens) if its image to aggregate the global information from the entire sentence or image (Devlin et al., 2018; Dosovitskiy et al., 2021). 
5 They used off the shelf EasyOCR (https://github.com/JaidedAI/EasyOCR). 
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LAMOC (LAnguage MOdel Guided Captioning) (Du et al., 2023) leverages the strengths of both captioning and 

language models. It uses Reinforcement Learning to leverage the guidance and feedback of the PT-LLM to tune 

the captioning model using a probabilistic reward function and a relevance score as the reward signal. In this 

way, the caption provides context for the PT-LLM, while the PT-LLM’s feedback refines the caption to be more 

informative for answering the question. TwO (Thinking while Observing) (Si et al., 2023) employs a dual-encoder 

framework, multimodal encoder that functions as an 'Observer' to encode visual features, and a textual 

encoder, acting as a 'Thinker,' to encode a diverse array of knowledge resources. This framework also includes 

an answer decoder, which decodes the latent embeddings from both encoders to generate the final response. 

The system integrates implicit knowledge sourced from GPT-3 (Brown et al., 2020) and enhances this with 

implicit multimodal knowledge from OFA (Wang et al., 2022), which has been fine-tuned on the VQAv2 dataset 

(Goyal et al., 2017). Additionally, it incorporates explicit knowledge extracted from Wikipedia. The methodology 

involves utilizing the image caption, object list, and the posed question to prompt GPT-3 for knowledge 

acquisition, while simultaneously prompting OFA with the image features and the question to access implicit 

multimodal knowledge. All retrieved knowledge is then input into the textual encoder, and concurrently, the 

image and question are processed by the multimodal encoder. The outputs of these encoders are projected 

into a unified embedding space, and the combined output is subsequently fed into the answer decoder to 

produce the final answer. 

Recently, Q&APrompts (Wang and Ge, 2024) introduced a novel approach by incorporating a pre-trained large 

multimodal model (PT-LMM) to the system for solving KB-VQA task. It focuses on discovering rich visual clues 

by mining question-answer pairs in images and using them as prompts for PT-LMM. The process involves three 

key stages: Visual Question Generation (VQG) Model Training: In this stage, image-answer pairs, and 

corresponding questions from a VQA training set are used to train a VQG model. This model learns to map an 

answer with an image to generate relevant questions. Question-Answer Prompts Generation: Using an image 

tagging model (Y. Zhang et al., 2023), various instances within an image are identified. These tagged image pairs 

are then fed into the VQG model to generate pertinent questions with the extracted image tags serving as 

answers. Visual-Language Reasoning: The generated question-answer pairs are encoded as prompts with a 

visual-aware prompting module. These prompts are then sent to InstructBLIP (Dai et al., 2023) that acts as the 

PT-LMM to deduce the final answers. Q&APrompts has shown substantial improvements in performance when 

tested on challenging datasets like OK-VQA (Marino et al., 2019). Similarly, GeReA (Generate-ReAson) 

framework (Ma et al., 2024) extends the application of PT-LMMs by utilizing InstructBLIP (Dai et al., 2023) and 

LLaVA-1.5 (Liu et al., 2023) demonstrating that these models provide enhanced visual understanding 

capabilities over PT-LLMs. GeReA operates through two principal stages: initially, the Question-Aware Prompt 

Caption Generation, where InstructBLIP and LLaVA-1.5 are prompted with key image regions identified using a 

cross-attention matrix that measures the similarity between image patch features and related question 

features, supplemented with customized, question-specific manual prompts to ensure the generated captions 

closely align with the query specifics. Subsequently, in the Question-Aware Prompt Caption Reasoning stage, 

these captions are integrated into a multimodal reasoning model that combines the caption embeddings with 

the image-question pair and similar examples, processed through a T5 (Raffel et al., 2019) decoder to construct 

a robust joint representation for accurate answer derivation. Although GeReA has shown significant 

improvements on benchmark datasets like OK-VQA (Marino et al., 2019) and A-OKVQA (Schwenk et al., 2022), 

outperforming prior state-of-the-art methods, it's important to note that the framework's reliance on multiple 

large models necessitates substantial computational resources, which could affect the speed during inference, 

highlighting a potential limitation in terms of scalability and efficiency in practical applications. 

 

 

 

Table 2-1 summarizes the methods that attempted to solve the KB-VQA, along with their main components used 

for visual representation, knowledge sources, use of PT-LMs within the model, as well as the model’s 
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performance on OK-VQA dataset (Marino et al., 2019). Models that have not been tested on OK-VQA dataset 

such as AHAB (Wang et al., 2017) are not included. 

 
 
 

Table 2-1 Summary of KB-VQA Methods. 
Accuracy results are based on VQA-Score8 metric evaluated on OK-VQA dataset. 

 

 

 

 
6 PTLM refers to Pre-Trained Large Models including Pre-Trained Large Language or Multimodal Models.  
7 They used off the shelf EasyOCR (https://github.com/JaidedAI/EasyOCR). 
8 VQA Score discussed in Section 4.1. 

Model 
Image 

Representation 
Captioner Detector PTLM6 Knowledge Type 

Accuracy 

(%) 

ConceptBert 

(Gardères et al., 2020) 
Tags - 

Faster R-CNN 

(Ren et al., 2016) 

BERT 

(Devlin et al., 2018) 
Explicit: ConceptNet 33.66 

MAVEx 

(Wu et al., 2021) 
Feature Embeds. - - 

ViLBERT 

(Lu et al., 2019) 

Explicit: Wikipedia  

+ ConceptNet  

+ Google Images 

39.4 

KRISP 

(Marino et al., 2021) 
Feature Embeds. - - 

MMBERT 

(Khare et al., 2021) 

Explicit: DBpedia  

+ ConceptNet  

+ VisualGenome  

+ haspartKB 

Implicit: BERT 

38.9 

PICa 

(Yang et al., 2022) 

Caption 

+ Tags 

VinVL  

(Zhang et al., 

2021) 

Microsoft Azure 

Tagging API 

GPT-3 (175B) 

(Brown et al., 2020) 
Implicit: GPT-3 48 

KAT 

(Gui et al., 2022) 

Feature Embeds  

+ Caption 

Oscar 

(Li et al., 2020) 

Faster R-CNN 

(Ren et al., 2016) 

GPT-3 (175B) 

(Brown et al., 2020) 

T5-Large 

(Raffel et al., 2019) 

Explicit: Wikidata 

Implicit: GPT-3  
54.41 

REVIVE 

(Lin et al., 2022) 

Feature Embeds 

+ Caption  

+ Tags 

VinVL  

(Zhang et al., 

2021) 

GLIP 

(L.H. Li et al., 2022) 

GPT-3 (175B) 

(Brown et al., 2020) 

Implicit: GPT-3 

Explicit: Wikidata 
58 

MuKEA 

(Ding et al., 2022) 

Feature Embeds  

+ Tags 
- 

Faster R-CNN 

(Ren et al., 2016) 

LXMERT 

(Tan and Bansal, 

2019) 

Explicit: Multimodal 

knowledge from VQA 2.0  

and OK-VQA 

42.59 

TRiG  

(Gao et al., 2022b) 

Caption 

+ Tags 

+ OCR7 

OSCAR 

(Li et al., 2020) 

SGG 

(Han et al., 2021) 

T5-Large  

(Raffel et al., 2019) 
Explicit: Wikidata 50.5 

IPVR 

 (Z. Chen et al., 2023) 

Caption 

+ Tags 

BLIP (446M) 

(J. Li et al., 2022) 

SGG 

(Han et al., 2021) 

OPT-66B 

(Zhang et al., 2022) 
Implicit: OPT 44.62 

PROPHET 

(Shao et al., 2023) 

Feature Embeds  

+ Caption 

+ Tags 

VinVL  

(Zhang et al., 

2021) 

Faster R-CNN 

(Ren et al., 2016) 

GPT-3 (175B) 

(Brown et al., 2020) 
Implicit: GPT-3 61.1 

LAMOC 

(Du et al., 2023) 

RL Guided 

Captions 

BLIP (446M) 

(J. Li et al., 2022) 
- 

FLAN-T5-XXL (11B) 

(Chung et al., 2022) 

Implicit:  

FLAN-T5-XXL 
40.31 

TwO  

(Si et al., 2023) 

Feature Embeds  

+ Caption 

+ Tags 

+ OCR1 

OFA  

(Wang et al., 

2022) 

VinVL 

(Zhang et al., 2021) 

 

GPT-3 (175B) 

(Brown et al., 2020) 

T5-Large 

(Raffel et al., 2019) 

OFA (0.93B)  

(Wang et al., 2022) 

Explicit: Wikidata 

+ Multimodal knowledge 

from VQA 2.0 

Implicit: GPT-3 

+ OFA 

+ T5 

58.72 

Q&APrompts 

(Wang and Ge, 2024) 
Feature Embeds - 

RAM 

(Y. Zhang et al., 2023) 

InstructBLIP (7B) 

(Dai et al., 2023) 

Implicit: 

InstructBLIP 
64.3 

GeReA 

(Ma et al., 2024) 

Feature Embeds 

+ Caption 

InstructBLIP (7B)  

(Dai et al., 2023) 

LLaVA-1.5 (7B) 

(Liu et al., 2023) 

- 

T5-Large 

(Raffel et al., 2019) 

InstructBLIP (7B)  

(Dai et al., 2023) 

LLaVA-1.5 (7B) 

(Liu et al., 2023) 

Implicit: 

InstructBLIP 

LLaVA-1.5 

66.5 
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Chapter 3  

3. Methodology 
Recent advancements in Pre-Trained Large Language Models (PT-LLMs) have significantly enhanced the 

capabilities of Knowledge-Based Visual Question Answering (KB-VQA) systems. These models facilitate 

sophisticated reasoning and enable the extraction of implicit knowledge, which is crucial for interpreting 

complex visual data. However, a fundamental challenge remains: PT-LLMs do not directly process images as they 

operate within the textual domain. To address this, current methodologies predominantly focus on two 

approaches. The first involves aligning visual and textual embeddings into a unified embedding space, using 

methods such as linear projectors (Liu et al., 2023)  or attention-based alignment modules (Dai et al., 2023) 

which enables the resultant model to perform multiple downstream vision tasks, not limited to KB-VQA alone. 

Further discussion of this approach can be found in Section 6.2. The second approach, language mediation, 

which is the focus of this research, converts visual contexts into textual representations. Models like PICA (Yang 

et al., 2022) and KAT (Gui et al., 2022) exemplify this approach by translating visual data into text, allowing the 

PT-LLM to leverage its extensive pre-trained knowledge to 'understand' the images textually. This method is 

resource-efficient and directly leverages the PT-LLM’s existing capabilities in natural language processing, 

making it an ideal strategy for the current scope of this research. 

 

3.1. Design  

The proposed Knowledge-Based Visual Question Answering (KB-VQA) model integrates insights from various 

prior works (Marino et al., 2021; Gui et al., 2022; Yang et al., 2022; Z. Chen et al., 2023; Du et al., 2023; Si et al., 

2023; Tan and Shen, 2023; Wang and Ge, 2024). As illustrated in Figure 3-1, the model operates through a 

sequential pipeline, beginning with the Image to Language Transformation Module, in this module, the image 

undergoes simultaneous processing via image captioning and object detection frozen models, aiming to 

comprehensively capture the visual context and cues. These models, selected for their initial effectiveness, are 

designed to be pluggable, allowing for easy replacement with more advanced models as new technologies 

develop, thus ensuring the module remains at the forefront of technological advancement. Following this, the 

Prompt Engineering Module processes the generated captions and the list of detected objects, along with their 

bounding boxes and confidence levels, merging these elements with the question at hand utilizing a 

meticulously crafted prompting template. The pipeline ends with a Fine-tuned Pre-Trained Large Language 

Model (PT-LLMs), which is responsible for performing reasoning and deriving the required knowledge to 

formulate an informed response to the question. 
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3.1.1. Image to Language Transformation 

This stage is pivotal in the process of KB-VQA, during this phase, the wealth of visual information within an 

image, including the identification of objects, their spatial interrelations, and contextual indicators, is 

transformed into a coherent linguistic structure. This crucial transformation bridges the divide between 

unprocessed visual inputs and the following stages of knowledge extraction and logical reasoning. By converting 

visual elements into a linguistic framework, this phase sets the foundation for the PT-LLM’s ability to not only 

  

 
Figure 3-1 KB-VQA Model Architecture. 
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access and interpret the required knowledge but also to apply reasoning effectively in responding to intricate 

visual queries. 

 

3.1.1.1. Captioning Module 

Most previous works attempting to solve the task of KB-VQA like PICA (Yang et al., 2022) and KAT (Gui et al., 

2022) employed OSCAR+ for image captioning and others such as IPVR (Z. Chen et al., 2023) and LAMOC (Du et 

al., 2023) advanced further by adopting the first version of BLIP family (J. Li et al., 2022). However, these 

approaches often encountered limitations in providing a comprehensive visual context necessary for the PT-LLM 

to retrieve the required knowledge and perform reasoning, leading some to implement a closed-loop 

refinement of captions using Reinforcement Learning (Du et al., 2023). This project leverages the recently 

released powerful and open-source transformer-based visual instruction tuning model InstructBLIP (Dai et al., 

2023) that was trained on 26 datasets and has shown an impressive zero-shot performance in image captioning 

and other downstream vision tasks (Dai et al., 2023; Ma et al., 2024). InstructBLIP stands out for its instruction-

aware Query Transformer, which allows it to generate captions that are contextually relevant to the instructions 

provided. Its ability to perform exceptionally well in downstream tasks, including complex visual scene 

understanding and image description, substantiates its suitability as a top-tier image captioner in diverse 

applications. Additionally, a Huggingface space specifically designed for comparing some state-of-the-art 

captioning models (Rogge, 2023) was utilized for a quick comparison, where InstructBLIP exhibited superior 

performance over other models, see A.5 for more details. 

 

3.1.1.2. Object Detection Module 

To achieve a comprehensive understanding of images, precise detection and localization of objects within these 

images is essential, a process known as object detection (Felzenszwalb et al., 2008). A crucial aspect of this 

process is the bounding box (BBOX), which is defined as a 

rectangular region that encapsulates an object or a designated 

area of interest within an image. As illustrated in Figure 3-2, this 

bounding box is demarcated by a set of four coordinates: 

ሺ𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛ሻ represent the top-left corner, and ሺ𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥ሻ 

denote the bottom-right corner of the rectangle (Felzenszwalb et 

al., 2008). The employment of bounding boxes is a critical 

methodology for determining the precise location and extent of 

objects in an image, thereby facilitating spatial awareness of the 

image contents. By defining the spatial boundaries of each object, 

bounding boxes enable the model to comprehend the positional 

relationships between multiple objects in an image, thereby 

enhancing the model's ability to analyze and interpret complex 

visual scenes.  

The object detection component of the KB-VQA pipelines uses two 

pretrained detection models: 

YOLOv5 (You Only Look Once) (Jocher, 2020): This model is pretrained on the COOC dataset (Lin et al., 2014) 

and is capable of detecting 80 different object classes  

DETIC (DETector with Image Classes) (Zhou et al., 2022): an encoder-decoder transformer-based object detection 

and segmentation model pretrained on ImageNet-21K (Deng et al., 2009) and Conceptual Captions (Sharma et 

al., 2018) datasets, and capable of detecting around 21,000 object classes. This model was primarily utilized to 

overcome the limitations in the number of detectable objects in YOLOv5. 

 
Figure 3-2 Object detection and BBOX. 

BBOX for object: “person” plotted for demonstration. 

 



Multimodal Learning for Visual Question Answering using World Knowledge 

 

21 
 

The KB-VQA pipelines processes the list of detected objects along with their BBOXes and confidence levels 

generated by either model in a structured format as shown in below example: 

3.1.2. Pre-Trained Large Language Model (PT-LLM)  

Incorporating a Pre-Trained Large Language Model (PT-LLM) within the KB-VQA pipeline significantly enhances 

its ability to interpret and answer complex visual questions. The profound capabilities of PT-LLMs in natural 

language understanding and deductive reasoning are crucial for extracting and leveraging implicit knowledge 

from textually mediated visual data (Zhu et al., 2023).  

It can be argued that leveraging the implicit world knowledge stored in PT-LLMs is largely sufficient to handle 

KB-VQA tasks without the need for explicit knowledge sources or reasoning modules. This assertion is supported 

by several key points: 

1. Deep Semantic Understanding: PT-LLMs can interpret detailed captions and recognize relationships among 

objects in an image, enabling them to answer questions that require more than just visual recognition or 

syntactic matching (Yang et al., 2022). For example, a PT-LLM might accurately interpret a scene in a 

photograph where a family is having a picnic under cherry blossoms, recognizing not just the individuals and 

objects but also the cultural significance and seasonal context, thereby answering questions about the 

event’s setting or mood. 

2. Leveraging Implicit Knowledge: Studies have demonstrated that PT-LLMs trained on a large-scale corpus 

implicitly incorporate substantial knowledge within their parameters. Such Models can then be queried for 

various types of knowledge, effectively functioning as a knowledge base (KB) (AlKhamissi et al., 2022; Cao et 

al., 2023). By utilizing structured prompts that encapsulate detailed captions and objects, PT-LLMs leverage 

this rich, pre-trained knowledge to derive insights that transcend the immediately visible elements of a 

query. This capability enables them to perform deep, contextual inferences, thereby enhancing their utility 

in complex interpretative (Gui et al., 2022; Yang et al., 2022; Shao et al., 2023; Wang and Ge, 2024)  

3. Enhanced Deductive Reasoning Capabilities: The structured information enables PT-LLMs to contextualize 

the visual content, thereby enhancing their deductive reasoning capabilities. This allows them to derive new 

facts based on known facts about the scene (Zhu et al., 2023) and make logical connections, which are 

essential for effectively answering complex questions (Xenos et al., 2023).  

4. Comprehensive Training on Explicit Knowledge Sources: PT-LLMs undergo extensive training on diverse 

datasets that inherently include significant sources of explicit knowledge. These sources range from web-

crawled data and Wikipedia to public domain books  (Touvron et al., 2023b), embedding a wealth of factual 

and encyclopedic information directly into the model’s parameters. As a result, these models are not only 

equipped with a broad spectrum of general and applicable knowledge but are also inherently prepared to 

handle explicit information retrieval and application across a variety of tasks (Brown et al., 2020; Touvron et 

al., 2023b; Lymperaiou and Stamou, 2023; Zhao et al., 2023; Naveed et al., 2023). 

5. Generalization: Due to their extensive training, PT-LLMs can generalize well from textual descriptions to 

unseen contents (Devlin et al., 2018; Brown et al., 2020; Lymperaiou and Stamou, 2023), making them 

effective at interpreting new images and corresponding questions in KB-VQA tasks. 

6. Adaptability: With relatively minimal additional training PT-LLMs can be adapted to specific tasks such as KB-

VQA through techniques like few-shot learning (Yang et al., 2022) or fine-tuning with task-specific datasets 

(Touvron et al., 2023b). 

 

The PT-LLM used in this KB-VQA system is the open-source LLaMA-2 (Large Language Model Meta AI-2) (Touvron 

et al., 2023b), serving as the cognitive center of the KB-VQA pipeline. The LLaMA-2 model family, an 

advancement over the LLaMA-1 series, is a set of autoregressive decoder-only PT-LLMs and has been pretrained 

on 2 trillion tokens of data, a 40% increase in training corpus size compared to its predecessor, and features a 

{object: tennis racket, bounding box: [61.29, 429.76, 438.9, 633.53], certainty: 86.61%} 

{object: person, bounding box: [421.58, 81.35, 1007.64, 940.0], certainty: 86.11%} 

{object: sports ball, bounding box: [143.34, 502.11, 195.11, 553.06], certainty: 85.23%} 

... 
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context window of 4,096 tokens, up from 2,048 tokens in LLaMA-1. Available in several sizes: 7B, 13B, and 70B 

parameters. Since its introduction, both LLaMA-1 and LLaMA-2 have garnered significant interest from both 

academic and industrial sectors (Ruiz, 2023; Zhao et al., 2023; Naveed et al., 2023). These models have 

demonstrated outstanding performance across various benchmarks, quickly becoming among the most 

powerful, versatile and favoured open-source language models available (Ruiz, 2023).  

As shown in Figure 3-1, this project specifically utilizes the LLaMA-2 Chat, a version that has been fine-tuned 

from LLaMA-2 using Supervised Fine-Tuning (SFT) and further refined iteratively using Reinforcement Learning 

with Human Feedback (RLHF) (Christiano et al., 2017), making it optimized for dialogue use cases (Touvron et 

al., 2023b), and therefore an ideal choice for the KB-VQA system, which involves interactive conversation 

between the user and the model about an image. 

 

3.1.3. Prompt Engineering Module 

Prompt Engineering for PT-LLMs is defined by Reynolds and McDonell (2021) as “Programming but in natural 

language!”, it is the process of designing and optimizing prompts to effectively communicate tasks to PT-LLMs. 

This discipline involves the strategic formulation of input data (prompts) to elicit specific, desired responses 

from models that have been trained on vast datasets. 

Table 3-1 shows the default prompt template for a single turn conversation and the existing special tokens that 

LLAMA-2 chat model was trained on. 

As shown in Figure 3-1, The KB-VQA system is designed to process captions, objects, their bounding boxes, and 

confidence levels by feeding them to the PT-LLM in a structured linguistic format. To enable the model to 

understand the given language-mediated visual context and correctly apply reasoning to derive answers, a fully 

customized prompt template was developed. This includes a tailored system prompt and additional special 

tokens added to the model’s vocabulary. These tokens indicate the beginnings and ends of captions, details of 

detected objects, and the questions being asked. The customized system prompt is specifically designed to guide 

the model on how to effectively utilize these added special tokens. Table 3-2 summarizes the key characteristics 

of the designed prompt template used in the KB-VQA model. Further details, including the designed system can 

be found in Appendix A.4. 

 

Table 3-1 Default prompt template for LLaMA-2 Chat Model. 

Default Prompt 
Template 

<s>[INST] <<SYS>> 

{system_prompt} 

<</SYS>> 

 

{user_message}[/INST]{model_answer}</s> 

Description 

<s> Indicates the start of the entire sequence. 

[INST] Indicates the start of instructions. 

<<SYS>> Optional: Indicates the start of system prompt. 

{system_prompt} Optional: A context to guide the model response. (If not provided, 
the default system prompt is used. (See A.3) 

<</SYS>> Optional: Indicates the end of system prompt. 

{user_message} The actual user prompt or query.  

[/INST] Indicates the end of instructions. 

</s> Indicates the end of the entire sequence. 
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During inference, especially when using DETIC as the object detector with a low confidence threshold, there is 

a significant chance that the number of detected objects will be high, potentially leading to a prompt token 

count that surpasses the model's maximum context window of 4,096 tokens. To address this, the model employs 

a systematic approach: it begins by removing an object from the bottom of the list and then checks if the token 

count falls within the context window limit. This process of iterative trimming is repeated until the total prompt 

token count is reduced to below the threshold of 4,000 tokens, maintaining a safe margin of 96 tokens. This 

ensures that the model operates effectively within its token limit, optimizing performance while adhering to 

technical constraints. 

 

3.2. Dataset 

In the field of Knowledge-Based Visual Question Answering (KB-VQA), the creation and refinement of 
specialized datasets are pivotal. These datasets not only facilitate the training and evaluation of artificial 
intelligence models but also reflect the diverse and growing complexities that this domain contends with. 

 

3.2.1. Overview of Datasets 

Multiple datasets have been developed to serve and address the KB-VQA task. Prominent among them are: 

1. Knowledge-Based VQA (KB-VQA) (Wang et al., 2015): One of the earliest datasets in this domain, KB-VQA 

comprises 700 images and 2,402 questions, with each question associated with both an image and a 

knowledge base (KB). The KB encapsulates facts about the world, including object names, properties, and 

relationships, aiming to foster models capable of answering questions through reasoning over both the 

image and the KB. 

2. Factual VQA (FVQA) (Wang et al., 2017): This dataset includes 2,190 images and 5,826 questions, 

accompanied by a knowledge base containing 193,449 facts. The FVQA's questions are predominantly factual 

and less open-ended compared to those in KB-VQA, offering a different challenge in knowledge-based 

reasoning. 

3. Outside-Knowledge VQA (OK-VQA) (Marino et al., 2019): OK-VQA poses a more demanding challenge than 

KB-VQA, featuring an open-ended knowledge base that can be updated during model training. This dataset 

contains 14,055 questions and 14,031 images. Questions are carefully curated to ensure they require 

reasoning beyond the image content alone. 

Customized 
Prompt 

Template 

<s>[INST] <<SYS>> 

{Customized_system_prompt} 

<</SYS>> 

 

[CAP]{caption}[/CAP][OBJ]{objects}[/OBJ][QES]{question}[/QES][/INST]{model_answer}</s

> 

Description 

{Customized_system_prompt} Please see full prompt in Appendix A.4 

[CAP] Indicates the start of the caption. 

{caption} The image caption text. 

[/CAP] Indicates the end of the caption. 

[OBJ] Indicates the start of the objects list. 

{objects} The objects along with their BBOXes and confidence levels. 

[/OBJ] Indicates the end of the objects list. 

[QES] Indicates the start of the question being asked. 

{question} The question.  

[/QES] Indicates the end of the question being asked. 

Table 3-2 Customized prompt template for LLaMA-2 Chat Model. 
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4. Augmented OK-VQA (A-OKVQA) (Schwenk et al., 2022): Augmented successor of OK-VQA dataset, focused 

on common-sense knowledge and reasoning rather than purely factual knowledge, A-OKVQA offers 

approximately 24,903 questions across 23,692 images. Questions in this dataset demand common-sense 

reasoning about the scenes depicted in the images, moving beyond straightforward knowledge base queries. 

It also provides rationales for answers, aiming to be a significant testbed for the development of AI models 

that integrate visual and natural language reasoning. 
 

Dataset Images Count Questions Count Knowledge Type 

KB-VQA 700 2,402 Fixed KB 

FVQA 2,190 5,826 Fixed KB 

OK-VQA 14,031 14,055 Factoid (Open-ended KB) 

A-OKVQA 23,692 24,903 Factoid/Common-Sense  
Table 3-3 KB-VQA datasets. 

Upon the examination of a range of datasets available in the KB-VQA domain, the OK-VQA dataset (Marino et 

al., 2019) was selected for the research. This choice is particularly driven by the dataset's recognition and 

extensive use within the AI research community (Gui et al., 2022; Lymperaiou and Stamou, 2023; Shao et al., 

2023; Reichman et al., 2023). The widespread adoption of OK-VQA as a benchmark provides a significant 

opportunity to position and evaluate the model within the context of current state-of-the-art systems. 

Additionally, the diversity and complexity of the OK-VQA dataset are provided as a comprehensive platform for 

testing the capabilities of the model in various scenarios. An emphasis on questions that require reasoning 

beyond the visual content is aligned with the research aim to develop AI systems capable of advanced, multi-

faceted problem-solving. Furthermore, the dynamic nature of its knowledge base, reflecting the evolving and 

open-ended nature of real-world information, presents an ideal setting for testing the adaptability and learning 

capabilities of AI models. 

 

3.2.2. OK-VQA Dataset Analysis 

OK-VQA dataset (Marino et al., 2019) has been meticulously designed to furnish a collection of question-answer 

pairs, leveraging a selected subset of images from the COCO dataset (Lin et al., 2014).  

The authors extracted a random sample of 14,031 images from the COCO dataset, upon which they employed 

a group of ten9 individuals to generate a question for each image. The criterion for these questions was that 

they should necessitate external knowledge for accurate answering. Subsequently, the questions deemed to 

require no external knowledge were filtered out. Following this, a different set of 10 individuals were tasked 

with providing answers to the remaining questions. The final step involved the elimination of question-answer 

pairs that exhibited a bias towards certain answers. The resulted dataset has 14,055 questions about the 14,031 

images with 24 images having multiple questions. 

OK-VQA dataset boasts an extensive variety of scenes, extracted from the COCO image repository, which are 

categorically distributed into 10 principal categories as illustrated in Figure 3-3. A distinctive feature of OK-VQA 

is its openness; it is not constrained to a 'closed' dataset, nor is it exclusively derived from a singular, specified 

source (Zakari et al., 2022). Instead, it epitomizes the concept of 'open'-domain knowledge, presenting a 

broader spectrum of information and applications. The dataset has an average length of 8.1 words per question 

and an average of 1.3 words per answer, some of the dataset main characteristics are summarized in Table 3-4. 

 

 

 

 

 
9 Although the original paper mentions 5 individuals (Marino et al., 2019), the actual dataset has 10 answers for each question. 



Multimodal Learning for Visual Question Answering using World Knowledge 

 

25 
 

 

 

 

 

 

 

 

 

 

 

 

 

The questions themselves are crafted to replicate 

real-life scenarios using natural language 

questioning keywords, Figure 3-4 shows the 

distribution of the questioning keywords used in the 

dataset questions.  

A recent study by (Y. Chen et al., 2023) has found 

that approximately 70.8% of questions within the 

dataset can be answered by an average educated 

adult without the need for specific knowledge 

search. This suggests that the dataset was 

predominantly constructed with commonly known 

information, accessible to the general people. 

During dataset investigation, further observations 

were made including: 

1. Spelling Mistakes: (e.g. “sandwhich” instead of sandwich and “moutains” instead of mountains). 

2. Grammar Mistakes: (e.g. “What kind is train is that?” instead of “What kind of train is that?” or “In this 

image what believes soup is too hot too cold and just right?” Instead of “In this image, who believes the soup 

is too hot, too cold, or just right?”). 

3. Wrong Answers: (e.g. for an image showing a traffic sign in Arabic, the question is “What language is this 

sign in?” and some of the answers were “Saudia Arabian” or “Japanese”) 

4. Nuanced Distinctions: Some questions involved distinctions too subtle for individuals or even algorithms to 

discern, such as differentiating between types of oranges or two types of airplanes. 

5. Numerical Ranges: some questions ask about numerical values that normally don’t have a fixed number 

(e.g. “How tall do these animals grow to be?” for an image showing a zebra). 

6. Ambiguous or Incorrect Questions: Some questions are ambiguous or even incorrect (e.g. “What year will 

the vehicle? “). 

7. Contradicting Ground Truth Answers: Many of the questions have ground truth answers that are 

contradicting with each other (e.g. “Electric stove” vs “Gas stove” or “Summer” vs “Winter”). 

While it can be argued that the presence of contradicting ground truth or wrong answers may challenge the 

evaluation process, the remaining observations within the dataset do not undermine its validity. On the 

contrary, these elements—such as spelling mistakes, grammatical errors, nuanced distinctions, and variable 

numerical ranges—authentically reflect the complexity and variability encountered in real-world scenarios. 

Thus, despite some inaccuracies, this dataset remains a highly appropriate choice for simulating real-life 

environments, where information is often imperfect and demands critical interpretation and analysis. The 

inherent imperfections, rather than detracting from its value, enhance the dataset's utility in developing more 

 

Figure 3-4 OK-VQA question keyword distribution. 

 

 

 
Figure 3-3 Questions distribution over knowledge categories. 

 

OK-VQA Dataset Characteristics 

No. of Images 14,031 

No. of Questions 14,055 

No. of Questions Categories  10 + 1 (others) 
No. of unique Entities 12,591 
Ground Truth Answers per Question 10 
Average Question Length 8.1 (words) 
Average Answer Length 1.3 (words) 
No. of Unique Questions 12,591 
No. of Unique Answers 14,454 
No. of Questions with Consensus Answers 1,701 
No. of Unique Words in Questions 5,703 
No. of Unique Words in Answers 11,125 

Table 3-4 OK-VQA dataset characteristics. 
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resilient and adaptable artificial intelligence systems capable of navigating and interpreting the intricacies of 

human language and knowledge. 

 

3.3. Implementation 

3.3.1. Component Models 

In the implementation of the object detection stage, the KB-VQA system explores different configurations for 

experimental purposes, one configuration utilizes the ‘Yolov5-small’ (Jocher, 2020) model from Ultralytics10, 

another experimental setup employs DETIC (Zhou et al., 2022) from Meta via HuggingFace Transformers 

library11, this setup corresponds to the 'Detic_DeformDETR_R50_4x' checkpoint from the original repository12, 

for both configurations, the default settings were retained except for the ‘Confidence Threshold’, which was 

adjusted to 0.2 during both fine-tuning and testing stages. All images’ captions were generated using 

InstructBLIP (Dai et al., 2023) via HuggingFace Transformers library13. The PT-LLM used was LLaMA-2 Chat 

(Touvron et al., 2023b) with two configurations, ‘LLaMA-2 7B Chat’ and ‘LLaMA-2 13B Chat’. Detailed 

configurations for all the component models can be found in Appendix B.2. 

 

3.3.2. Fine-Tuning 

A critical aspect of the KB-VQA system design involves two fundamental requirements: firstly, guiding the PT-

LLM model in interpreting language-mediated visual contexts and leveraging its reasoning capabilities to extract 

the necessary implicit knowledge for answering queries; secondly, ensuring that the model's responses conform 

to the specific answer format required by the OK-VQA dataset, which is primarily limited to 1-2 words as 

demonstrated in Table 3-4. Predominantly,  existing research (Yang et al., 2022; Shao et al., 2023; Tan and Shen, 

2023; Xenos et al., 2023) has adopted In-Context (n-shot) learning strategies, where a text and vision encoder 

modules of models like CLIP (Radford et al., 2021) or BLIP (J. Li et al., 2022) are employed to generate 

embeddings for a selected set of examples, at each inference stage, n-samples are selected from the complete 

set based on their cosine similarity to the current input's embedding, and used to exploit the PT-LLM n-shot 

learning capabilities. This approach, however, faces several challenges. First and for most, the selection of 

relevant examples for each new query is a significant hurdle due to the finite number of prepared examples, 

which might not cover all possible question-image scenarios comprehensively. Additionally, the PT-LLM's 

context window imposes a significant restriction on the number of examples that can be effectively utilized at 

each inference, limiting the scope of contextual understanding. Thirdly, the computational demand of 

processing multiple examples for each inquiry can be computation expensive, thus affecting the system's 

efficiency and scalability. 

In contrast, this project implements a custom instruction-based fine-tuning approach for the PT-LLM. By 

integrating the custom special tokens discussed in Section 3.1.3 into the model’s vocabulary and customizing 

the training data based on a structure that guides the model on how to interpret these special tokens, the 

modality gap effectively shrink and the model becomes more visually aware of the scene.  the OK-VQA dataset 

was re-engineered to incorporate the objects and captions and re-structure all entries to follow this structured 

format as illustrated in Figure 3-5. 

 

 

 

 
10 https://github.com/ultralytics/ultralytics  
11 https://huggingface.co/facebook/deformable-detr-detic  
12 https://github.com/facebookresearch/Detic?tab=readme-ov-file  
13 https://huggingface.co/docs/transformers/main/en/model_doc/instructblip#transformers.InstructBlipForConditionalGeneration 

https://github.com/ultralytics/ultralytics
https://huggingface.co/facebook/deformable-detr-detic
https://github.com/facebookresearch/Detic?tab=readme-ov-file
https://huggingface.co/docs/transformers/main/en/model_doc/instructblip#transformers.InstructBlipForConditionalGeneration
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This method addresses the limitations of n-shot learning and not only meets the need for sophisticated 

reasoning over visual and textual data but also ensures that the outputs strictly adhere to the dataset's concise 

answer format without excessive computational overhead. 

The fine-tuning process began by structuring 8,135 samples from the dataset according to the format depicted 

in Figure 3-5, where the most popular answer among the ground truth answers was used together with the 

objects list detected using YOLOv5. To enable the fine-tuning on a single GPU with the lowest GPU RAM 

requirements, all samples exceeding a token count of 1,024 were excluded, resulting in 7,403 viable samples. 

Subsequently, a Parameter-Efficient Fine-tuning (PEFT)14 approach was employed using QLORA (Quantized LOw 

Rank Adapter) (Dettmers et al., 2023). This approach combines quantization—reducing numerical precision 

from 32-bit to 16-bit or 4-bit floating points—with LORA (LOw Rank Adapter) (Hu et al., 2021), which introduces 

a trainable adapter layer over the LLM's existing layers. Critically, this method does not require training the 

entire model's weights but focuses solely on the adapter15. This quantized adapter has been shown to be 

efficient while having a minimal impact on model performance (Zhao et al., 2023; Naveed et al., 2023). The 

model was fine-tuned using 4-bit quantization for one epoch and a decaying learning rate of 2 × 10−4, with 

201.9 million and 129 million trainable parameters for LLaMA-2 13B and LLaMA-2 7B, respectively. Fine-tuning 

configuration details and results can be found in Appendix B.3. 

 

3.3.3. Hardware & Environment 

All project stages were implemented on Google Colab Pro+. A single T4 GPU – 15 GB GPU RAM was used 

during the whole research except for the fine-tuning stage where a single A100 GPU – 40GB GPU RAM was 

used. 

GPU requirements were calculated using the below formula (Stoelinga, 2023): 

 

 

 

 

 

 

 

 
14 https://github.com/huggingface/peft 
15 Fine-tuning GPT-3 175B using LORA reduces the trainable parameters by up to 10,000 times (Hu et al., 2021). 

<s>[INST] <<SYS>> 

{Customized_System_Prompt} 

<</SYS>> 

 

[CAP]the image shows ..[/CAP][OBJ]{object: teddy bear, bounding box: [72.56, 102.59, 253.67, 

283.61], certainty: 81.48%} 

.. 

{object: tie, bounding box: [421.4, 182.47, 481.06, 241.11], certainty: 39.85%}[/OBJ][QES]Which 

American president is most associated with the stuffed animal seen here?[/QES][/INST]Theodore 

Roosevelt</s> 

 

 

Figure 3-5 Fine-tuning data structure. 

M:       Required GPU in GB.          P:     Model Size. 
4B:     4Bytes (32 bits).                   Q:     Quantization (e.g. 8-bit, 4-bit). 
1.2:    Additional Overhead. 

𝑀 =
ሺ𝑃 ∗ 4𝐵ሻ

ሺ32 𝑄Τ ሻ
∗ 1.2 

 
Equation 3-1 GPU requirements calculation. 

https://github.com/huggingface/peft
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3.3.4. Interactive Model Access on Huggingface Space 

To improve the accessibility and demonstrability of the Knowledge-Based Visual Question Answering (KB-VQA) 

model, a detailed demonstration has been set up on Hugging Face Spaces. It can be accessed through the link: 

https://huggingface.co/spaces/m7mdal7aj/KB-VQA   

This platform offers an intuitive interface for users to interact with the KB-VQA model’s features, including the 

fine-tuned models available for immediate use and assessment. The complete code for the project is also 

accessible in this space, allowing for easy review and customization. The demonstration not only presents the 

project in its entirety but also aids in understanding the foundational processes. It provides in-depth views of 

the training and validation dataset, highlighting the variety and characteristics of the data. Additionally, the 

model’s performance is thoroughly documented through evaluation results, providing concrete proof of its 

effectiveness across different measures. The model’s testing stage is comprehensively detailed, giving users the 

opportunity to test the model’s real-time response to a range of visual questions. This extensive demonstration 

is a crucial tool for both scholars and industry professionals, enhancing openness and supporting ongoing 

research and innovation efforts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://huggingface.co/spaces/m7mdal7aj/KB-VQA


Multimodal Learning for Visual Question Answering using World Knowledge 

 

29 
 

 

 

 

 

 

Chapter 4  

4. Evaluation and Results 
Evaluating the KB-VQA model on the OK-VQA dataset, which focuses on open-ended questions, poses unique 

challenges compared to other datasets that use multiple-choice formats (Lu et al., 2022). Traditional metrics fall 

short in capturing the complexities of open-ended responses, which require not only correctness but also 

contextual relevance and deep semantic understanding. Thus, a more sophisticated evaluation framework is 

essential to accurately assess the model's performance in this nuanced domain. 

 

4.1. Evaluation Metrics 

In the domain of Knowledge-Based Visual Question Answering (KB-VQA), the evaluation of model efficacy 

transcends the realm of straightforward quantitative analysis, necessitating a multifaceted approach to 

accurately gauge performance. The inherent complexity of KB-VQA models, which integrate intricate aspects of 

both visual perception and knowledge-based reasoning, poses significant challenges in their assessment. Unlike 

conventional tasks where a singular, definitive answer is often expected, KBVQA scenarios are characterized by 

a diverse array of potential correct answers, each varying in their semantic and contextual appropriateness. 

This multiplicity of valid responses, coupled with the subjective nature of certain queries, renders traditional 

evaluation metrics such as binary accuracy insufficient. Consequently, the evaluation process must be 

meticulously designed to encompass not only the correctness of the answers in a literal sense but also their 

relevance and alignment with human-like understanding and reasoning. This necessitates the adoption of 

advanced, nuanced metrics that can effectively capture the depth and breadth of the model's cognitive and 

interpretative capabilities, thereby providing a more holistic and representative assessment of its performance 

in KBVQA tasks. Below are several existing metrics that are commonly employed in the evaluation of KB-VQA 

system: 

1. Simple Accuracy: The Simple Accuracy metric, commonly used in various ML systems including question-

answering model, finds limited application in KB-VQA, it can be applicable when when dealing with datasets 

like that feature questions with multiple-choice answers such as A-OKVQA (Schwenk et al., 2022) or 

ScienceQA (Lu et al., 2022). 

However, this metric's effectiveness diminishes in the context of open-ended questions, typical of datasets 

like OK-VQA. Such questions, reflecting real-world complexities, present a wide array of potential correct 

answers, challenging the Simple Accuracy metric's capacity to capture the nuances of human cognition. This 

limitation underscores the necessity for more sophisticated, contextually adaptive evaluation methods in 

KBVQA, capable of accommodating the diverse range of plausible answers inherent in open-ended 

Simple Accuracy =
Number of Correct Answers

Total Number of Answers
× 100% 

Equation 4-2 

 

Equation 4-1 
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scenarios, thereby providing a more accurate reflection of a model's ability to mimic human-like 

understanding and reasoning. 

2. VQA Score (Soft Accuracy) (Antol et al., 2015): VQA Score, also known as the Consensus Metric (Zakari et 

al., 2022) stands as the most commonly and widely used metric for evaluating the majority of KB-VQA models 

(Wu et al., 2021; Lin et al., 2022; Gui et al., 2022; Yang et al., 2022; Z. Chen et al., 2023; Shao et al., 2023). 

This metric, predicated on a consensus-based approach, deems an answer to be 100% accurate if it aligns 

with at least three out of the ten provided ground truth answers for each question. This approach is 

particularly adept at accommodating the inherent variability and subjectivity of human responses in KB-VQA 

tasks. 

VQA score can be broken down into two formulas. The first formula calculates the accuracy for each 

individual evaluation sample, while the second formula aggregates these accuracies to provide an overall 

Soft Accuracy score. This scoring criteria gives the model a partial credit, even if it generates an answer that 

is less common among ground-truth answers. 

Where 𝑁 is the total number of the evaluation samples and 𝑖 is the 𝑖𝑡ℎ sample. 

The utilization of this metric is predominantly chosen for its simplicity (de Faria et al., 2023) and the ease of 

access to 10 ground-truth answers in certain datasets, such as OK-VQA (Marino et al., 2019). Nevertheless, 

this approach is not without limitations. The collection of 10 ground-truth answers for each question poses 

a significant expense. Moreover, achieving a consensus among 3 annotators on most questions is a 

challenging endeavour. This difficulty escalates markedly in obtaining unanimous responses from 3 

annotators for 'why' questions or subjective inquiries necessitating a numerical response. Such constraints 

inherently cap the maximum evaluation score attainable by a model. 

Moreover, the employment of this metric for model training, as opposed to mere evaluation, presents 

another caveat. It may inadvertently prompt models to generate predictable, commonplace responses that 

align more closely with the ground truth. This tendency potentially occurs at the expense of more innovative 

or insightful answers, which, although equally valid, may be less prevalent. The implications of this on the 

development of models warrant careful consideration, as it could lead to a propensity for safe, but less 

informative, predictions. 

3. Exact Match (EM) : The Exact Match metric, as defined by (Gao et al., 2022b), is a specific evaluation method 

used in Visual Question Answering (VQA) that measures the accuracy of a VQA system based on the 

exactness of its predictions compared to a set of annotated answers. Unlike a strict one-to-one comparison 

with a single ground truth, the EM metric considers a prediction correct if it exactly matches any one of the 

10 annotated answers provided for each question. This approach acknowledges the possibility of multiple 

valid answers for a single question in VQA tasks. 

The EM metric is calculated as the percentage of questions for which the predicted answer is an exact match 

to at least one of the 10 provided annotated answers. This method treats all annotated answers as equally 

valid ground truths, thereby offering a more flexible and realistic assessment of a model's performance in 

scenarios where a range of correct answers is possible. The EM metric was utilized in evaluating KB-VQA 

models such as TRiG (Gao et al., 2022b). 

While this metric is considerably less stringent than the VQA score, it still focuses on the exact match of the 

answer, potentially missing the semantic accuracy where different phrasing or synonyms could convey the 

correct answer. This might lead to undervaluing models that provide semantically correct but differently 

Soft Accuracysample = 𝑚𝑖𝑛 ൬ 
Number of Matching Ground Truth  Answers

3
, 1 ൰ 

 

Soft Accuracy =
∑ Accuracysample𝑖

 𝑁
𝑖=1

𝑁
 

 

Equation 4-3 

Equation 4-4  
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phrased responses. Additionally, this metric may lead to an over-simplification of the evaluation process. In 

real-world scenarios, certain answers, while technically correct, might be less informative or less useful than 

others. Furthermore, this metric doesn’t differentiate between frequent and less frequent answers, treating 

them with equal weight. 

4. Answer Frequency Rank (Marino et al., 2021): This metric is employed to assess the alignment of model 

predictions with commonly occurring answers in a reference dataset. This metric ranks potential answers 

based on their frequency of occurrence, with the premise that more frequent answers are more likely to be 

correct in certain contexts. This metric was utilized in evaluating KB-VQA models like KRISP (Marino et al., 

2021). 

The implementation of this metric involves two key steps. First, each answer in the reference set is assigned 

a Frequency-based Rank, 𝐹𝑅, where the most frequent answer is given the highest rank. Then, a Rank Score 

ሺ𝑅𝑆ሻ is allocated to each rank. For a scenario with 𝑁 distinct ranks, the score for rank 𝑟 is defined as:  

The overall performance score 𝑆 for the VQA model is calculated as the average of these Rank Scores across 

all questions, using the formula: 

where 𝑄 is the total number of evaluation questions, and 𝑟𝑖 is the rank of the model's predicted answer for 

the 𝑖𝑡ℎ question.  

The Answer Frequency Rank metric, while providing a quantitative measure of a model's ability to predict 

commonly occurring human responses, has its share of limitations. On of the issues is its sensitivity to the 

distribution of answers within the dataset, making it highly sensitive to any bias in the dataset (de Faria et 

al., 2023). Consequently, models might excel according to this metric but struggle in handling novel or 

infrequent responses. Moreover, the metric lacks nuance in differentiating between the semantic diversity 

of answers, treating all frequent responses equally, regardless of their informativeness. This approach 

overlooks the distinction between trivial and substantial answers, leading to an incomplete evaluation of a 

model's capabilities. Another significant limitation is the metric's penalization of models for predicting rare, 

yet contextually pertinent, answers, thereby ignoring their relevance in specific scenarios. Additionally, the 

metric's assumption that frequently occurring answers are more likely to be correct does not consider the 

variability of context, where an answer valid in one situation might be inapplicable in another.  

 

 

4.2. Evaluation Process 

In the evaluation phase of the Knowledge-Based Visual Question Answering (KB-VQA) model, the assessment 

was structured to encompass both syntactic and semantic evaluations, employing VQA Score (Antol et al., 2015) 

and Exact Match (Gao et al., 2022b) as the primary scoring criteria. A representative sample of 1,000 image-

question pairs, evenly distributed across all question categories and excluded from finetuning data, was selected 

for this comprehensive analysis. 

 

4.2.1. Syntactic Evaluation 

The syntactic evaluation, aimed at aligning with state-of-the-art KB-VQA models, focuses on the literal alignment 

of words and phrases. To ensure fair comparison, a meticulous process emphasizing syntactic accuracy was 

adopted, which is crucial for facilitating rigorous comparisons between the evaluated model's outputs and the 

𝑅𝑆ሺ𝑟ሻ = 𝑁 − 𝑟 + 1 
 

Equation 4-5 

𝑆 =
1

𝑄
∑ 𝑅𝑆

𝑄

𝑖=1

ሺ𝑟𝑖ሻ 

 

Equation 4-6 
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ground truth answers. This process adheres to the common practice in KB-VQA models evaluation models (Wu 

et al., 2021; Lin et al., 2022; Gui et al., 2022; Yang et al., 2022; Z. Chen et al., 2023; Shao et al., 2023), prioritizing 

syntactic precision to maintain the integrity and uniformity of the assessment. 

The process involved applying the following steps to the ground truth and KB-VQA model answers:  

1. Text Normalization: All text is standardized to a uniform format, primarily by converting it to lowercase. 

Tool Used: Python's string methods. 

   Example: Equating “Earth” with “earth”. 

2. Stemming: Words are converted to their base form, which standardizes various forms of the words. 

   Example: “biking” and “bikes” are stemmed to “bike”. 

   Tool Used: NLTK's PorterStemmer. 

3. Compound Words and Hyphenated Terms: Compound words and hyphenated terms are reconciliated. 

   Example: Matching “racecar” with “race car” and “teddy bear” with “teddy-bear”. 

   Tool Used: FuzzyWuzzy library followed by manual review. 

4. Spelling Mistakes: Minor spelling mistakes are considered a match.  

   Example: “bicyle” with “bicycle” and “sunlihjy” with “sunlight”. 

   Tool Used: FuzzyWuzzy library followed by manual review. 

5. Simple Variations: Simple variation is considered a match. 

   Example: “grapes and bananas” vs “bananas and grapes”. 

   Tool Used: FuzzyWuzzy library followed by manual review. 

This approach strategically excluded semantic considerations to benchmark against other state-of-the-art KB-

VQA models. Synonyms and semantic equivalents, like 'automobile' versus 'car' or “texting” versus “chatting, 

were not recognized as matches to maintain a focus on syntactic precision. 

During the syntactic-focused evaluation across various experimental setups, after applying the outlined 

preprocessing steps to both the model and ground-truth answers, 86 samples were identified as potential 

matches based on a FuzzyWuzzy ratio > 80%. Each of these 86 samples was subjected to a thorough manual 

review to validate the accuracy of the match. Through this meticulous process, approximately 30% of these 

initially identified matches were subsequently reclassified as mismatches. Notable examples of such mismatches 

include matching “15 years” with “14 years” or “50 feet” with “500 feet”. 

 

4.2.2. Semantic Evaluation 

Semantic evaluation recognizes the importance of context and meaning, going beyond the literal alignment of 

words. This approach is particularly effective in assessing the model's ability to generate accurate answers that 

are not just syntactically correct but also semantically relevant.  

In addition to the syntactic-focused evaluation, a semantic evaluation was conducted using the same scoring 

criteria – VQA Score (Antol et al., 2015) and Exact Match (Gao et al., 2022b). However, this approach differed 

significantly in its consideration of both syntactic and semantic matching, inspired by (Mañas, Krojer and 

Agrawal, 2024) the advanced capabilities of Large Language Models (LLMs) were leveraged, specifically GPT-4 

(OpenAI, 2023). 

The necessity for this approach becomes evident when considering the diversity in human responses: In our 

dataset, 1,701 questions showed complete agreement among annotators, suggesting syntactic consistency. 

However, there were 12,354 questions with partial or no agreement, highlighting the limitations of a purely 

syntactic analysis. This disparity underscores the need for a semantico-syntactic16 evaluation that not only 

assesses structural accuracy but also contextual and semantic appropriateness. 

By employing LLMs, the evaluation process taps into a deeper understanding of language, considering nuances, 

context, and the intended meaning behind words and phrases. This methodology aligns with the ultimate goal 

 
16 Semantico-syntactic evaluation refers to an approach that combines both semantic and syntactic analysis in the assessment of language or language-based 
models. 
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of developing a KB-VQA model that delivers correct answers, irrespective of the specific syntax used. It 

acknowledges that in real-world scenarios, the effectiveness of a VQA model is determined not only by its 

adherence to syntactic accuracy but also by its capacity to interpret and respond to the semantic content of 

queries. 

Leveraging LLMs for evaluating the KB-VQA is beneficial for many reasons including: 

1. Contextual Understanding: LLMs like GPT-4 offer a nuanced understanding of context. Their advanced 

algorithms enable them to interpret questions and answers in a human-like manner, leading to more 

accurate and realistic evaluations of the model's performance. 

2. Flexibility in Language Use: Users often phrase similar queries differently. LLMs' ability to process and 

understand this linguistic variability ensures that the evaluated model can accurately respond to a wide range 

of query formulations. 

3. Comprehensive Model Assessment: LLMs facilitate an evaluation that encompasses both syntactic and 

semantic considerations. This results in a holistic view of the model, assessing not only the correctness of 

the information provided but also its relevance and appropriateness. 

4. Alignment with Real-World Usage: Modern users expect conversational AI to grasp queries beyond just the 

literal word matching. LLMs enable this understanding, ensuring that the model is tested against standards 

that reflect actual use cases. 

Nevertheless, this approach is not without limitations: 

1. Cost: Utilizing models like GPT-4 for extensive evaluation can be costly, GPT-4 API costs 90$ for 1 million 

tokens input and 1 million tokens output (OpenAI, 2024a). 

2. Potential for Hallucination: Even well-trained models like GPT-4 can "hallucinate," i.e., generate plausible 

but incorrect or nonsensical information. This is particularly true for ambiguous questions or answers 

where the model might generate confident responses that are factually incorrect or irrelevant (Mañas, 

Krojer and Agrawal, 2024). 

3. Handling Ambiguity: Ambiguous questions or answers pose a significant challenge. GPT-4, while adept at 

processing language, might still struggle to derive clear, accurate conclusions from ambiguous or poorly 

structured inputs. This is a crucial consideration for KB-VQA models where the clarity and specificity of 

responses are essential. 

4. Probabilistic Nature: Being based on probabilistic models, LLMs like GPT-4 might produce different outputs 

for similar or identical inputs due to the inherent randomness in their response generation process. In an 

effort to control this as much as possible, OpenAI  recommends using a fixed temperature in addition to 

the Beta feature of adding a seed for the model to try – but does not guarantee – to sample 

deterministically (OpenAI, 2024b) 

 

Human evaluation remains the gold standard for its nuanced understanding; however, it falls short in practicality 

and scalability for large-scale datasets. In contrast, while PT-LLMs like GPT-4 have their limitations, their benefits 

— in terms of efficiency and breadth of language comprehension — significantly outweigh these limitations, 

making them a highly practical alternative for evaluating KB-VQA models. It can also be argued that standard 

evaluation metrics, like the VQA score (Antol et al., 2015) which primarily focuses on syntactic equivalence, may 

be more appropriate for evaluating vanilla VQA models (Antol et al., 2015). These models are designed to 

address VQA tasks where the required information is solely derived from the image content itself. However, this 

approach becomes less efficient when applied to KB-VQA models that necessitate external knowledge beyond 

the image content. This requirement introduces a level of subjectivity to the knowledge, which the standard 

metrics are not equipped to assess accurately. 
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Semantic evaluation was conducted using GPT-4 API employing the following template and configurations: 
 

Seed 123 

Temperature 0.1 

Template 

{"role": 'system', 'content':  

"You are an AI trained to evaluate the equivalence of AI-generated answers 

to a set of ground truth answers for a given question. Upon reviewing a 

model's answer, determine if it matches the ground truths. Use the following 

rating system: 1 if you find that the model answer matches more than 25% of 

the ground truth answers, 2 if you find that the model answer matches only 

less than 25% of the ground truth answers, and 3 if the model answer is 

incorrect. Respond in the format below for easy parsing: 

Rating: {1/2/3}”   

{'role': 'user', 'content':  

“Question: What breed of dog is seen in this picture? 

Ground Truth: ['bulldog', 'bulldog', 'bulldog', 'bulldog', 'boxer', 

'boxer', 'boxer', 'boxer', 'mongrel', 'mongrel'] 

Model's Response: boxer”} 
Table 4-1 GPT-4 API settings for semantic evaluation. 

     

4.3. Main Results  

Table 4-2 summarizes the syntactic (employing string matching) and semantic (utilizing GPT-4) evaluations of 

the KB-VQA model’s performance, leveraging both metrics the VQA score and Exact Match (EM) score on the 

OK-VQA dataset, as delineated in Section 4.2. The evaluations encompass four distinct configurations, 

integrating two sizes of the LLaMA-2 model (7B and 13B) with two object detection models (DETIC and YOLOv5). 

The configuration combining LLaMA-2 13B with DETIC demonstrates superior performance across both syntactic 

and semantic evaluations, as detailed in the last row of the table.  

Model 
Syntactic Evaluation (%) Semantic Evaluation (%) (GPT-4) 

VQA Score 
(%) 

EM Score VQA Scores 𝚫𝐕 EM Score 𝚫𝐄 

ConceptBert (Gardères et al., 
2020) 

33.66 - - - - - 

MAVEx (Wu et al., 2021) 39.4 - - - - - 

KRISP (Marino et al., 2021) 38.9 - - - - - 

PICa (Yang et al., 2022) 48 - - - - - 

KAT (Gui et al., 2022) 54.41 - - - - - 

REVIVE (Lin et al., 2022) 58 - - - - - 

MuKEA (Ding et al., 2022) 42.59 - - - - - 

TRiG (Gao et al., 2022b) 50.5 54.73 - - - - 

IPVR (Z. Chen et al., 2023) 44.62 - - - - - 

PROPHET (Shao et al., 2023) 61.1 - - - - - 

LAMOC (Du et al., 2023) 40.31 - - - - - 

TwO (Si et al., 2023) 58.72 61.32 - - - - 

Q&APrompts (Wang and Ge, 

2024) 

64.3 - - - - - 

GeReA (Ma et al., 2024) 66.5 - - - - - 

KB-VQA (This Project) 

7B (Caption + YOLOv5) 57.19 61.08 65.99 8.78 67.86 6.78 

7B (Caption + DETIC) 62.51 67.07 70.19 7.68 71.96 4.89 

13B (Caption + YOLOv5) 60.15 64.77 68.86  8.71 70.66 5.89 

13B (Caption + DETIC) 63.57 68.36 71.09 7.52 72.55 4.19 

Table 4-2 Main results of the KB-VQA system compared to existing methods.   
𝜟𝑽, 𝜟𝑬: Difference between syntactic and semantic evaluation of VQA and EM scores, respectively. 
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Significantly, both EM and VQA scores show notable improvements in the semantic evaluation compared to the 

syntactic assessment. For instance, the optimal model configuration, 13B (Caption + DETIC), registers a +7.52% 

increase in the VQA score and a +4.19% rise in the EM score, indicating superior prediction of semantically 

correct answers, which aligns closely with real-world application needs. 

Utilizing DETIC as the object detector, in contrast to YOLOv5, yields significant improvements in the syntactic 

evaluation, with increases of +5.3% and +3.42% in the VQA score for the 7B and 13B model sizes, respectively, 

and enhancements of +5.99% and +3.59% in the EM score. Comparable gains are also noted in the semantic 

evaluation. These results substantiate the design choice to integrate an object detector capable of detecting a 

broader spectrum of object classes (DETIC versus YOLOv5). The performance gains from DETIC over YOLOv5 are 

more pronounced with the smaller LLaMA-2 size (7B versus 13B), suggesting that DETIC’s enriched visual context 

compensates for the inherent limitations of the smaller model size. 

Across different LLaMA-2 model sizes, regardless of the object detection model used, evaluation criteria, or 

metric, it is evident from the results that larger models yield better results. For example, the 13B (Caption + 

YOLOv5) configuration achieves a 64.77% (+3.69%) EM score, outperforming the 61.08% scored by the 7B 

(Caption + YOLOv5) configuration. This trend is consistent across all model configurations and evaluation 

metrics. Larger PT-LLMs demonstrate stronger language modeling capabilities, facilitating a more profound 

comprehension of the query, a wealthier repository of implicit knowledge, and more effective reasoning across 

the entire input (query, caption, and objects). These findings align with previous research (Guo et al., 2023; 

Xenos et al., 2023), which reported similar benefits when using larger PT-LLMs in KB-VQA systems, and call for 

further experimentation with the largest available LLaMA-2 size, the 70B. 

 

4.4. Comparative Results 

Although certain studies (Lin et al., 2022; Ma et al., 2024) have implied that semantic evaluation of models might 

lead to more accurate results, the prevailing norm continues to be the standard syntactic evaluation. 

Consequently, these studies have not reported their findings using semantic metrics. Therefore, the comparative 

analysis remains confined to syntactic evaluations for both VQA and EM scores. 

In terms of the EM score, the model demonstrates superior performance, surpassing those models previously 

benchmarked using this metric by achieving 68.36%, compared to 61.32% for TwO (+7.04%) and 54.73% for Trig 

(+13.63%). In terms of the VQA score, the model displays highly competitive results, surpassing nearly all existing 

models except for GeReA, which leads by 2.93%, and Q&APrompts, by 0.73%. The superior results of GeReA can 

be attributed to the richer visual context resulting from the employment of two large models (InstructBLIP + 

LLaVA-1.5), where each generates multiple captions for each key region in the image, providing a deeper and 

more nuanced understanding. However, this approach may limit efficiency during inference due to increased 

computational demands. The assertion that the superior performance of GeReA is attributed to the use of dual 

models can be substantiated by examining the results of GeReA when employing a single model. GeReA 

developers report their results when using a single captioning model to be 62.1% for InstructBLIP (i.e. inferior 

to the developed model in this research) and 63.6% for LLaVA-1.5 (approximately similar to this research model 

results). Conversely, the negligible difference of 0.73% between this research model and Q&APrompts indicates 

a comparable level of performance, likely within the margin of experimental error or minor inherent testing 

variances. 

While the KB-VQA system developed in this research is shown to demonstrate superior performance on the EM 

score relative to models that have reported results using this metric, it must be acknowledged that not all 

models have been evaluated using the EM score. As the VQA score is the uniform metric across models, the EM 

score provides additional insights but cannot be utilized to definitively benchmark the system against all existing 

models.  
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4.5. Qualitative Analysis 

Table 4-3 showcases a selection of examples from the validation data, depicting both successful and 

unsuccessful model predictions. The model utilizes visual context for comprehending questions and deriving 

answers, drawing from either generated image captions or detected objects within bounding boxes. Notably, 

the initial three rows demonstrate successful model predictions. This success is attributed to the model’s 

engagement in reasoning processes that harness key terms from the visual context, supplemented by the 

retrieval of pertinent knowledge. For instance, in the first row, the model adeptly identifies an animal as a 'cat' 

from visual cues present in both the caption and object detection. Utilizing its implicit knowledge base, it 

correctly deduces that the typical sound made by a content cat is purring, showcasing its ability to synthesize 

information from visual inputs and inherent knowledge to form accurate conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3 Qualitative visualization of the results. 

Predicted answers by the model configuration 13B (Caption + DETIC). 

Q: How many grams of sugar are in this item? 
GTs: ['20', '20', '20', '20', '25', '25', '4', '4', '6', '6'] 
Caption: a bagel is sitting on a white plate … 
Objects: bagel, plate, …  
Model Answer: 10 

 

Q: What sort of sound does this animal make when it's contented as it appears to  

      be now? 

GTs: ['purr', 'purr', 'purr', 'purr', 'purr', 'purr', 'purrs', 'purrs', 'meaow', 'meaow'] 

Caption: a cat is lying in a suitcase, which is open and partially filled with clothes … 

Objects: cat, pillow, crib, pet, cushion, kitten, … 

Model Answer: purr 
 

 

VQA Score: 100% 

EM Score: 100% 
VQA Score (GPT-4): 100% 

EM Score (GPT-4): 100% 

Q: What sort of hat is this man wearing? 

GTs: ['cowboy', 'cowboy', 'cowboy', 'cowboy', 'cowboy', 'cowboy', 'cowboy',  

          'cowboy', 'cowboy', 'cowboy'] 

Caption: a man is standing near a body of water, wearing a hat and … 

Objects: hat, cellular_telephone, cowboy_hat, boat, … 
Model Answer: cowboy  

VQA Score: 100% 

EM Score: 100% 

VQA Score (GPT-4): 100% 

EM Score (GPT-4): 100% 

Q: In which US states are these fruits commonly grown? 
GTs: ['florida', 'florida', 'florida', 'florida', 'florida', 'florida', 'florida', 'florida',  
          'florida and california', 'florida and california'] 
Caption: there are several oranges hanging … 
Objects: orange_(fruit), mandarin_orange, …  
Model Answer: florida      

 

VQA Score: 100% 

EM Score: 100% 

VQA Score (GPT-4): 100% 

EM Score (GPT-4): 100% 

Q: What kind of animal is this? 
GTs: ['horse', 'horse', 'horse', 'horse', 'donkey', 'donkey', 'it is lama', 'it is lama', 'pony',  
          'pony'] 
Caption: a horse is standing in a grassy field … 
Objects: pony, pole, horse, … 
Model Answer: pony       

VQA Score: 67% 

EM Score: 100% 

VQA Score (GPT-4): 100% 

EM Score (GPT-4): 100% 

VQA Score: 0% 

EM Score: 0% 

VQA Score (GPT-4): 0% 

EM Score (GPT-4): 0% 

 

Q: What is a good side dish for this meal?? 
GTs: ['fries', 'fries', 'fries', 'fries', 'chips', 'chips', 'baked beans', 'baked beans', 'coleslaw',  
          'coleslaw'] 
Caption: a close-up shot of a sandwich is displayed on a piece of aluminium foil … 
Objects: sandwich, hamburger, beef_(food), …  
Model Answer: potatoes 
 

Model Answer: purr 
 

VQA Score: 0% 

EM Score: 0% 

VQA Score (GPT-4): 67% 

EM Score (GPT-4): 100% 

Q: What style of motorcycle is this called? 
GTs: ['trike', 'trike', 'trike', 'trike', 'tricycle', 'tricycle', 'tricycle', 'tricycle', '3 wheeler',  
          '3 wheeler'] 
Caption: a motorcycle parked on the side of the road … 
Objects: motorcycle, person, car …  

Model Answer: harley      

 

VQA Score: 0% 

EM Score: 0% 

VQA Score (GPT-4): 0% 

EM Score (GPT-4): 0% 
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Further examination was conducted on 100 samples from the evaluation data where the model registered zero 

or partial VQA scores, to discern the underlying causes of these failures. The observations are as follows: 

1. Specialized Knowledge Requirement: The model faces challenges with queries necessitating specialized 

knowledge not commonly known. An example is illustrated in row 4, where determining the sugar content 

in a bagel likely requires specialized nutritional knowledge. This highlights the necessity for targeted 

training, particularly in specialized domains, ensuring the model acquires the requisite depth of knowledge. 

2. Semantic Equivalence: Reasonably correct responses from the model are frequently penalized due to the 

ground truth labels demanding specific terminology. As illustrated in row 5, responses that are semantically 

correct—even arguably more precise—but phrased differently are not fully acknowledged, impacting the 

model’s performance metrics. 

3. Ambiguous Questions with Subjective Answers: Queries that are inherently ambiguous or yield multiple 

valid interpretations present significant challenges, as they complicate the model’s ability to select the most 

appropriate response. The query in row 6, which could elicit various subjective yet correct responses, 

exemplifies this. The model scored 0% in both VQA and EM metrics when evaluated syntactically and 

received partial credit when assessed semantically, with GPT-4 associating the term 'potatoes' with 'chips'. 

4. Loss of Visual Information During Image to Language Transformation: A notable limitation is observed in 

the model’s capability to capture essential visual cues during the transformation of image content into 

language. This is particularly critical in images containing brand names, unclear text, or when distinctions 

in subtle nuances are necessary, as seen in the sample from row 7. This issue calls for further research 

aimed at enhancing the model's representation of the visual context. 

5. Bias, Inconsistency, or Subjectivity in Ground Truth Answers: Despite the model providing logically or 

factually correct responses, discrepancies, subjectivity, and bias within the ground truth answers—as 

discussed in Section 3.2.2—result in partial or zero scoring. This misalignment reinforces the necessity to 

refine validation measures to accommodate semantic equivalences, as addressed in Section 4.2.2.  

 

To investigate the impact of the sequence length, the instances of successful and unsuccessful predictions by 

the model were corelated with the number of tokens for each sample inclusive of the question, caption, objects 

and bounding boxes, and there was no notable impact of the token count on the model performance as shown 

in Figure 4-1.  

 

 

 

 

Figure 4-1 Token Counts vs VQA Score. 
VQA score displayed for the best performing model configuration: 13B (Caption + DETIC). 

The high density of samples containing approximately 4,000 tokens results from trimming samples 
that exceeded the set threshold of 4,000 tokens. 
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4.6. Ablation Study 

To systematically unpack the performance gains and understand the impact of different components within 

the model, and to expand on the reported performance for the four main model configurations discussed in 

Section 4.3, an ablation study was conducted comparing various model architectures. Results of this study are 

detailed in Table 4-4, which presents the performance metrics from these ablation experiments using syntactic 

evaluation17 for both VQA and EM scores.  

 

 

 

 

 

 

 

 

 

 

 

The experimental configurations included limiting the visual context to either captions alone, without objects, 

or to objects detected alone, without captions, and examining the use of specific detection models (either 

YOLOv5 or DETIC) both in isolation and in combination with captions. These experiments were executed utilizing 

both the 13B LLaMA-2 and 7B LLaMA-2 models. It was consistently observed across all configurations that the 

13B LLaMA-2 model outperformed the 7B LLaMA-2, corroborating the superior reasoning capabilities and more 

extensive implicit knowledge repository as discussed in Section 4.3. 

Significant impacts on performance were observed when captions were removed from the visual context, 

irrespective of the object detection model employed. For instance, the 13B configuration employing only DETIC 

achieved a 42.81% VQA score compared to 63.57% for the 13B configuration with both Caption and DETIC, a 

decline of 20.76%. Similar trends were observed in the EM scores with a comparable decline of 21.55%. This 

pronounced impact underscores the critical role of the well-designed prompt used with InstructBLIP, as outlined 

in Appendix B.2, and it becomes particularly apparent by the less pronounced performance drop of 6.08% 

observed when object lists were removed instead of captions. This indicates that the visual context provided by 

captions is more influential than that provided by the object detection module. The lesser impact observed by 

the object detection module may also be ascribed to the limited requirement of the OK-VQA dataset for spatial 

comprehension of the visual scene, where the mapping of objects to their bounding boxes plays a crucial role 

in enhancing spatial awareness and overall model comprehension of the depicted scene. 

Further observations from the experiments indicate that employing DETIC for object detection yielded better 

results, whether used with or without captions, in comparison to YOLOv5. For example, the 13B (Only DETIC) 

configuration performed 1.39% and 1.9% better than the 13B (Only YOLOv5) in VQA and EM scores, respectively. 

Although these improvements are marginal, they reinforce the assertion that a dataset demanding greater 

spatial awareness of the visual scene will exhibit a more pronounced difference between the use of DETIC and 

YOLOv5, due to DETIC's capability to detect a richer array of object classes compared to YOLOv5. 

These findings highlight the nuanced contributions of various system components to the overall model efficacy 

and advocate for continued refinement and evaluation of these elements to bolster the performance of KB-VQA 

systems in complex visual environments. 

 

 
17 Due to the cost involved in using GPT-4, syntactic evaluation was chosen as the sole criterion for baselining in the ablation study.  

LLaMA-2 Model 
Caption 

Object Detector Syntactic Evaluation (%) 

7B 13B YOLOv5 DETIC VQA Score Exact Match 
✓   ✓     56.72 61.38 
✓     ✓   38.29 41.52 
✓       ✓ 40.19 44.01 
✓   ✓ ✓   57.19 61.08 
✓   ✓   ✓ 62.51 67.07 
  ✓ ✓     57.49 62.28 
  ✓   ✓   41.42 44.91 
  ✓     ✓ 42.81 46.81 
  ✓ ✓ ✓   60.15 64.77 
  ✓ ✓   ✓ 63.57 68.36 

Table 4-4 Ablation experiments for KB-VQA model components. 
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Chapter 5 

5. Ethical Considerations 
5.1. Limitations & Broader Impact 

The Knowledge-Based Visual Question Answering (KB-VQA) system exhibits several critical limitations, including 

information loss during the image-to-language transformation, instances of incorrect reasoning that leads to 

misidentification of relevant objects, and challenges recognizing hazy or unclear text and telling time from clock 

images. These technical issues may potentially be exacerbated by inherent biases from the Pre-Trained Large 

Language Models (PT-LLMs) used, which can carry biases from their training data, affecting the fairness and 

neutrality of responses. Despite the effort made during this research to fine-tune the PT-LLM model with the 

OK-VQA dataset in an attempt to control its output, studies indicate that VQA datasets generally may still contain 

gender and racial biases that could lead to stereotyping (Hirota, Nakashima and Garcia, 2022). Additionally, the 

complexity of PT-LLMs often renders their decision-making processes less interpretable, raising significant 

concerns for trust and reliability in KB-VQA applications. Moreover, the necessity for continuous updates to keep 

these models relevant poses a challenge in rapidly evolving knowledge landscapes. 

The deployment of KB-VQA systems enhances educational experiences by providing interactive and immediate 

answers to visual queries, democratizing access to information, and transforming learning environments to 

promote deeper understanding and retention of information. In the technological realm, the development of 

KB-VQA systems advances the fields of artificial intelligence, specifically in computer vision and natural language 

processing, pushing the boundaries of AI capabilities and leading to more sophisticated, efficient, and accurate 

systems applicable across various industries. Societally, KB-VQA systems improve the accuracy and 

responsiveness of AI tools, benefiting society by aiding the visually impaired, enhancing digital interactions, and 

providing crucial support in areas like medical imaging and emergency response. However, these systems also 

confront significant ethical concerns such as data privacy, security, and potential environmental impacts due to 

their computational demands. 

Regulatory and policy considerations are becoming increasingly crucial as these technologies integrate more 

deeply into critical sectors. Despite achieving superior or comparable results, the inherent limitations, and 

broader impacts of the KB-VQA system necessitate cautious deployment. It is imperative to thoroughly assess 

the system to ensure its responsible implementation and alignment with broader societal needs and ethical 

standards.  

 

5.2. Reproducibility 

This research recognizes the critical importance of reproducibility in scientific inquiry and has implemented 

several measures to ensure the reproducibility of both the implementation and the results. To facilitate this, 

fixed seeds were used in all computations where possible to minimize variations in results due to random 

operations. Comprehensive details of the implementation, including all hyperparameters and settings, are 

thoroughly documented in Appendix B. Additionally, the complete implementation code has been made 
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available on the HuggingFace Space detailed in Section 3.3.4. These steps are taken to provide transparency 

and allow for the replication of the study’s findings by other researchers, thereby contributing to the robustness 

and reliability of the research outcomes. 
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Chapter 6 

6. Conclusion & Future Work 
 

6.1. Conclusion  

This research delves into the Knowledge-Based Visual Question Answering (KB-VQA) domain, highlighting how 

visual questions often require external knowledge beyond what is depicted in the images to derive accurate 

answers. It provides a historical overview of the evolution of machine learning, placing particular emphasis on 

the revolutionary impact of the Transformer model, which has fundamentally advanced the field of language 

processing and multimodal tasks through its effective handling of sequential data. Additionally, the study 

explores mainstream Pre-Trained Large Language Models (PT-LLMs) and Pre-Trained Multimodal Models (PT-

LMMs). These technologies have further shaped advancements in machine learning by leveraging vast, pre-

trained knowledge bases to address complex tasks, demonstrating their pivotal role in the development and 

enhancement of KB-VQA systems. An extensive review of established methods for addressing the KB-VQA 

challenge has led to the adoption of a refined approach introduced in this research, which translates visual 

content into language space. This involves transforming images into detailed captions and lists of objects with 

their bounding boxes, leveraging the vast implicit knowledge and reasoning capabilities housed within PT-LLMs. 

The research refined the process of fine-tuning the PT-LLM by incorporating special tokens into the model’s 

vocabulary to enhance its ability to interpret visual contexts effectively. It also analyzed current methods for 

image representation and sources of knowledge utilized in existing approaches, advocating for the use of implicit 

knowledge stored in PT-LLMs, particularly for tasks that do not require specialized knowledge. 

Extensive ablation experiments assessed the impact of each component of the visual context on the overall 

model performance, emphasizing that the image descriptions generated during the captioning stage are the 

most crucial elements. Additionally, the study conducted a thorough analysis of mainstream KB-VQA datasets, 

with a particular focus on the OK-VQA dataset. Evaluation metrics were critically examined, detailing their 

strengths and weaknesses, and the evaluation process was enhanced by introducing semantic evaluation using 

GPT-4 to provide a more accurate understanding of performance aligned with real-world application needs. 

Evaluation results demonstrate that the developed model achieves competent and competitive performance, 

recording a VQA score of 63.57% under the universal benchmark of syntactic evaluation, and excelling with an 

EM score of 68.36%. Further, semantic evaluations yielded even more impressive outcomes, with VQA and EM 

scores of 71.09% and 72.55%, respectively. These results indicate that the model effectively applies reasoning 

over the visual context and successfully retrieves the necessary knowledge to answer the visual questions.  

Additionally, the findings underscore that the primary reasons for failure scenarios include information loss 

during the image-to-text transformation process, as well as the model's difficulties in recognizing text, brand 

logos, and time telling from clock images. Moreover, failures are further exacerbated by the inherent nature of 

the dataset, which includes questions with ambiguity and subjectivity, along with bias and inconsistency in the 
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ground truth answers. These elements collectively contribute to the challenges faced by the model in accurately 

interpreting and responding to the visual queries. 

While the KB-VQA system developed in this research demonstrates superior performance on the EM score, it is 

important to recognize that not all models are assessed using this metric. Although the VQA score is broadly 

accepted as a standard benchmark, the EM score provides supplementary insights but cannot be regarded as a 

comprehensive standard for all models. The less stringent requirements of EM scores imply that models typically 

evaluated using only the VQA score might exceed existing benchmarks if also assessed using the EM score. 

Additionally, the existing evaluation methods, including both the VQA and EM scores, do not adequately capture 

the semantic accuracy of the responses provided by KB-VQA systems. Therefore, there is a clear need for a 

unified metric that incorporates the semantic meaning of answers. Implementing such a metric would enable a 

more comprehensive and accurate evaluation, ensuring a holistic and standardized approach to benchmarking 

that truly reflects the nuanced and precise capabilities of the KB-VQA models. 

Overall, this research not only clarifies the complexities associated with KB-VQA but also sets the stage for future 

advancements in integrating visual content with advanced language models, thereby enhancing the 

interpretative and reasoning capabilities of AI systems in handling real-world visual queries.  

 

6.2. Future Work 

Although, the current approach of language-mediated visual context discussed in Chapter 3 has demonstrated 

exemplary performance, further explorations and investigations can be considered: 

 

1. Multi-Modal Embeddings Alignment 

The inception of this research was guided by two principal objectives: firstly, the immediate goal of devising a 

system to address the Knowledge-Based Visual Question Answering (KB-VQA) task via language-mediated visual 

context, which constitutes the primary focus of this dissertation and is detailed in Chapter 3; secondly, the long-

term ambition to cultivate a versatile multimodal model capable of comprehensive vision and language 

understanding, as well as instruction following. 

The preliminary architectural blueprint for this methodology draws inspiration from a spectrum of preceding 

studies (Alayrac et al., 2022; Merullo et al., 

2023; Girdhar et al., 2023; R. Zhang et al., 

2023; Dai et al., 2023; Li et al., 2023; Liu et 

al., 2023) and is depicted in Figure 6-1. The 

concept entails the generation of image 

embeddings via the pre-trained vision 

encoder of CLIP18 (Radford et al., 2021), 

which are then fed into either a linear 

(Merullo et al., 2023; Liu et al., 2023) or 

attention-based (Alayrac et al., 2022; R. 

Zhang et al., 2023; Dai et al., 2023) 

projection layer. This layer is trained to 

predict corresponding caption textual 

embeddings produced by LLaMA-2, 

thereby aligning the image and textual 
embeddings into a unified space. 
Initially, all models are kept frozen 

 
18 CLIP has 12 transformer layers in the vision encoder followed by a fully connected layer. The embeddings are taken from the last transformer layer. 

 

 
Figure 6-1 Blueprint design for Language-Vision embeddings alignment for Multimodal learning and 

Instruction-Following. 
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except the projection layer, which is trained on a large image-caption dataset. Subsequently, in the next training 

stage, both the projection layer and LLaMA-2, specifically LLaMA-2-Chat, are further trained on a selective high-

quality image instruction-following dataset, while the vision encoder is kept frozen. The objective of the initial 

training stage is to convert image embeddings into visual tokens comprehensible by LLaMA-2, while the 

objective of the second training stage is to train LLaMA-2 on multi-modal instruction following. 

Throughout the course of this dissertation, considerable time and effort were dedicated to this ambitious 

objective, exploring all available options for each component of the desired model. The potential for this 

approach to enhance a range of vision-related tasks beyond KB-VQA is compelling and warrants further 

investigation. Nonetheless, the substantial demands on computational resources and the requirement for 

massive image-text datasets for effective training render this approach currently impractical within the 

resource-limited context of this research. Future enhancements to the existing model under more favorable 

conditions will consider this innovative approach. 

 

2. Dataset Enhancement 

While the OK-VQA dataset stands as one of the premier resources for testing the reasoning capabilities of KB-

VQA models, a comprehensive revision of this dataset is crucial, particularly with a focus on refining the ground 

truth answers. Preliminary efforts by (Reichman et al., 2023) have initiated this process; however, these 

modifications necessitate thorough validation to confirm their effectiveness. This revision is aimed at identifying 

and rectifying any inconsistencies, biases, or errors within the dataset, thereby enhancing the reliability and 

accuracy of the ground truth responses. It is essential that these improvements undergo methodical assessment 

through rigorous testing and cross-validation procedures to substantiate their impact on elevating the dataset's 

overall quality and utility in training more robust models. Moreover, the dataset could benefit from an expansion 

to include more samples that require spatial comprehension of the visual scene, thereby testing the model's 

ability to understand correlations between objects within the scene for better utilization of the provided object 

bounding boxes. Additionally, a critical component of this revision should include assessing the magnitude of 

bias within the dataset. This will involve analyzing the dataset for any inherent prejudicial elements that could 

skew model training and performance, ensuring that the models trained on this dataset operate fairly and 

effectively across diverse scenarios. 

 

3. Enhancement of Component Models 

The findings outlined in 4.3 highlight that larger Pre-Trained Large Language Models (PT-LLMs) demonstrate 

enhanced reasoning capabilities and possess a more comprehensive implicit knowledge base. Building on this, 

future studies could consider employing the 70B variant of LLaMA-2 to potentially boost performance, with a 

comparative analysis against the smaller variants previously utilized in experiments. This initiative aims to 

quantify improvements and further optimize model effectiveness. 

Furthermore, as detailed in Section 4.5, the model faced significant challenges in text recognition within visual 

scenes. Addressing this, a promising direction for future research involves the integration of a sophisticated 

Optical Character Recognition (OCR) module. This enhancement would improve the model’s processing of visual 

context, substantially enhancing its ability to accurately interpret and respond to images containing text. 

Another innovative approach for future exploration is the incorporation of a "chain of thoughts" methodology 

(Wei et al., 2023) into the fine-tuning prompts. This technique would encourage the model to emulate a 

sequential, step-by-step reasoning process, potentially improving its handling of complex queries. This could be 

particularly beneficial for queries that demand spatial comprehension of the scene, enabling the model to 

produce more accurate and contextually relevant responses. 

 

 

 



Multimodal Learning for Visual Question Answering using World Knowledge 

 

44 
 

4. Specialized Knowledge Application 

The KB-VQA model's tendency to underperform when faced with specialized knowledge questions presents an 

opportunity for targeted improvements through training in specific domains. Potential enhancements include 

deploying the model as an interactive guide in museums, where it could provide visitors with detailed 

explanations about exhibits in response to image-based queries. In educational settings, the model could be 

integrated into learning platforms to deliver in-depth information and explanations directly linked to visual 

content from textbooks or study materials. For the fashion and retail industry, the model could analyze images 

to offer fashion advice, check inventory levels, or facilitate virtual try-on experiences. Additionally, in the culinary 

field, the model could analyze dish images to provide recipes, nutritional facts, or cooking tips, enriching the 

user's culinary experience. 

Furthermore, the model could also be adapted as assistive technology for the visually impaired, offering 

descriptive audio responses based on visual data to enhance accessibility and independence. In medical 

diagnostics, the model could assist healthcare professionals by analyzing medical images and providing 

preliminary diagnostic responses. However, applications in sensitive areas such as healthcare and assistive 

technologies will require meticulous testing and comprehensive evaluation to ensure accuracy, reliability, and 

adherence to ethical standards. These enhancements aim to leverage the model's capabilities to improve its 

accuracy and utility in responding to real-world, image-based queries across various domains. 
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Chapter 7 

7. Appendix  
 

 

A. Design 
 

A.1. YOLOv5 Detectable Object Classes  

 

Below is the list of object classes detectable by the pretrained YOLOv5 (Jocher, 2020): 

 

 

 

 

 

 

 

 

 

 

['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 

'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking 

meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 

'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 

'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball 

bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 

'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 

'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 

'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 

'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',  'microwave', 

'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 

'scissors', 'teddy bear', 'hair drier', 'toothbrush'] 
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A.2. Token Distribution for Fine-tuning Data 

During data preparation for LLaMA-2 fine-tuning the samples with token count exceeding 1,024 tokens were 

removed in order to minimize the computational requirements, this does not impact the fine-tuning process, 

because the fine-tuning objective is to learn how to leverage the visual context and deduce the correct 

prediction in adherence to the OK-VQA dataset structure. Below histogram shows the fine-tuning samples 

distribution with respect to token counts, before and after the filtration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.3.  Default LLaMA-2 System Prompt  

Below is the default LLaMA-2 Chat system prompt (Touvron et al., 2023): 

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, 

while being safe. Your answers should not include any harmful, unethical, racist, sexist, 

toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased 

and positive in nature. If a question does not make any sense, or is not factually coherent, 

explain why instead of answering something not correct. If you don’t know the answer to a 

question, please don’t share false information. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1 Token count distribution for the finetuning data before and after removing samples with more than 1024 tokens. 
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A.4. KB-VQA System Prompt 

The following system prompt was designed and used for fine-tuning, evaluation, and inference of the KB-VQA 
model: 
"You are a helpful, respectful, and honest assistant for visual question answering. you are 

provided with a caption of an image and a list of objects detected in the image along with 

their bounding boxes and level of certainty, you will output an answer to the given questions 

in no more than one sentence. Use logical reasoning to reach to the answer, but do not output 

your reasoning process unless asked for it. If provided, you will use the [CAP] and [/CAP] 

tags to indicate the beginning and end of the caption respectively. If provided you will use 

the [OBJ] and [/OBJ] tags to indicate the beginning and end of the list of detected objects 

in the image along with their bounding boxes respectively. If provided, you will use [QES] 

and [/QES] tags to indicate the beginning and end of the question respectively." 

 

A.5. Comparison of Captioning Models 

Below is a screenshot of the HuggingFace space used during assessment of various multimodal models 
for image captioning. 

 

 

 

 

 

 

 

 

 

Figure 7-2 Comparison between various captioning models demonstrating InstructBLIP superiority. 
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B. Implementation 

B.1. Overall Implementation Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3 Overall flow of the project. 
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B.2. Component Models Configurations and Hyperparameters 

 

Component Models 

Captioner 

MODEL_NAME Salesforce/instructblip-vicuna-7b 

MAX_IMAGE_SIZE 1024 

MIN_LENGTH 150 

MAX_NEW_TOKENS 400 

QUANTIZATION 4bit 

TORCH_DTYPE torch.float16 

LOW_CPU_MEM_USAGE TRUE 

PROMPT 

“Provide a comprehensive and detailed description of 

the following image. Focus on identifying and 

describing every element in the scene, including all 

people (along with their gender, age, colour, and any 

prominent feature), animals along with their breed and 

all objects, their count, their positions, and any 

actions or interactions taking place. Pay special 

attention to the positioning of limbs and hands, and 

any objects they might be holding or interacting with. 

Describe texts, colours, textures, setting, 

atmosphere, mood, and any indicators of the time of 

day, such as the quality of light, shadows. Ensure to 

capture both the obvious and subtle elements for a 

complete understanding of the image. Answer as if you 

were looking at the image.” 

PT-LLM 

MODEL_NAME 
meta-llama/Llama-2-7b-chat-hf 

meta-llama/Llama-2-13b-chat-hf 

QUANTIZATION 4bit 

USE_FAST_TOKENIZER TRUE 

Detector 
MODEL_NAME 

ultralytics/yolov5 

deformable-detr-detic 

CONFIDENCE_THRESHOLD 0.2 

Table 7-1 Component models configurations and hyperparameters 

 

B.3. Fine-tuning configurations and Hyperparameters 

 

Fine-tuning Configurations 
NUM_TRAIN_EPOCHS 1 

GRADIENT_ACCUMULATION_STEPS 1 

OPTIMIZER paged_adamw_8bit 

LEARNING_RATE 0.0002 

WEIGHT_DECAY 0.01 

EVALUATION_STRATEGY steps 

EVALUATION_STEPS 5 

MAX_GRAD_NORM  0.3 

LR_SCHEDULER_TYPE linear 

TARGET_MODULES ['up_proj', 'down_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] 

FP16 TRUE 

PER_DEVICE_TRAIN_BATCH_SIZE 16 

PER_DEVICE_EVAL_BATCH_SIZE 8 

GROUP_BY_LENGTH FALSE 

MAX_TOKEN_COUNT 1024 

PACKING  FALSE 

TEST_SIZE 0.1 

SEED 123 

WARMUP_RATIO 0.03 

FP16 TRUE 

LORA_R 64 

LORA_ALPHA 32 

LORA_DROPOUT 0.05 

Table 7-2 Fine-tuning configurations and hyperparameters. 
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B.4.  Fine-tuning Results 

 

C. Evaluation 

C.1. Token Count for Evaluation Data (DETIC vs YOLOv5) 

Below scatterplot show the number of tokens distribution for the evaluation data when employing DETIC 
and YOLOv5 for objects detection 
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Figure 7-4 Fine-tuning learning curves. 

 

 

 

 

 
Figure 7-5 Token Count for Evaluation Data (DETIC vs YOLOv5) 
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C.2. Ablation Study Scores (Graph) 
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Figure 7-6 Ablation study results. 
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C.3. Ablation Study Results per Question Category 

 

 

 

Syntactic Evaluation (String Match) 
VQA Score 

Question Category 
Fine-tuned LLaMA (13B) Fine-tuned LLaMA (7B) 

Caption+DETIC Caption+YOLOv5 Only Caption Only DETIC Only YOLOv5 Caption+DETIC Caption+YOLOv5 Only Caption Only DETIC Only YOLOv5 

Brands, Companies and Products 50.98% 46.08% 44.12% 26.47% 21.57% 51.96% 47.06% 50.98% 27.45% 32.35% 

Cooking and Food 64.96% 60.47% 57.26% 40.60% 33.33% 62.82% 53.21% 57.48% 42.09% 35.47% 

Geography, History, Language and Culture 54.02% 52.87% 44.83% 33.33% 25.29% 52.87% 52.87% 50.57% 32.18% 27.59% 

Objects, Material and Clothing 59.13% 53.17% 55.95% 38.89% 38.49% 57.14% 55.95% 55.56% 34.92% 31.35% 

People and Everyday life 62.07% 57.47% 55.94% 37.93% 39.85% 58.62% 51.72% 44.06% 29.50% 32.57% 

Plants and Animals 68.05% 66.86% 60.16% 47.34% 47.14% 68.84% 64.50% 61.14% 45.36% 42.01% 

Science and Technology 50.98% 54.90% 60.78% 31.37% 39.22% 50.98% 47.06% 54.90% 35.29% 27.45% 

Sports and Recreation 71.43% 71.15% 65.27% 61.06% 53.50% 73.39% 71.15% 70.03% 52.38% 52.38% 

Vehicles and Transportation 57.86% 54.30% 52.62% 36.48% 41.72% 54.09% 54.72% 53.46% 34.59% 35.43% 

Weather and Climate 52.56% 50.00% 47.44% 34.62% 30.77% 62.82% 53.85% 46.15% 47.44% 24.36% 

Other 69.40% 62.57% 63.39% 46.17% 46.72% 66.94% 52.46% 56.28% 41.80% 44.26% 

Grand Total 63.57% 60.15% 57.49% 42.81% 41.42% 62.51% 57.19% 56.72% 40.19% 38.29% 

Exact Match Score 

Question Category 
Fine-tuned LLaMA (13B) Fine-tuned LLaMA (7B) 

Caption+DETIC Caption+YOLOv5 Only Caption Only DETIC Only YOLOv5 Caption+DETIC Caption+YOLOv5 Only Caption Only DETIC Only YOLOv5 

Brands, Companies and Products 55.88% 50.00% 47.06% 32.35% 26.47% 55.88% 52.94% 55.88% 29.41% 35.29% 

Cooking and Food 69.87% 66.03% 62.18% 44.87% 37.82% 67.95% 57.05% 62.82% 46.15% 38.46% 

Geography, History, Language and Culture 58.62% 55.17% 48.28% 34.48% 27.59% 58.62% 58.62% 55.17% 34.48% 31.03% 

Objects, Material and Clothing 64.29% 57.14% 59.52% 41.67% 41.67% 60.71% 59.52% 58.33% 36.90% 34.52% 

People and Everyday life 65.52% 60.92% 59.77% 41.38% 42.53% 62.07% 52.87% 47.13% 32.18% 34.48% 

Plants and Animals 72.19% 70.41% 64.50% 50.89% 49.70% 73.37% 68.64% 65.68% 49.11% 44.97% 

Science and Technology 58.82% 64.71% 70.59% 35.29% 47.06% 58.82% 52.94% 58.82% 41.18% 29.41% 

Sports and Recreation 76.47% 76.47% 71.43% 67.23% 56.30% 78.15% 74.79% 74.79% 57.14% 56.30% 

Vehicles and Transportation 62.26% 58.49% 57.23% 40.25% 45.28% 57.86% 57.86% 57.86% 38.36% 38.36% 

Weather and Climate 57.69% 53.85% 50.00% 38.46% 34.62% 65.38% 57.69% 50.00% 53.85% 26.92% 

Other 75.41% 68.85% 69.67% 50.00% 50.82% 72.95% 58.20% 63.11% 46.72% 49.18% 
Grand Total 68.36% 64.77% 62.28% 46.81% 44.91% 67.07% 61.08% 61.38% 44.01% 41.52% 

Table 7-3 Syntactic evaluation results for the ablation study per question category. 
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Semantic Evaluation (GPT-4) 

Question Category 
VQA Score Exact Match Score 

Fine-tuned LLaMA (13B) Fine-tuned LLaMA (7B) Fine-tuned LLaMA (13B) Fine-tuned LLaMA (7B) 
Caption+DETIC Caption+YOLOv5 Caption+DETIC Caption+YOLOv5 Caption+DETIC Caption+YOLOv5 Caption+DETIC Caption+YOLOv5 

Brands, Companies and Products 62.75% 53.92% 56.86% 51.96% 67.65% 55.88% 58.82% 52.94% 

Cooking and Food 74.58% 69.87% 70.73% 62.40% 76.92% 71.79% 72.44% 64.74% 

Geography, History, Language and Culture 59.77% 58.62% 66.67% 65.52% 62.07% 62.07% 68.97% 68.97% 

Objects, Material and Clothing 67.46% 63.89% 65.08% 65.48% 67.86% 65.48% 66.67% 66.67% 

People and Everyday life 68.97% 67.82% 67.43% 62.07% 70.11% 70.11% 67.82% 63.22% 

Plants and Animals 74.36% 75.15% 74.95% 71.20% 75.15% 76.33% 76.33% 72.19% 

Science and Technology 72.55% 72.55% 68.63% 66.67% 76.47% 76.47% 70.59% 70.59% 

Sports and Recreation 76.19% 76.47% 79.83% 77.03% 77.31% 78.15% 81.51% 78.99% 

Vehicles and Transportation 65.62% 63.73% 63.32% 65.20% 67.30% 66.04% 66.67% 67.92% 

Weather and Climate 60.26% 61.54% 69.23% 66.67% 61.54% 61.54% 69.23% 69.23% 

Other 75.41% 69.95% 72.95% 60.38% 76.23% 71.31% 74.59% 62.30% 

Grand Total 71.09% 68.86% 70.19% 65.97% 72.55% 70.66% 71.96% 67.86% 

Table 7-4 Semantic evaluation results for the ablation study per question category 
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C.4. Additional Evaluation Samples 

Figure 7-7 shows additional samples along with model answers including the ablation configurations. 

 

 

 

 

 

 

 

 

 

 

 

  

 

     

    

 

       

 

Figure 7-7 Additional evaluation samples. 
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D. LLaMA-2 Liscense by Meta 

 


