Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from IPython import get_ipython
|
| 2 |
+
from IPython.display import display
|
| 3 |
+
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
from transformers import SamModel, SamProcessor
|
| 11 |
+
from diffusers import AutoPipelineForInpainting
|
| 12 |
+
from diffusers.utils import load_image, make_image_grid
|
| 13 |
+
from google.colab import drive
|
| 14 |
+
drive.mount('/content/drive')
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def modify_image(image_url, prompt, mask_id=4):
|
| 18 |
+
|
| 19 |
+
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer_b3_clothes")
|
| 20 |
+
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer_b3_clothes")
|
| 21 |
+
|
| 22 |
+
image = Image.open(image_url)
|
| 23 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 24 |
+
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
+
logits = outputs.logits.cpu()
|
| 27 |
+
|
| 28 |
+
upsampled_logits = nn.functional.interpolate(
|
| 29 |
+
logits,
|
| 30 |
+
size=image.size[::-1],
|
| 31 |
+
mode="bilinear",
|
| 32 |
+
align_corners=False,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
| 36 |
+
|
| 37 |
+
mask = (pred_seg == mask_id).numpy()
|
| 38 |
+
mask_image = Image.fromarray((mask * 255).astype('uint8'))
|
| 39 |
+
|
| 40 |
+
pipeline = AutoPipelineForInpainting.from_pretrained(
|
| 41 |
+
"redstonehero/ReV_Animated_Inpainting",
|
| 42 |
+
torch_dtype=torch.float16)
|
| 43 |
+
|
| 44 |
+
pipeline.enable_model_cpu_offload()
|
| 45 |
+
|
| 46 |
+
image1 = pipeline(prompt=prompt,
|
| 47 |
+
num_inference_steps=24,
|
| 48 |
+
image=image,
|
| 49 |
+
mask_image=mask_image,
|
| 50 |
+
guidance_scale=3,
|
| 51 |
+
strength=1.0).images[0]
|
| 52 |
+
|
| 53 |
+
return make_image_grid([image1], rows = 1, cols = 1)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
import gradio as gr
|
| 58 |
+
|
| 59 |
+
def gradio_wrapper(image, prompt, choice):
|
| 60 |
+
return modify_image(image, prompt, int(choice))
|
| 61 |
+
|
| 62 |
+
demo = gr.Interface(
|
| 63 |
+
fn=gradio_wrapper,
|
| 64 |
+
inputs=[
|
| 65 |
+
gr.Image(type="filepath"), # Change gr.inputs.Image to gr.Image
|
| 66 |
+
gr.Textbox(label="Prompt"),
|
| 67 |
+
gr.Radio(["4", "5", "6"], label="Mask ID")
|
| 68 |
+
],
|
| 69 |
+
outputs=gr.Image()
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
demo.launch(inline=False)
|