Update my_model/tabs/readme.md
Browse files- my_model/tabs/readme.md +32 -16
my_model/tabs/readme.md
CHANGED
|
@@ -1,30 +1,46 @@
|
|
| 1 |
|
| 2 |
Directory Overview: This directory contains all the atreamlit application pages:
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
Ensure the necessary dependencies are installed and properly configured.
|
| 11 |
-
The `run_demo function
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
The run_inference.py is responsible for the running inference to test and use the fine-tuned models. It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question Answering (KBVQA) application. This module handles image uploads, displays sample images, and facilitates the question-answering process using the KBVQA model.
|
| 18 |
-
|
| 19 |
-
### Notes
|
| 20 |
- Ensure the necessary dependencies are installed and properly configured.
|
| 21 |
- The `InferenceRunner` class relies on the KBVQA model to generate answers to questions based on image analysis.
|
| 22 |
|
| 23 |
-
|
| 24 |
|
| 25 |
-
##
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
Directory Overview: This directory contains all the atreamlit application pages:
|
| 3 |
|
| 4 |
+
################################################################################################################################
|
| 5 |
+
## 1. home.py
|
| 6 |
+
the `home.py` displays an introduction to the application with brief background and description of the application tools.
|
| 7 |
|
| 8 |
+
################################################################################################################################
|
| 9 |
+
## 2. results.py
|
| 10 |
+
The `results.py` module manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
|
| 11 |
+
It provides an interface for users to explore different aspects of model performance and evaluation samples.
|
| 12 |
|
| 13 |
+
Notes:
|
| 14 |
Ensure the necessary dependencies are installed and properly configured.
|
| 15 |
+
The `run_demo` function relies on the ResultDemonstrator class to generate plots and display results.
|
| 16 |
|
| 17 |
+
################################################################################################################################
|
| 18 |
+
## 3. run_inference.py
|
| 19 |
+
The `run_inference.py` is responsible for the running inference to test and use the fine-tuned models.
|
| 20 |
+
It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question
|
| 21 |
+
Answering (KBVQA) application.
|
| 22 |
+
This module handles image uploads, displays sample images, and facilitates the question-answering process
|
| 23 |
+
using the KBVQA model.
|
| 24 |
|
| 25 |
+
Notes:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
- Ensure the necessary dependencies are installed and properly configured.
|
| 27 |
- The `InferenceRunner` class relies on the KBVQA model to generate answers to questions based on image analysis.
|
| 28 |
|
| 29 |
+
################################################################################################################################
|
| 30 |
|
| 31 |
+
## 4. model_arch.py
|
| 32 |
+
The `model_arch.py` displays the model architecture and accompanying abstract and design details for the
|
| 33 |
+
Knowledge-Based Visual Question Answering (KB-VQA) model.
|
| 34 |
|
| 35 |
+
################################################################################################################################
|
| 36 |
+
## 5. dataset_analysis.py
|
| 37 |
+
The dataset_analysis.py module provides tools for analyzing and visualizing distributions of question types
|
| 38 |
+
within given question datasets for Knowledge-Based Visual Question Answering (KBVQA). It supports operations
|
| 39 |
+
such as data loading, categorization of questions, visualization, and exporting data to CSV files. This module
|
| 40 |
+
leverages Streamlit for interactive visualization and Altair for plotting.
|
| 41 |
|
| 42 |
+
Notes:
|
| 43 |
+
Ensure the necessary dependencies are installed and properly configured.
|
| 44 |
+
The `OKVQADatasetAnalyzer` class leverages `Altair` for creating interactive visualizations and `Streamlit` for displaying these visualizations in a web app format.
|
| 45 |
+
The `run_dataset_analyzer` function provides an overview of the dataset and utilizes the OKVQADatasetAnalyzer to visualize the data.
|
| 46 |
+
This module has a dependency on the `process_okvqa_dataset` function from `my_model.dataset.dataset_processor`.
|