from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd # changes to be made here from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, ClosedEndedArabicColumns from src.envs import PRIVATE_REPO import json import gradio as gr def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: # changes to be made here name: str type: str displayed_by_default: bool hidden: bool = False invariant: bool = True never_hidden: bool = False dataset_task_col: bool = False open_ended_col: bool = False med_safety_col: bool = False medical_summarization_col: bool = False aci_col: bool = False soap_col: bool = False closed_ended_arabic_col: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict = [] auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)]) auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, closed_ended_arabic_col=True, invariant=False)]) auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)]) for task in HarnessTasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)]) for column in OpenEndedColumns: auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_col=True, invariant=False)]) # changes to be made here for column in MedSafetyColumns: if column.value.col_name == "95% CI" or column.value.col_name == "Harmfulness Score": auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, med_safety_col=True, invariant=False)]) else: auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", False, False, med_safety_col=True, invariant=False)]) for column in MedicalSummarizationColumns: auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, medical_summarization_col=True, invariant=False)]) for column in ACIColumns: auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, aci_col=True, invariant=False)]) for column in SOAPColumns: auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, soap_col=True, invariant=False)]) # if PRIVATE_REPO: for column in ClosedEndedArabicColumns: auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, closed_ended_arabic_col=True, invariant=False)]) auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)]) auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False)]) # auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)]) auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)]) # auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)]) auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab # changes to be made here @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) model_type = ColumnContent("model_type", "str", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") closed_ended_status = ColumnContent("closed_ended_status", "str", True) open_ended_status = ColumnContent("open_ended_status", "str", True) med_safety_status = ColumnContent("med_safety_status", "str", True) medical_summarization_status = ColumnContent("medical_summarization_status", "str", True) note_generation_status = ColumnContent("note_generation_status", "str", True) if PRIVATE_REPO: closed_ended_arabic_status = ColumnContent("closed_ended_arabic_status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): # ZEROSHOT = ModelDetails(name="zero-shot", symbol="⚫") # FINETUNED = ModelDetails(name="fine-tuned", symbol="⚪") PT = ModelDetails(name="pretrained", symbol="🟢") # FT = ModelDetails(name="fine-tuned", symbol="🔶") # DS = ModelDetails(name="domain-specific", symbol="🏥") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="preference-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): # if "zero-shot" in type or "⚫" in type: # return ModelType.ZEROSHOT # if "fine-tuned" in type or "⚪" in type: # return ModelType.FINETUNED # if "fine-tuned" in type or "🔶" in type: # return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if "preference-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "⭕" in type: return ModelType.IFT # if "domain-specific" in type or "🏥" in type: # return ModelType.DS return ModelType.Unknown class ModelArch(Enum): Encoder = ModelDetails("Encoder") Decoder = ModelDetails("Decoder") GLiNEREncoder = ModelDetails("GLiNER Encoder") Unknown = ModelDetails(name="Other", symbol="?") def to_str(self, separator=" "): return f"{self.value.name}" @staticmethod def from_str(type): if "Encoder" == type: return ModelArch.Encoder if "Decoder" == type: return ModelArch.Decoder if "GLiNER Encoder" == type: return ModelArch.GLiNEREncoder # if "unknown" in type: # return ModelArch.Unknown return ModelArch.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") Unknown = ModelDetails("?") def from_str(wt): if "original" in wt.lower(): return WeightType.Original if "adapter" in wt.lower(): return WeightType.Adapter if "delta" in wt.lower(): return WeightType.Delta return WeightType.Unknown class Precision(Enum): auto = ModelDetails("auto") float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") float32 = ModelDetails("float32") # qt_8bit = ModelDetails("8bit") # qt_4bit = ModelDetails("4bit") # qt_GPTQ = ModelDetails("GPTQ") Unknown = ModelDetails("?") def from_str(precision): if precision in ["auto"]: return Precision.auto if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["float32"]: return Precision.float32 # if precision in ["8bit"]: # return Precision.qt_8bit # if precision in ["4bit"]: # return Precision.qt_4bit # if precision in ["GPTQ", "None"]: # return Precision.qt_GPTQ return Precision.Unknown class PromptTemplateName(Enum): UniversalNERTemplate = "universal_ner" LLMHTMLHighlightedSpansTemplate = "llm_html_highlighted_spans" LLMHTMLHighlightedSpansTemplateV1 = "llm_html_highlighted_spans_v1" LLamaNERTemplate = "llama_70B_ner" # MixtralNERTemplate = "mixtral_ner_v0.3" class EvaluationMetrics(Enum): SpanBased = "Span Based" TokenBased = "Token Based" # Column selection # changes to be made here DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.dataset_task_col or c.invariant)] OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_col or c.invariant)] MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.med_safety_col or c.invariant)] MEDICAL_SUMMARIZATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.medical_summarization_col or c.invariant)] ACI_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.aci_col or c.invariant)] SOAP_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.soap_col or c.invariant)] # if PRIVATE_REPO: CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)] # CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)] # DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col] # OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col] # MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.dataset_task_col and not c.cross_examination_col] # CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.dataset_task_col] TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] # changes to be made here DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks] OPEN_ENDED_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedColumns] MED_SAFETY_BENCHMARK_COLS = [t.value.col_name for t in MedSafetyColumns] MEDICAL_SUMMARIZATION_BENCHMARK_COLS = [t.value.col_name for t in MedicalSummarizationColumns] ACI_BENCHMARK_COLS = [t.value.col_name for t in ACIColumns] SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns] # if PRIVATE_REPO: CLOSED_ENDED_ARABIC_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedArabicColumns] # CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks] NUMERIC_INTERVALS = { "?": pd.Interval(-100, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), } def render_generation_templates(task: str, generation_type: str): with open("src/display/templates/system_prompts.json", "r") as f: system_prompt = json.load(f)[f"{task}+_+{generation_type}"] with open(f"src/display/templates/{task}+_+{generation_type}.jinja", "r") as f: user_prompt = f.read() system_prompt_textbox = gr.Textbox( value=system_prompt, label="System Prompt", lines=2, elem_id=f"system-prompt-textbox-{task}-{generation_type}", show_copy_button=True, ) user_prompt_textbox = gr.Textbox( value=user_prompt, label="User Prompt", lines=15, elem_id=f"user-prompt-textbox-{task}-{generation_type}", show_copy_button=True, ) return system_prompt_textbox, user_prompt_textbox # return None, None