import json import os import ast from datetime import datetime, timezone from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, PRIVATE_REPO from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, ) from src.display.utils import PromptTemplateName REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG = """{ "NCBI" : { "" : "condition" }, "CHIA" : { "" : "condition" "" : "drug" "" : "procedure" "" : "measurement" }, "BIORED" : { "" : "condition" "" : "drug" "" : "gene" "" : "gene variant" }, "BC5CDR" : { "" : "condition" "" : "drug" } } """ def add_new_eval( model: str, base_model: str, revision: str, model_type: str, domain_specific: bool, chat_template: bool, precision: str, weight_type: str, ): """ Saves request if valid else returns the error. Validity is checked based on - - model's existence on hub - necessary info on the model's card - label normalization is a valid python dict and contains the keys for all datasets - threshold for gliner is a valid float """ global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS and not PRIVATE_REPO: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) if model.startswith("/"): if not PRIVATE_REPO: return styled_error("Private models are not allowed to be submitted to the public queue.") user_name = "" model_path = model private = True else: user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] private = False # precision = precision.split(" ")[0] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") model_type = model_type.split(":")[-1].strip() # Does the model actually exist? if revision == "": revision = "main" # Is the model on the hub? if weight_type in ["Delta", "Adapter"] and not private: base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) if not base_model_on_hub: return styled_error(f'Base model "{base_model}" {error}') if not weight_type == "Adapter" and not private: model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) if not model_on_hub: return styled_error(f'Model "{model}" {error}') # Is the model info correctly filled? try: if not private: model_info = API.model_info(repo_id=model, revision=revision) model_size = get_model_size(model_info=model_info) license = model_info.cardData["license"] modelcard_OK, error_msg = check_model_card(model) if not modelcard_OK: return styled_error(error_msg) likes = model_info.likes else: model_size = None license = None likes = -1 except Exception: return styled_error("Could not get your model information. Please fill it up properly.") # Verify the inference config now # try: # label_normalization_map = ast.literal_eval(label_normalization_map) # except Exception as e: # return styled_error("Please enter a valid json for the labe; normalization map") # inference_config = { # # "model_arch" : model_arch, # "label_normalization_map": label_normalization_map, # } # Seems good, creating the eval print("Adding new eval") eval_entry = { "model_name": model, "base_model": base_model, "revision": revision, "precision": precision, "weight_type": weight_type, "is_domain_specific": domain_specific, "use_chat_template": chat_template, "status": { "closed-ended": "PENDING", "open-ended": "PENDING", "med-safety": "PENDING", "medical-summarization": "PENDING", "note-generation": "PENDING", }, "submitted_time": current_time, "model_type": model_type, "likes": likes, "num_params": model_size, "license": license, "private": private, "slurm_id": None } # Check for duplicate submission if not PRIVATE_REPO and f"{model}_{revision}_{precision}" in REQUESTED_MODELS: return styled_warning("This model has been already submitted. Add the revision if the model has been updated.") print("Creating eval file") if not private: OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" else: OUT_DIR = f"{EVAL_REQUESTS_PATH}/offline" model_path = model_path[1:] if model_path.startswith("/") else model_path model_path = model_path.replace("/", "+-+") out_path = f"{OUT_DIR}/{model_path}_{revision}_{precision}_{weight_type}_eval_request.json" os.makedirs(OUT_DIR, exist_ok=True) with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." )