Update train.py
Browse files
train.py
CHANGED
|
@@ -1,16 +1,26 @@
|
|
| 1 |
from datasets import load_dataset
|
| 2 |
-
from transformers import Trainer, TrainingArguments
|
| 3 |
|
| 4 |
-
# تحميل البيانات
|
| 5 |
dataset = load_dataset("m6011/sada2022")
|
| 6 |
najdi_data = dataset.filter(lambda example: example['SpeakerDialect'] == 'Najdi')
|
| 7 |
|
| 8 |
-
# إعداد النموذج
|
| 9 |
-
model =
|
| 10 |
|
| 11 |
-
# إعداد
|
| 12 |
-
training_args = TrainingArguments(
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# بدء التدريب
|
| 16 |
trainer.train()
|
|
|
|
| 1 |
from datasets import load_dataset
|
| 2 |
+
from transformers import FastSpeechForConditionalGeneration, Trainer, TrainingArguments
|
| 3 |
|
| 4 |
+
# تحميل البيانات للهجة النجدية
|
| 5 |
dataset = load_dataset("m6011/sada2022")
|
| 6 |
najdi_data = dataset.filter(lambda example: example['SpeakerDialect'] == 'Najdi')
|
| 7 |
|
| 8 |
+
# إعداد النموذج
|
| 9 |
+
model = FastSpeechForConditionalGeneration.from_pretrained("facebook/fastspeech2-en-ljspeech")
|
| 10 |
|
| 11 |
+
# إعداد المدرب
|
| 12 |
+
training_args = TrainingArguments(
|
| 13 |
+
output_dir="./results",
|
| 14 |
+
per_device_train_batch_size=4,
|
| 15 |
+
num_train_epochs=5,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
trainer = Trainer(
|
| 19 |
+
model=model,
|
| 20 |
+
args=training_args,
|
| 21 |
+
train_dataset=najdi_data['train'],
|
| 22 |
+
eval_dataset=najdi_data['test']
|
| 23 |
+
)
|
| 24 |
|
| 25 |
# بدء التدريب
|
| 26 |
trainer.train()
|