Spaces:
Running
Running
nadsaa
commited on
Commit
·
d83f3a1
1
Parent(s):
3abe9fa
multilingual results
Browse files- app.py +417 -541
- app_original.py +1276 -0
- src/about.py +81 -5
- src/display/utils.py +68 -13
- src/leaderboard/instr.txt +16 -0
- src/leaderboard/read_evals.py +133 -21
- src/populate.py +5 -4
app.py
CHANGED
@@ -31,14 +31,14 @@ from src.display.utils import (
|
|
31 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
32 |
ACI_BENCHMARK_COLS,
|
33 |
SOAP_BENCHMARK_COLS,
|
34 |
-
CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
35 |
DATASET_COLS,
|
36 |
OPEN_ENDED_COLS,
|
37 |
MED_SAFETY_COLS,
|
38 |
MEDICAL_SUMMARIZATION_COLS,
|
39 |
ACI_COLS,
|
40 |
SOAP_COLS,
|
41 |
-
CLOSED_ENDED_ARABIC_COLS,
|
42 |
EVAL_COLS,
|
43 |
EVAL_TYPES,
|
44 |
NUMERIC_INTERVALS,
|
@@ -50,7 +50,23 @@ from src.display.utils import (
|
|
50 |
Precision,
|
51 |
WeightType,
|
52 |
fields,
|
53 |
-
render_generation_templates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
56 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -96,9 +112,28 @@ aci_leaderboard_df = aci_original_df.copy()
|
|
96 |
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
97 |
soap_leaderboard_df = soap_original_df.copy()
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# breakpoint()
|
104 |
# # Token based results
|
@@ -136,9 +171,28 @@ def update_df(shown_columns, subset="datasets"):
|
|
136 |
elif subset == "soap":
|
137 |
leaderboard_table_df = soap_leaderboard_df.copy()
|
138 |
hidden_leader_board_df = soap_original_df
|
139 |
-
elif
|
140 |
-
leaderboard_table_df =
|
141 |
-
hidden_leader_board_df =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
# else:
|
143 |
# match evaluation_metric:
|
144 |
# case "Span Based":
|
@@ -258,128 +312,140 @@ def filter_models(
|
|
258 |
demo = gr.Blocks(css=custom_css)
|
259 |
with demo:
|
260 |
print("hello")
|
261 |
-
if PRIVATE_REPO:
|
262 |
-
gr.HTML(TITLE)
|
263 |
gr.HTML(LOGO)
|
264 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
)
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
],
|
284 |
-
|
285 |
-
elem_id="column-select",
|
286 |
-
interactive=True,
|
287 |
)
|
288 |
-
# with gr.Row():
|
289 |
-
# deleted_models_visibility = gr.Checkbox(
|
290 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
291 |
-
# )
|
292 |
-
with gr.Column(min_width=320):
|
293 |
-
# with gr.Box(elem_id="box-filter"):
|
294 |
-
filter_columns_type = gr.CheckboxGroup(
|
295 |
-
label="Model Types",
|
296 |
-
choices=[t.to_str() for t in ModelType],
|
297 |
-
value=[t.to_str() for t in ModelType],
|
298 |
-
interactive=True,
|
299 |
-
elem_id="filter-columns-type",
|
300 |
-
)
|
301 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
302 |
-
# label="Architecture Types",
|
303 |
-
# choices=[i.value.name for i in ModelArch],
|
304 |
-
# value=[i.value.name for i in ModelArch],
|
305 |
-
# interactive=True,
|
306 |
-
# elem_id="filter-columns-architecture",
|
307 |
-
# )
|
308 |
-
filter_domain_specific = gr.CheckboxGroup(
|
309 |
-
label="Domain Specificity",
|
310 |
-
choices=["🏥 Clinical models", "Generic models"],
|
311 |
-
value=["🏥 Clinical models", "Generic models"],
|
312 |
-
interactive=True,
|
313 |
-
elem_id="filter-columns-type",
|
314 |
-
)
|
315 |
-
filter_columns_size = gr.CheckboxGroup(
|
316 |
-
label="Model sizes (in billions of parameters)",
|
317 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
318 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
319 |
-
interactive=True,
|
320 |
-
elem_id="filter-columns-size",
|
321 |
-
)
|
322 |
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
-
leaderboard_table = gr.components.Dataframe(
|
326 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
327 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
328 |
-
datatype=TYPES,
|
329 |
-
elem_id="leaderboard-table",
|
330 |
-
interactive=False,
|
331 |
-
visible=True,
|
332 |
-
)
|
333 |
|
334 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
335 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
336 |
-
value=datasets_original_df[OPEN_ENDED_COLS],
|
337 |
-
headers=OPEN_ENDED_COLS,
|
338 |
-
datatype=TYPES,
|
339 |
-
visible=False,
|
340 |
-
)
|
341 |
|
342 |
-
|
343 |
-
search_bar.submit(
|
344 |
-
update_table,
|
345 |
-
[
|
346 |
-
hidden_leaderboard_table_for_search,
|
347 |
-
shown_columns,
|
348 |
-
search_bar,
|
349 |
-
filter_columns_type,
|
350 |
-
filter_domain_specific,
|
351 |
-
filter_columns_size
|
352 |
-
# filter_columns_architecture
|
353 |
-
],
|
354 |
-
leaderboard_table,
|
355 |
-
)
|
356 |
-
for selector in [
|
357 |
-
shown_columns,
|
358 |
-
filter_columns_type,
|
359 |
-
filter_domain_specific,
|
360 |
-
# filter_columns_architecture,
|
361 |
-
filter_columns_size,
|
362 |
-
# deleted_models_visibility,
|
363 |
-
]:
|
364 |
-
selector.change(
|
365 |
-
update_table,
|
366 |
-
[
|
367 |
-
hidden_leaderboard_table_for_search,
|
368 |
-
shown_columns,
|
369 |
-
search_bar,
|
370 |
-
filter_columns_type,
|
371 |
-
filter_domain_specific,
|
372 |
-
filter_columns_size
|
373 |
-
# filter_columns_architecture,
|
374 |
-
],
|
375 |
-
leaderboard_table,
|
376 |
-
queue=True,
|
377 |
-
)
|
378 |
-
with gr.Accordion("💬 Generation templates", open=False):
|
379 |
-
with gr.Accordion("Response generation", open=False):
|
380 |
-
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
381 |
-
with gr.Accordion("Scoring Rubric", open=False):
|
382 |
-
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
383 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
384 |
with gr.Row():
|
385 |
with gr.Column():
|
@@ -387,7 +453,7 @@ with demo:
|
|
387 |
search_bar = gr.Textbox(
|
388 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
389 |
show_label=False,
|
390 |
-
elem_id="search-bar",
|
391 |
)
|
392 |
with gr.Row():
|
393 |
shown_columns = gr.CheckboxGroup(
|
@@ -398,64 +464,50 @@ with demo:
|
|
398 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
399 |
],
|
400 |
label="Select columns to show",
|
401 |
-
elem_id="column-select",
|
402 |
interactive=True,
|
403 |
)
|
404 |
-
# with gr.Row():
|
405 |
-
# deleted_models_visibility = gr.Checkbox(
|
406 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
407 |
-
# )
|
408 |
with gr.Column(min_width=320):
|
409 |
-
# with gr.Box(elem_id="box-filter"):
|
410 |
filter_columns_type = gr.CheckboxGroup(
|
411 |
label="Model Types",
|
412 |
choices=[t.to_str() for t in ModelType],
|
413 |
value=[t.to_str() for t in ModelType],
|
414 |
interactive=True,
|
415 |
-
elem_id="filter-columns-type",
|
416 |
)
|
417 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
418 |
-
# label="Architecture Types",
|
419 |
-
# choices=[i.value.name for i in ModelArch],
|
420 |
-
# value=[i.value.name for i in ModelArch],
|
421 |
-
# interactive=True,
|
422 |
-
# elem_id="filter-columns-architecture",
|
423 |
-
# )
|
424 |
filter_domain_specific = gr.CheckboxGroup(
|
425 |
label="Domain Specificity",
|
426 |
choices=["🏥 Clinical models", "Generic models"],
|
427 |
value=["🏥 Clinical models", "Generic models"],
|
428 |
interactive=True,
|
429 |
-
elem_id="filter-
|
430 |
)
|
431 |
filter_columns_size = gr.CheckboxGroup(
|
432 |
label="Model sizes (in billions of parameters)",
|
433 |
choices=list(NUMERIC_INTERVALS.keys()),
|
434 |
value=list(NUMERIC_INTERVALS.keys()),
|
435 |
interactive=True,
|
436 |
-
elem_id="filter-columns-size",
|
437 |
)
|
438 |
|
439 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
440 |
|
441 |
-
leaderboard_table = gr.
|
442 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
443 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
444 |
datatype=TYPES,
|
445 |
-
elem_id="leaderboard-table",
|
446 |
interactive=False,
|
447 |
visible=True,
|
448 |
)
|
449 |
|
450 |
-
|
451 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
452 |
value=datasets_original_df[MED_SAFETY_COLS],
|
453 |
headers=MED_SAFETY_COLS,
|
454 |
datatype=TYPES,
|
455 |
visible=False,
|
456 |
)
|
457 |
-
|
458 |
-
|
459 |
search_bar.submit(
|
460 |
update_table,
|
461 |
[
|
@@ -465,16 +517,15 @@ with demo:
|
|
465 |
filter_columns_type,
|
466 |
filter_domain_specific,
|
467 |
filter_columns_size
|
468 |
-
# filter_columns_architecture
|
469 |
],
|
470 |
leaderboard_table,
|
471 |
)
|
|
|
472 |
for selector in [
|
473 |
shown_columns,
|
474 |
filter_columns_type,
|
475 |
filter_domain_specific,
|
476 |
filter_columns_size,
|
477 |
-
# deleted_models_visibility,
|
478 |
]:
|
479 |
selector.change(
|
480 |
update_table,
|
@@ -489,11 +540,13 @@ with demo:
|
|
489 |
leaderboard_table,
|
490 |
queue=True,
|
491 |
)
|
|
|
492 |
with gr.Accordion("💬 Generation templates", open=False):
|
493 |
with gr.Accordion("Response generation", open=False):
|
494 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
495 |
with gr.Accordion("Scoring Rubric", open=False):
|
496 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
|
|
497 |
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
498 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
499 |
with gr.Row():
|
@@ -502,7 +555,7 @@ with demo:
|
|
502 |
search_bar = gr.Textbox(
|
503 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
504 |
show_label=False,
|
505 |
-
elem_id="search-bar",
|
506 |
)
|
507 |
with gr.Row():
|
508 |
shown_columns = gr.CheckboxGroup(
|
@@ -513,64 +566,50 @@ with demo:
|
|
513 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
514 |
],
|
515 |
label="Select columns to show",
|
516 |
-
elem_id="column-select",
|
517 |
interactive=True,
|
518 |
)
|
519 |
-
# with gr.Row():
|
520 |
-
# deleted_models_visibility = gr.Checkbox(
|
521 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
522 |
-
# )
|
523 |
with gr.Column(min_width=320):
|
524 |
-
# with gr.Box(elem_id="box-filter"):
|
525 |
filter_columns_type = gr.CheckboxGroup(
|
526 |
label="Model Types",
|
527 |
choices=[t.to_str() for t in ModelType],
|
528 |
value=[t.to_str() for t in ModelType],
|
529 |
interactive=True,
|
530 |
-
elem_id="filter-columns-type",
|
531 |
)
|
532 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
533 |
-
# label="Architecture Types",
|
534 |
-
# choices=[i.value.name for i in ModelArch],
|
535 |
-
# value=[i.value.name for i in ModelArch],
|
536 |
-
# interactive=True,
|
537 |
-
# elem_id="filter-columns-architecture",
|
538 |
-
# )
|
539 |
filter_domain_specific = gr.CheckboxGroup(
|
540 |
label="Domain Specificity",
|
541 |
choices=["🏥 Clinical models", "Generic models"],
|
542 |
value=["🏥 Clinical models", "Generic models"],
|
543 |
interactive=True,
|
544 |
-
elem_id="filter-
|
545 |
)
|
546 |
filter_columns_size = gr.CheckboxGroup(
|
547 |
label="Model sizes (in billions of parameters)",
|
548 |
choices=list(NUMERIC_INTERVALS.keys()),
|
549 |
value=list(NUMERIC_INTERVALS.keys()),
|
550 |
interactive=True,
|
551 |
-
elem_id="filter-columns-size",
|
552 |
)
|
553 |
|
554 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
555 |
|
556 |
-
leaderboard_table = gr.
|
557 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
558 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
559 |
datatype=TYPES,
|
560 |
-
elem_id="leaderboard-table",
|
561 |
interactive=False,
|
562 |
visible=True,
|
563 |
)
|
564 |
|
565 |
-
|
566 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
567 |
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
568 |
headers=MEDICAL_SUMMARIZATION_COLS,
|
569 |
datatype=TYPES,
|
570 |
visible=False,
|
571 |
)
|
572 |
-
|
573 |
-
|
574 |
search_bar.submit(
|
575 |
update_table,
|
576 |
[
|
@@ -580,16 +619,15 @@ with demo:
|
|
580 |
filter_columns_type,
|
581 |
filter_domain_specific,
|
582 |
filter_columns_size
|
583 |
-
# filter_columns_architecture
|
584 |
],
|
585 |
leaderboard_table,
|
586 |
)
|
|
|
587 |
for selector in [
|
588 |
shown_columns,
|
589 |
filter_columns_type,
|
590 |
filter_domain_specific,
|
591 |
filter_columns_size,
|
592 |
-
# deleted_models_visibility,
|
593 |
]:
|
594 |
selector.change(
|
595 |
update_table,
|
@@ -604,24 +642,26 @@ with demo:
|
|
604 |
leaderboard_table,
|
605 |
queue=True,
|
606 |
)
|
|
|
607 |
with gr.Accordion("💬 Generation templates", open=False):
|
608 |
with gr.Accordion("Response generation", open=False):
|
609 |
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
610 |
with gr.Accordion("Question generation", open=False):
|
611 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
612 |
with gr.Accordion("Cross Examination", open=False):
|
613 |
-
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
|
|
614 |
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
615 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
616 |
-
with gr.Tabs(elem_classes="tab-buttons2") as
|
617 |
-
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-
|
618 |
with gr.Row():
|
619 |
with gr.Column():
|
620 |
with gr.Row():
|
621 |
search_bar = gr.Textbox(
|
622 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
623 |
show_label=False,
|
624 |
-
elem_id="search-bar",
|
625 |
)
|
626 |
with gr.Row():
|
627 |
shown_columns = gr.CheckboxGroup(
|
@@ -632,64 +672,50 @@ with demo:
|
|
632 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
633 |
],
|
634 |
label="Select columns to show",
|
635 |
-
elem_id="column-select",
|
636 |
interactive=True,
|
637 |
)
|
638 |
-
# with gr.Row():
|
639 |
-
# deleted_models_visibility = gr.Checkbox(
|
640 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
641 |
-
# )
|
642 |
with gr.Column(min_width=320):
|
643 |
-
# with gr.Box(elem_id="box-filter"):
|
644 |
filter_columns_type = gr.CheckboxGroup(
|
645 |
label="Model Types",
|
646 |
choices=[t.to_str() for t in ModelType],
|
647 |
value=[t.to_str() for t in ModelType],
|
648 |
interactive=True,
|
649 |
-
elem_id="filter-columns-type",
|
650 |
)
|
651 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
652 |
-
# label="Architecture Types",
|
653 |
-
# choices=[i.value.name for i in ModelArch],
|
654 |
-
# value=[i.value.name for i in ModelArch],
|
655 |
-
# interactive=True,
|
656 |
-
# elem_id="filter-columns-architecture",
|
657 |
-
# )
|
658 |
filter_domain_specific = gr.CheckboxGroup(
|
659 |
label="Domain Specificity",
|
660 |
choices=["🏥 Clinical models", "Generic models"],
|
661 |
value=["🏥 Clinical models", "Generic models"],
|
662 |
interactive=True,
|
663 |
-
elem_id="filter-
|
664 |
)
|
665 |
filter_columns_size = gr.CheckboxGroup(
|
666 |
label="Model sizes (in billions of parameters)",
|
667 |
choices=list(NUMERIC_INTERVALS.keys()),
|
668 |
value=list(NUMERIC_INTERVALS.keys()),
|
669 |
interactive=True,
|
670 |
-
elem_id="filter-columns-size",
|
671 |
)
|
672 |
|
673 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
674 |
|
675 |
-
leaderboard_table = gr.
|
676 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
677 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
678 |
datatype=TYPES,
|
679 |
-
elem_id="leaderboard-table",
|
680 |
interactive=False,
|
681 |
visible=True,
|
682 |
)
|
683 |
|
684 |
-
|
685 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
686 |
value=datasets_original_df[ACI_COLS],
|
687 |
headers=ACI_COLS,
|
688 |
datatype=TYPES,
|
689 |
visible=False,
|
690 |
)
|
691 |
-
|
692 |
-
|
693 |
search_bar.submit(
|
694 |
update_table,
|
695 |
[
|
@@ -699,16 +725,15 @@ with demo:
|
|
699 |
filter_columns_type,
|
700 |
filter_domain_specific,
|
701 |
filter_columns_size
|
702 |
-
# filter_columns_architecture
|
703 |
],
|
704 |
leaderboard_table,
|
705 |
)
|
|
|
706 |
for selector in [
|
707 |
shown_columns,
|
708 |
filter_columns_type,
|
709 |
filter_domain_specific,
|
710 |
filter_columns_size,
|
711 |
-
# deleted_models_visibility,
|
712 |
]:
|
713 |
selector.change(
|
714 |
update_table,
|
@@ -723,14 +748,15 @@ with demo:
|
|
723 |
leaderboard_table,
|
724 |
queue=True,
|
725 |
)
|
726 |
-
|
|
|
727 |
with gr.Row():
|
728 |
with gr.Column():
|
729 |
with gr.Row():
|
730 |
search_bar = gr.Textbox(
|
731 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
732 |
show_label=False,
|
733 |
-
elem_id="search-bar",
|
734 |
)
|
735 |
with gr.Row():
|
736 |
shown_columns = gr.CheckboxGroup(
|
@@ -741,64 +767,50 @@ with demo:
|
|
741 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
742 |
],
|
743 |
label="Select columns to show",
|
744 |
-
elem_id="column-select",
|
745 |
interactive=True,
|
746 |
)
|
747 |
-
# with gr.Row():
|
748 |
-
# deleted_models_visibility = gr.Checkbox(
|
749 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
750 |
-
# )
|
751 |
with gr.Column(min_width=320):
|
752 |
-
# with gr.Box(elem_id="box-filter"):
|
753 |
filter_columns_type = gr.CheckboxGroup(
|
754 |
label="Model Types",
|
755 |
choices=[t.to_str() for t in ModelType],
|
756 |
value=[t.to_str() for t in ModelType],
|
757 |
interactive=True,
|
758 |
-
elem_id="filter-columns-type",
|
759 |
)
|
760 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
761 |
-
# label="Architecture Types",
|
762 |
-
# choices=[i.value.name for i in ModelArch],
|
763 |
-
# value=[i.value.name for i in ModelArch],
|
764 |
-
# interactive=True,
|
765 |
-
# elem_id="filter-columns-architecture",
|
766 |
-
# )
|
767 |
filter_domain_specific = gr.CheckboxGroup(
|
768 |
label="Domain Specificity",
|
769 |
choices=["🏥 Clinical models", "Generic models"],
|
770 |
value=["🏥 Clinical models", "Generic models"],
|
771 |
interactive=True,
|
772 |
-
elem_id="filter-
|
773 |
)
|
774 |
filter_columns_size = gr.CheckboxGroup(
|
775 |
label="Model sizes (in billions of parameters)",
|
776 |
choices=list(NUMERIC_INTERVALS.keys()),
|
777 |
value=list(NUMERIC_INTERVALS.keys()),
|
778 |
interactive=True,
|
779 |
-
elem_id="filter-columns-size",
|
780 |
)
|
781 |
|
782 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
783 |
|
784 |
-
leaderboard_table = gr.
|
785 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
786 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
787 |
datatype=TYPES,
|
788 |
-
elem_id="leaderboard-table",
|
789 |
interactive=False,
|
790 |
visible=True,
|
791 |
)
|
792 |
|
793 |
-
|
794 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
795 |
value=datasets_original_df[SOAP_COLS],
|
796 |
headers=SOAP_COLS,
|
797 |
datatype=TYPES,
|
798 |
visible=False,
|
799 |
)
|
800 |
-
|
801 |
-
|
802 |
search_bar.submit(
|
803 |
update_table,
|
804 |
[
|
@@ -808,16 +820,15 @@ with demo:
|
|
808 |
filter_columns_type,
|
809 |
filter_domain_specific,
|
810 |
filter_columns_size
|
811 |
-
# filter_columns_architecture
|
812 |
],
|
813 |
leaderboard_table,
|
814 |
)
|
|
|
815 |
for selector in [
|
816 |
shown_columns,
|
817 |
filter_columns_type,
|
818 |
filter_domain_specific,
|
819 |
filter_columns_size,
|
820 |
-
# deleted_models_visibility,
|
821 |
]:
|
822 |
selector.change(
|
823 |
update_table,
|
@@ -832,6 +843,7 @@ with demo:
|
|
832 |
leaderboard_table,
|
833 |
queue=True,
|
834 |
)
|
|
|
835 |
with gr.Accordion("💬 Generation templates", open=False):
|
836 |
with gr.Accordion("ACI-Bench Response generation", open=False):
|
837 |
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
@@ -840,87 +852,93 @@ with demo:
|
|
840 |
with gr.Accordion("Question generation", open=False):
|
841 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
842 |
with gr.Accordion("Cross Examination", open=False):
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
with gr.Row():
|
857 |
-
shown_columns = gr.CheckboxGroup(
|
858 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_arabic_col)],
|
859 |
-
value=[
|
860 |
-
c.name
|
861 |
-
for c in fields(AutoEvalColumn)
|
862 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_arabic_col)
|
863 |
-
],
|
864 |
-
label="Select columns to show",
|
865 |
-
elem_id="column-select",
|
866 |
-
interactive=True,
|
867 |
-
)
|
868 |
-
# with gr.Row():
|
869 |
-
# deleted_models_visibility = gr.Checkbox(
|
870 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
871 |
-
# )
|
872 |
-
with gr.Column(min_width=320):
|
873 |
-
# with gr.Box(elem_id="box-filter"):
|
874 |
-
filter_columns_type = gr.CheckboxGroup(
|
875 |
-
label="Model Types",
|
876 |
-
choices=[t.to_str() for t in ModelType],
|
877 |
-
value=[t.to_str() for t in ModelType],
|
878 |
-
interactive=True,
|
879 |
-
elem_id="filter-columns-type",
|
880 |
-
)
|
881 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
882 |
-
# label="Architecture Types",
|
883 |
-
# choices=[i.value.name for i in ModelArch],
|
884 |
-
# value=[i.value.name for i in ModelArch],
|
885 |
-
# interactive=True,
|
886 |
-
# elem_id="filter-columns-architecture",
|
887 |
-
# )
|
888 |
-
filter_domain_specific = gr.CheckboxGroup(
|
889 |
-
label="Domain Specificity",
|
890 |
-
choices=["🏥 Clinical models", "Generic models"],
|
891 |
-
value=["🏥 Clinical models", "Generic models"],
|
892 |
-
interactive=True,
|
893 |
-
elem_id="filter-columns-type",
|
894 |
)
|
895 |
-
|
896 |
-
|
897 |
-
choices=
|
898 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
interactive=True,
|
900 |
-
elem_id="filter-columns-size",
|
901 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
902 |
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
update_table,
|
925 |
[
|
926 |
hidden_leaderboard_table_for_search,
|
@@ -929,256 +947,114 @@ with demo:
|
|
929 |
filter_columns_type,
|
930 |
filter_domain_specific,
|
931 |
filter_columns_size
|
932 |
-
# filter_columns_architecture
|
933 |
],
|
934 |
leaderboard_table,
|
|
|
935 |
)
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
filter_domain_specific,
|
940 |
-
# filter_columns_architecture,
|
941 |
-
filter_columns_size,
|
942 |
-
# deleted_models_visibility,
|
943 |
-
]:
|
944 |
-
selector.change(
|
945 |
-
update_table,
|
946 |
-
[
|
947 |
-
hidden_leaderboard_table_for_search,
|
948 |
-
shown_columns,
|
949 |
-
search_bar,
|
950 |
-
filter_columns_type,
|
951 |
-
filter_domain_specific,
|
952 |
-
filter_columns_size
|
953 |
-
# filter_columns_architecture,
|
954 |
-
],
|
955 |
-
leaderboard_table,
|
956 |
-
queue=True,
|
957 |
-
)
|
958 |
-
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0):
|
959 |
-
with gr.Row():
|
960 |
-
with gr.Column():
|
961 |
with gr.Row():
|
962 |
-
|
963 |
-
|
964 |
-
show_label=False,
|
965 |
-
elem_id="search-bar",
|
966 |
-
)
|
967 |
with gr.Row():
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
# interactive=True,
|
997 |
-
# elem_id="filter-columns-architecture",
|
998 |
-
# )
|
999 |
-
filter_domain_specific = gr.CheckboxGroup(
|
1000 |
-
label="Domain Specificity",
|
1001 |
-
choices=["🏥 Clinical models", "Generic models"],
|
1002 |
-
value=["🏥 Clinical models", "Generic models"],
|
1003 |
-
interactive=True,
|
1004 |
-
elem_id="filter-columns-type",
|
1005 |
-
)
|
1006 |
-
filter_columns_size = gr.CheckboxGroup(
|
1007 |
-
label="Model sizes (in billions of parameters)",
|
1008 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
1009 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
1010 |
-
interactive=True,
|
1011 |
-
elem_id="filter-columns-size",
|
1012 |
-
)
|
1013 |
-
|
1014 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
1015 |
-
|
1016 |
-
leaderboard_table = gr.components.Dataframe(
|
1017 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1018 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1019 |
-
datatype=TYPES,
|
1020 |
-
elem_id="leaderboard-table",
|
1021 |
-
interactive=False,
|
1022 |
-
visible=True,
|
1023 |
-
)
|
1024 |
-
|
1025 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
1026 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1027 |
-
value=datasets_original_df[DATASET_COLS],
|
1028 |
-
headers=DATASET_COLS,
|
1029 |
-
datatype=TYPES,
|
1030 |
-
visible=False,
|
1031 |
-
)
|
1032 |
-
|
1033 |
-
|
1034 |
-
search_bar.submit(
|
1035 |
-
update_table,
|
1036 |
-
[
|
1037 |
-
hidden_leaderboard_table_for_search,
|
1038 |
-
shown_columns,
|
1039 |
-
search_bar,
|
1040 |
-
filter_columns_type,
|
1041 |
-
filter_domain_specific,
|
1042 |
-
filter_columns_size
|
1043 |
-
# filter_columns_architecture
|
1044 |
-
],
|
1045 |
-
leaderboard_table,
|
1046 |
-
)
|
1047 |
-
for selector in [
|
1048 |
-
shown_columns,
|
1049 |
-
filter_columns_type,
|
1050 |
-
filter_domain_specific,
|
1051 |
-
# filter_columns_architecture,
|
1052 |
-
filter_columns_size,
|
1053 |
-
# deleted_models_visibility,
|
1054 |
-
]:
|
1055 |
-
selector.change(
|
1056 |
-
update_table,
|
1057 |
-
[
|
1058 |
-
hidden_leaderboard_table_for_search,
|
1059 |
-
shown_columns,
|
1060 |
-
search_bar,
|
1061 |
-
filter_columns_type,
|
1062 |
-
filter_domain_specific,
|
1063 |
-
filter_columns_size
|
1064 |
-
# filter_columns_architecture,
|
1065 |
-
],
|
1066 |
-
leaderboard_table,
|
1067 |
-
queue=True,
|
1068 |
-
)
|
1069 |
-
|
1070 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=5):
|
1071 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
|
1072 |
-
gr.HTML(FIVE_PILLAR_DIAGRAM)
|
1073 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
1074 |
-
# gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
|
1075 |
-
# gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
|
1076 |
-
# gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
|
1077 |
-
# gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")
|
1078 |
-
|
1079 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=6):
|
1080 |
-
with gr.Column():
|
1081 |
-
with gr.Row():
|
1082 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
1083 |
-
|
1084 |
-
with gr.Column():
|
1085 |
-
with gr.Accordion(
|
1086 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
1087 |
-
open=False,
|
1088 |
-
):
|
1089 |
-
with gr.Row():
|
1090 |
-
finished_eval_table = gr.components.Dataframe(
|
1091 |
-
value=finished_eval_queue_df,
|
1092 |
-
headers=EVAL_COLS,
|
1093 |
-
datatype=EVAL_TYPES,
|
1094 |
-
row_count=5,
|
1095 |
)
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
value=running_eval_queue_df,
|
1103 |
-
headers=EVAL_COLS,
|
1104 |
-
datatype=EVAL_TYPES,
|
1105 |
-
row_count=5,
|
1106 |
)
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
pending_eval_table = gr.components.Dataframe(
|
1114 |
-
value=pending_eval_queue_df,
|
1115 |
-
headers=EVAL_COLS,
|
1116 |
-
datatype=EVAL_TYPES,
|
1117 |
-
row_count=5,
|
1118 |
)
|
1119 |
-
with gr.Row():
|
1120 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
1121 |
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
-
|
1127 |
-
|
1128 |
-
|
1129 |
-
|
1130 |
-
value=None,
|
1131 |
-
interactive=True,
|
1132 |
)
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
multiselect=False,
|
1139 |
-
value="auto",
|
1140 |
-
interactive=True,
|
1141 |
)
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
1147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1148 |
)
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
precision,
|
1174 |
-
weight_type
|
1175 |
-
],
|
1176 |
-
submission_result,
|
1177 |
-
)
|
1178 |
-
|
1179 |
-
|
1180 |
-
with gr.Row():
|
1181 |
-
with gr.Accordion("📙 Citation", open=False):
|
1182 |
citation_button = gr.Textbox(
|
1183 |
value=CITATION_BUTTON_TEXT,
|
1184 |
label=CITATION_BUTTON_LABEL,
|
@@ -1190,4 +1066,4 @@ with demo:
|
|
1190 |
scheduler = BackgroundScheduler()
|
1191 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
1192 |
scheduler.start()
|
1193 |
-
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
|
|
31 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
32 |
ACI_BENCHMARK_COLS,
|
33 |
SOAP_BENCHMARK_COLS,
|
34 |
+
#CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
35 |
DATASET_COLS,
|
36 |
OPEN_ENDED_COLS,
|
37 |
MED_SAFETY_COLS,
|
38 |
MEDICAL_SUMMARIZATION_COLS,
|
39 |
ACI_COLS,
|
40 |
SOAP_COLS,
|
41 |
+
#CLOSED_ENDED_ARABIC_COLS,
|
42 |
EVAL_COLS,
|
43 |
EVAL_TYPES,
|
44 |
NUMERIC_INTERVALS,
|
|
|
50 |
Precision,
|
51 |
WeightType,
|
52 |
fields,
|
53 |
+
render_generation_templates,
|
54 |
+
OpenEndedArabic_COLS,
|
55 |
+
OpenEndedArabic_BENCHMARK_COLS,
|
56 |
+
OpenEndedFrench_COLS,
|
57 |
+
OpenEndedFrench_BENCHMARK_COLS,
|
58 |
+
OpenEndedPortuguese_COLS,
|
59 |
+
OpenEndedPortuguese_BENCHMARK_COLS,
|
60 |
+
OpenEndedRomanian_COLS,
|
61 |
+
OpenEndedRomanian_BENCHMARK_COLS,
|
62 |
+
OpenEndedGreek_COLS,
|
63 |
+
OpenEndedGreek_BENCHMARK_COLS,
|
64 |
+
OpenEndedSpanish_COLS,
|
65 |
+
OpenEndedSpanish_BENCHMARK_COLS,
|
66 |
+
ClosedEndedMultilingual_COLS,
|
67 |
+
ClosedEndedMultilingual_BENCHMARK_COLS,
|
68 |
+
|
69 |
+
|
70 |
)
|
71 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
72 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
112 |
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
113 |
soap_leaderboard_df = soap_original_df.copy()
|
114 |
|
115 |
+
|
116 |
+
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
117 |
+
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
118 |
+
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
119 |
+
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
|
120 |
+
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
|
121 |
+
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
122 |
+
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
123 |
+
|
124 |
+
|
125 |
+
open_ended_arabic_leaderboard_df = open_ended_arabic_df.copy()
|
126 |
+
open_ended_french_leaderboard_df = open_ended_french_df.copy()
|
127 |
+
open_ended_portuguese_leaderboard_df = open_ended_portuguese_df.copy()
|
128 |
+
open_ended_romanian_leaderboard_df = open_ended_romanian_df.copy()
|
129 |
+
open_ended_greek_leaderboard_df = open_ended_greek_df.copy()
|
130 |
+
open_ended_spanish_leaderboard_df = open_ended_spanish_df.copy()
|
131 |
+
closed_ended_multilingual_leaderboard_df = closed_ended_multilingual_df.copy()
|
132 |
+
|
133 |
+
|
134 |
+
# if PRIVATE_REPO:
|
135 |
+
# _, closed_ended_arabic_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, CLOSED_ENDED_ARABIC_COLS, CLOSED_ENDED_ARABIC_BENCHMARK_COLS, "score", "closed_ended_arabic")
|
136 |
+
# closed_ended_arabic_leaderboard_df = closed_ended_arabic_original_df.copy()
|
137 |
|
138 |
# breakpoint()
|
139 |
# # Token based results
|
|
|
171 |
elif subset == "soap":
|
172 |
leaderboard_table_df = soap_leaderboard_df.copy()
|
173 |
hidden_leader_board_df = soap_original_df
|
174 |
+
elif subset == "open_ended_arabic":
|
175 |
+
leaderboard_table_df = open_ended_arabic_df.copy()
|
176 |
+
hidden_leader_board_df = open_ended_arabic_df
|
177 |
+
elif subset == "open_ended_french":
|
178 |
+
leaderboard_table_df = open_ended_french_df.copy()
|
179 |
+
hidden_leader_board_df = open_ended_french_df
|
180 |
+
elif subset == "open_ended_portuguese":
|
181 |
+
leaderboard_table_df = open_ended_portuguese_df.copy()
|
182 |
+
hidden_leader_board_df = open_ended_portuguese_df
|
183 |
+
elif subset == "open_ended_romanian":
|
184 |
+
leaderboard_table_df = open_ended_romanian_df.copy()
|
185 |
+
hidden_leader_board_df = open_ended_romanian_df
|
186 |
+
elif subset == "open_ended_greek":
|
187 |
+
leaderboard_table_df = open_ended_greek_df.copy()
|
188 |
+
hidden_leader_board_df = open_ended_greek_df
|
189 |
+
elif subset == "open_ended_spanish":
|
190 |
+
leaderboard_table_df = open_ended_spanish_df.copy()
|
191 |
+
hidden_leader_board_df = open_ended_spanish_df
|
192 |
+
elif subset == "closed_ended_multilingual":
|
193 |
+
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
194 |
+
hidden_leader_board_df = closed_ended_multilingual_df
|
195 |
+
|
196 |
# else:
|
197 |
# match evaluation_metric:
|
198 |
# case "Span Based":
|
|
|
312 |
demo = gr.Blocks(css=custom_css)
|
313 |
with demo:
|
314 |
print("hello")
|
|
|
|
|
315 |
gr.HTML(LOGO)
|
316 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
|
321 |
+
|
322 |
+
with gr.Blocks() as demo:
|
323 |
+
with gr.Tabs(elem_classes="tab-buttons") as outer_tabs:
|
324 |
+
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=11):
|
325 |
+
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
|
326 |
+
LANGUAGES = {
|
327 |
+
"🇺🇸 English": "open_ended",
|
328 |
+
"🇦🇪 Arabic": "open_ended_arabic",
|
329 |
+
"🇫🇷 French": "open_ended_french",
|
330 |
+
"🇪🇸 Spanish": "open_ended_spanish",
|
331 |
+
"🇵🇹 Portuguese": "open_ended_portuguese",
|
332 |
+
"🇷🇴 Romanian": "open_ended_romanian",
|
333 |
+
"🇬🇷 Greek": "open_ended_greek",
|
334 |
+
}
|
335 |
+
|
336 |
+
for idx, (label, subset) in enumerate(LANGUAGES.items()):
|
337 |
+
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
|
338 |
+
# Custom judge information for each language
|
339 |
+
if label == "🇺🇸 English":
|
340 |
+
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English."
|
341 |
+
else:
|
342 |
+
judge_text = "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
|
343 |
+
|
344 |
+
gr.Markdown(judge_text, elem_classes="markdown-text")
|
345 |
+
|
346 |
+
with gr.Row():
|
347 |
+
with gr.Column():
|
348 |
+
with gr.Row():
|
349 |
+
search_bar = gr.Textbox(
|
350 |
+
placeholder=f"🔍 Search for your model in {label}...",
|
351 |
+
show_label=False,
|
352 |
+
elem_id=f"search-bar-{subset}",
|
353 |
+
)
|
354 |
+
with gr.Row():
|
355 |
+
shown_columns = gr.CheckboxGroup(
|
356 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
357 |
+
value=[
|
358 |
+
c.name
|
359 |
+
for c in fields(AutoEvalColumn)
|
360 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
361 |
+
],
|
362 |
+
label="Select columns to show",
|
363 |
+
elem_id=f"column-select-{subset}",
|
364 |
+
interactive=True,
|
365 |
+
)
|
366 |
+
with gr.Column(min_width=320):
|
367 |
+
filter_columns_type = gr.CheckboxGroup(
|
368 |
+
label="Model Types",
|
369 |
+
choices=[t.to_str() for t in ModelType],
|
370 |
+
value=[t.to_str() for t in ModelType],
|
371 |
+
interactive=True,
|
372 |
+
elem_id=f"filter-columns-type-{subset}",
|
373 |
+
)
|
374 |
+
filter_domain_specific = gr.CheckboxGroup(
|
375 |
+
label="Domain Specificity",
|
376 |
+
choices=["🏥 Clinical models", "Generic models"],
|
377 |
+
value=["🏥 Clinical models", "Generic models"],
|
378 |
+
interactive=True,
|
379 |
+
elem_id=f"filter-columns-domain-{subset}",
|
380 |
+
)
|
381 |
+
filter_columns_size = gr.CheckboxGroup(
|
382 |
+
label="Model sizes (in billions of parameters)",
|
383 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
384 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
385 |
+
interactive=True,
|
386 |
+
elem_id=f"filter-columns-size-{subset}",
|
387 |
+
)
|
388 |
+
|
389 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset=subset)
|
390 |
+
|
391 |
+
leaderboard_table = gr.Dataframe(
|
392 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
393 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
394 |
+
datatype=TYPES,
|
395 |
+
elem_id=f"leaderboard-table-{subset}",
|
396 |
+
interactive=False,
|
397 |
+
visible=True,
|
398 |
)
|
399 |
+
|
400 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
401 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
402 |
+
headers=OPEN_ENDED_COLS,
|
403 |
+
datatype=TYPES,
|
404 |
+
visible=False,
|
405 |
+
)
|
406 |
+
|
407 |
+
search_bar.submit(
|
408 |
+
update_table,
|
409 |
+
[
|
410 |
+
hidden_leaderboard_table_for_search,
|
411 |
+
shown_columns,
|
412 |
+
search_bar,
|
413 |
+
filter_columns_type,
|
414 |
+
filter_domain_specific,
|
415 |
+
filter_columns_size
|
416 |
],
|
417 |
+
leaderboard_table,
|
|
|
|
|
418 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
+
for selector in [
|
421 |
+
shown_columns,
|
422 |
+
filter_columns_type,
|
423 |
+
filter_domain_specific,
|
424 |
+
filter_columns_size,
|
425 |
+
]:
|
426 |
+
selector.change(
|
427 |
+
update_table,
|
428 |
+
[
|
429 |
+
hidden_leaderboard_table_for_search,
|
430 |
+
shown_columns,
|
431 |
+
search_bar,
|
432 |
+
filter_columns_type,
|
433 |
+
filter_domain_specific,
|
434 |
+
filter_columns_size
|
435 |
+
],
|
436 |
+
leaderboard_table,
|
437 |
+
queue=True,
|
438 |
+
)
|
439 |
+
|
440 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
441 |
+
with gr.Accordion("Response generation", open=False):
|
442 |
+
render_generation_templates(task="open_ended", generation_type="response_generation")
|
443 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
444 |
+
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
445 |
+
|
446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
450 |
with gr.Row():
|
451 |
with gr.Column():
|
|
|
453 |
search_bar = gr.Textbox(
|
454 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
455 |
show_label=False,
|
456 |
+
elem_id="search-bar-med-safety",
|
457 |
)
|
458 |
with gr.Row():
|
459 |
shown_columns = gr.CheckboxGroup(
|
|
|
464 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
465 |
],
|
466 |
label="Select columns to show",
|
467 |
+
elem_id="column-select-med-safety",
|
468 |
interactive=True,
|
469 |
)
|
|
|
|
|
|
|
|
|
470 |
with gr.Column(min_width=320):
|
|
|
471 |
filter_columns_type = gr.CheckboxGroup(
|
472 |
label="Model Types",
|
473 |
choices=[t.to_str() for t in ModelType],
|
474 |
value=[t.to_str() for t in ModelType],
|
475 |
interactive=True,
|
476 |
+
elem_id="filter-columns-type-med-safety",
|
477 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
filter_domain_specific = gr.CheckboxGroup(
|
479 |
label="Domain Specificity",
|
480 |
choices=["🏥 Clinical models", "Generic models"],
|
481 |
value=["🏥 Clinical models", "Generic models"],
|
482 |
interactive=True,
|
483 |
+
elem_id="filter-domain-specific-med-safety",
|
484 |
)
|
485 |
filter_columns_size = gr.CheckboxGroup(
|
486 |
label="Model sizes (in billions of parameters)",
|
487 |
choices=list(NUMERIC_INTERVALS.keys()),
|
488 |
value=list(NUMERIC_INTERVALS.keys()),
|
489 |
interactive=True,
|
490 |
+
elem_id="filter-columns-size-med-safety",
|
491 |
)
|
492 |
|
493 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
494 |
|
495 |
+
leaderboard_table = gr.Dataframe(
|
496 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
497 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
498 |
datatype=TYPES,
|
499 |
+
elem_id="leaderboard-table-med-safety",
|
500 |
interactive=False,
|
501 |
visible=True,
|
502 |
)
|
503 |
|
504 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
505 |
value=datasets_original_df[MED_SAFETY_COLS],
|
506 |
headers=MED_SAFETY_COLS,
|
507 |
datatype=TYPES,
|
508 |
visible=False,
|
509 |
)
|
510 |
+
|
|
|
511 |
search_bar.submit(
|
512 |
update_table,
|
513 |
[
|
|
|
517 |
filter_columns_type,
|
518 |
filter_domain_specific,
|
519 |
filter_columns_size
|
|
|
520 |
],
|
521 |
leaderboard_table,
|
522 |
)
|
523 |
+
|
524 |
for selector in [
|
525 |
shown_columns,
|
526 |
filter_columns_type,
|
527 |
filter_domain_specific,
|
528 |
filter_columns_size,
|
|
|
529 |
]:
|
530 |
selector.change(
|
531 |
update_table,
|
|
|
540 |
leaderboard_table,
|
541 |
queue=True,
|
542 |
)
|
543 |
+
|
544 |
with gr.Accordion("💬 Generation templates", open=False):
|
545 |
with gr.Accordion("Response generation", open=False):
|
546 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
547 |
with gr.Accordion("Scoring Rubric", open=False):
|
548 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
549 |
+
|
550 |
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
551 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
552 |
with gr.Row():
|
|
|
555 |
search_bar = gr.Textbox(
|
556 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
557 |
show_label=False,
|
558 |
+
elem_id="search-bar-med-summarization",
|
559 |
)
|
560 |
with gr.Row():
|
561 |
shown_columns = gr.CheckboxGroup(
|
|
|
566 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
567 |
],
|
568 |
label="Select columns to show",
|
569 |
+
elem_id="column-select-med-summarization",
|
570 |
interactive=True,
|
571 |
)
|
|
|
|
|
|
|
|
|
572 |
with gr.Column(min_width=320):
|
|
|
573 |
filter_columns_type = gr.CheckboxGroup(
|
574 |
label="Model Types",
|
575 |
choices=[t.to_str() for t in ModelType],
|
576 |
value=[t.to_str() for t in ModelType],
|
577 |
interactive=True,
|
578 |
+
elem_id="filter-columns-type-med-summarization",
|
579 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
580 |
filter_domain_specific = gr.CheckboxGroup(
|
581 |
label="Domain Specificity",
|
582 |
choices=["🏥 Clinical models", "Generic models"],
|
583 |
value=["🏥 Clinical models", "Generic models"],
|
584 |
interactive=True,
|
585 |
+
elem_id="filter-domain-specific-med-summarization",
|
586 |
)
|
587 |
filter_columns_size = gr.CheckboxGroup(
|
588 |
label="Model sizes (in billions of parameters)",
|
589 |
choices=list(NUMERIC_INTERVALS.keys()),
|
590 |
value=list(NUMERIC_INTERVALS.keys()),
|
591 |
interactive=True,
|
592 |
+
elem_id="filter-columns-size-med-summarization",
|
593 |
)
|
594 |
|
595 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
596 |
|
597 |
+
leaderboard_table = gr.Dataframe(
|
598 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
599 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
600 |
datatype=TYPES,
|
601 |
+
elem_id="leaderboard-table-med-summarization",
|
602 |
interactive=False,
|
603 |
visible=True,
|
604 |
)
|
605 |
|
606 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
607 |
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
608 |
headers=MEDICAL_SUMMARIZATION_COLS,
|
609 |
datatype=TYPES,
|
610 |
visible=False,
|
611 |
)
|
612 |
+
|
|
|
613 |
search_bar.submit(
|
614 |
update_table,
|
615 |
[
|
|
|
619 |
filter_columns_type,
|
620 |
filter_domain_specific,
|
621 |
filter_columns_size
|
|
|
622 |
],
|
623 |
leaderboard_table,
|
624 |
)
|
625 |
+
|
626 |
for selector in [
|
627 |
shown_columns,
|
628 |
filter_columns_type,
|
629 |
filter_domain_specific,
|
630 |
filter_columns_size,
|
|
|
631 |
]:
|
632 |
selector.change(
|
633 |
update_table,
|
|
|
642 |
leaderboard_table,
|
643 |
queue=True,
|
644 |
)
|
645 |
+
|
646 |
with gr.Accordion("💬 Generation templates", open=False):
|
647 |
with gr.Accordion("Response generation", open=False):
|
648 |
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
649 |
with gr.Accordion("Question generation", open=False):
|
650 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
651 |
with gr.Accordion("Cross Examination", open=False):
|
652 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
653 |
+
|
654 |
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
655 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
656 |
+
with gr.Tabs(elem_classes="tab-buttons2") as note_tabs:
|
657 |
+
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-aci", id=0):
|
658 |
with gr.Row():
|
659 |
with gr.Column():
|
660 |
with gr.Row():
|
661 |
search_bar = gr.Textbox(
|
662 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
663 |
show_label=False,
|
664 |
+
elem_id="search-bar-aci",
|
665 |
)
|
666 |
with gr.Row():
|
667 |
shown_columns = gr.CheckboxGroup(
|
|
|
672 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
673 |
],
|
674 |
label="Select columns to show",
|
675 |
+
elem_id="column-select-aci",
|
676 |
interactive=True,
|
677 |
)
|
|
|
|
|
|
|
|
|
678 |
with gr.Column(min_width=320):
|
|
|
679 |
filter_columns_type = gr.CheckboxGroup(
|
680 |
label="Model Types",
|
681 |
choices=[t.to_str() for t in ModelType],
|
682 |
value=[t.to_str() for t in ModelType],
|
683 |
interactive=True,
|
684 |
+
elem_id="filter-columns-type-aci",
|
685 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
filter_domain_specific = gr.CheckboxGroup(
|
687 |
label="Domain Specificity",
|
688 |
choices=["🏥 Clinical models", "Generic models"],
|
689 |
value=["🏥 Clinical models", "Generic models"],
|
690 |
interactive=True,
|
691 |
+
elem_id="filter-domain-specific-aci",
|
692 |
)
|
693 |
filter_columns_size = gr.CheckboxGroup(
|
694 |
label="Model sizes (in billions of parameters)",
|
695 |
choices=list(NUMERIC_INTERVALS.keys()),
|
696 |
value=list(NUMERIC_INTERVALS.keys()),
|
697 |
interactive=True,
|
698 |
+
elem_id="filter-columns-size-aci",
|
699 |
)
|
700 |
|
701 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
702 |
|
703 |
+
leaderboard_table = gr.Dataframe(
|
704 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
705 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
706 |
datatype=TYPES,
|
707 |
+
elem_id="leaderboard-table-aci",
|
708 |
interactive=False,
|
709 |
visible=True,
|
710 |
)
|
711 |
|
712 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
713 |
value=datasets_original_df[ACI_COLS],
|
714 |
headers=ACI_COLS,
|
715 |
datatype=TYPES,
|
716 |
visible=False,
|
717 |
)
|
718 |
+
|
|
|
719 |
search_bar.submit(
|
720 |
update_table,
|
721 |
[
|
|
|
725 |
filter_columns_type,
|
726 |
filter_domain_specific,
|
727 |
filter_columns_size
|
|
|
728 |
],
|
729 |
leaderboard_table,
|
730 |
)
|
731 |
+
|
732 |
for selector in [
|
733 |
shown_columns,
|
734 |
filter_columns_type,
|
735 |
filter_domain_specific,
|
736 |
filter_columns_size,
|
|
|
737 |
]:
|
738 |
selector.change(
|
739 |
update_table,
|
|
|
748 |
leaderboard_table,
|
749 |
queue=True,
|
750 |
)
|
751 |
+
|
752 |
+
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-soap", id=1):
|
753 |
with gr.Row():
|
754 |
with gr.Column():
|
755 |
with gr.Row():
|
756 |
search_bar = gr.Textbox(
|
757 |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
758 |
show_label=False,
|
759 |
+
elem_id="search-bar-soap",
|
760 |
)
|
761 |
with gr.Row():
|
762 |
shown_columns = gr.CheckboxGroup(
|
|
|
767 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
768 |
],
|
769 |
label="Select columns to show",
|
770 |
+
elem_id="column-select-soap",
|
771 |
interactive=True,
|
772 |
)
|
|
|
|
|
|
|
|
|
773 |
with gr.Column(min_width=320):
|
|
|
774 |
filter_columns_type = gr.CheckboxGroup(
|
775 |
label="Model Types",
|
776 |
choices=[t.to_str() for t in ModelType],
|
777 |
value=[t.to_str() for t in ModelType],
|
778 |
interactive=True,
|
779 |
+
elem_id="filter-columns-type-soap",
|
780 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
781 |
filter_domain_specific = gr.CheckboxGroup(
|
782 |
label="Domain Specificity",
|
783 |
choices=["🏥 Clinical models", "Generic models"],
|
784 |
value=["🏥 Clinical models", "Generic models"],
|
785 |
interactive=True,
|
786 |
+
elem_id="filter-domain-specific-soap",
|
787 |
)
|
788 |
filter_columns_size = gr.CheckboxGroup(
|
789 |
label="Model sizes (in billions of parameters)",
|
790 |
choices=list(NUMERIC_INTERVALS.keys()),
|
791 |
value=list(NUMERIC_INTERVALS.keys()),
|
792 |
interactive=True,
|
793 |
+
elem_id="filter-columns-size-soap",
|
794 |
)
|
795 |
|
796 |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
797 |
|
798 |
+
leaderboard_table = gr.Dataframe(
|
799 |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
800 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
801 |
datatype=TYPES,
|
802 |
+
elem_id="leaderboard-table-soap",
|
803 |
interactive=False,
|
804 |
visible=True,
|
805 |
)
|
806 |
|
807 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
|
|
808 |
value=datasets_original_df[SOAP_COLS],
|
809 |
headers=SOAP_COLS,
|
810 |
datatype=TYPES,
|
811 |
visible=False,
|
812 |
)
|
813 |
+
|
|
|
814 |
search_bar.submit(
|
815 |
update_table,
|
816 |
[
|
|
|
820 |
filter_columns_type,
|
821 |
filter_domain_specific,
|
822 |
filter_columns_size
|
|
|
823 |
],
|
824 |
leaderboard_table,
|
825 |
)
|
826 |
+
|
827 |
for selector in [
|
828 |
shown_columns,
|
829 |
filter_columns_type,
|
830 |
filter_domain_specific,
|
831 |
filter_columns_size,
|
|
|
832 |
]:
|
833 |
selector.change(
|
834 |
update_table,
|
|
|
843 |
leaderboard_table,
|
844 |
queue=True,
|
845 |
)
|
846 |
+
|
847 |
with gr.Accordion("💬 Generation templates", open=False):
|
848 |
with gr.Accordion("ACI-Bench Response generation", open=False):
|
849 |
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
|
|
852 |
with gr.Accordion("Question generation", open=False):
|
853 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
854 |
with gr.Accordion("Cross Examination", open=False):
|
855 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
856 |
+
|
857 |
+
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
|
858 |
+
with gr.Tabs(elem_classes="tab-buttons2") as closed_tabs:
|
859 |
+
# ENGLISH TAB
|
860 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-closed-english", id=0):
|
861 |
+
with gr.Row():
|
862 |
+
with gr.Column():
|
863 |
+
with gr.Row():
|
864 |
+
search_bar = gr.Textbox(
|
865 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
866 |
+
show_label=False,
|
867 |
+
elem_id="search-bar-closed-english",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
)
|
869 |
+
with gr.Row():
|
870 |
+
shown_columns = gr.CheckboxGroup(
|
871 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
872 |
+
value=[
|
873 |
+
c.name
|
874 |
+
for c in fields(AutoEvalColumn)
|
875 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
876 |
+
],
|
877 |
+
label="Select columns to show",
|
878 |
+
elem_id="column-select-closed-english",
|
879 |
interactive=True,
|
|
|
880 |
)
|
881 |
+
with gr.Column(min_width=320):
|
882 |
+
filter_columns_type = gr.CheckboxGroup(
|
883 |
+
label="Model Types",
|
884 |
+
choices=[t.to_str() for t in ModelType],
|
885 |
+
value=[t.to_str() for t in ModelType],
|
886 |
+
interactive=True,
|
887 |
+
elem_id="filter-columns-type-closed-english",
|
888 |
+
)
|
889 |
+
filter_domain_specific = gr.CheckboxGroup(
|
890 |
+
label="Domain Specificity",
|
891 |
+
choices=["🏥 Clinical models", "Generic models"],
|
892 |
+
value=["🏥 Clinical models", "Generic models"],
|
893 |
+
interactive=True,
|
894 |
+
elem_id="filter-domain-specific-closed-english",
|
895 |
+
)
|
896 |
+
filter_columns_size = gr.CheckboxGroup(
|
897 |
+
label="Model sizes (in billions of parameters)",
|
898 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
899 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
900 |
+
interactive=True,
|
901 |
+
elem_id="filter-columns-size-closed-english",
|
902 |
+
)
|
903 |
|
904 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
905 |
+
leaderboard_table = gr.components.Dataframe(
|
906 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
907 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
908 |
+
datatype=TYPES,
|
909 |
+
elem_id="leaderboard-table-english",
|
910 |
+
interactive=False,
|
911 |
+
visible=True,
|
912 |
+
)
|
913 |
+
|
914 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
915 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
916 |
+
value=datasets_original_df[DATASET_COLS],
|
917 |
+
headers=DATASET_COLS,
|
918 |
+
datatype=TYPES,
|
919 |
+
visible=False,
|
920 |
+
)
|
921 |
+
|
922 |
+
search_bar.submit(
|
923 |
+
update_table,
|
924 |
+
[
|
925 |
+
hidden_leaderboard_table_for_search,
|
926 |
+
shown_columns,
|
927 |
+
search_bar,
|
928 |
+
filter_columns_type,
|
929 |
+
filter_domain_specific,
|
930 |
+
filter_columns_size
|
931 |
+
],
|
932 |
+
leaderboard_table,
|
933 |
+
)
|
934 |
+
|
935 |
+
for selector in [
|
936 |
+
shown_columns,
|
937 |
+
filter_columns_type,
|
938 |
+
filter_domain_specific,
|
939 |
+
filter_columns_size,
|
940 |
+
]:
|
941 |
+
selector.change(
|
942 |
update_table,
|
943 |
[
|
944 |
hidden_leaderboard_table_for_search,
|
|
|
947 |
filter_columns_type,
|
948 |
filter_domain_specific,
|
949 |
filter_columns_size
|
|
|
950 |
],
|
951 |
leaderboard_table,
|
952 |
+
queue=True,
|
953 |
)
|
954 |
+
|
955 |
+
#MULTILINGUAL TAB - Same level as English tab
|
956 |
+
with gr.TabItem("🌍 Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
957 |
with gr.Row():
|
958 |
+
gr.Markdown("📊 **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
|
959 |
+
|
|
|
|
|
|
|
960 |
with gr.Row():
|
961 |
+
with gr.Column():
|
962 |
+
with gr.Row():
|
963 |
+
search_bar = gr.Textbox(
|
964 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
965 |
+
show_label=False,
|
966 |
+
elem_id="search-bar",
|
967 |
+
)
|
968 |
+
|
969 |
+
with gr.Row():
|
970 |
+
shown_columns = gr.CheckboxGroup(
|
971 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
972 |
+
value=[
|
973 |
+
c.name
|
974 |
+
for c in fields(AutoEvalColumn)
|
975 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
976 |
+
],
|
977 |
+
label="Select columns to show",
|
978 |
+
elem_id="column-select",
|
979 |
+
interactive=True,
|
980 |
+
)
|
981 |
+
with gr.Column(min_width=320):
|
982 |
+
# with gr.Box(elem_id="box-filter"):
|
983 |
+
filter_columns_type = gr.CheckboxGroup(
|
984 |
+
label="Model Types",
|
985 |
+
choices=[t.to_str() for t in ModelType],
|
986 |
+
value=[t.to_str() for t in ModelType],
|
987 |
+
interactive=True,
|
988 |
+
elem_id="filter-columns-type",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
989 |
)
|
990 |
+
filter_domain_specific = gr.CheckboxGroup(
|
991 |
+
label="Domain Specificity",
|
992 |
+
choices=["🏥 Clinical models", "Generic models"],
|
993 |
+
value=["🏥 Clinical models", "Generic models"],
|
994 |
+
interactive=True,
|
995 |
+
elem_id="filter-columns-type",
|
|
|
|
|
|
|
|
|
996 |
)
|
997 |
+
filter_columns_size = gr.CheckboxGroup(
|
998 |
+
label="Model sizes (in billions of parameters)",
|
999 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
1000 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1001 |
+
interactive=True,
|
1002 |
+
elem_id="filter-columns-size",
|
|
|
|
|
|
|
|
|
|
|
1003 |
)
|
|
|
|
|
1004 |
|
1005 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
1006 |
+
leaderboard_table = gr.components.Dataframe(
|
1007 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1008 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1009 |
+
datatype=TYPES,
|
1010 |
+
elem_id="leaderboard-table",
|
1011 |
+
interactive=False,
|
1012 |
+
visible=True,
|
|
|
|
|
1013 |
)
|
1014 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1015 |
+
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
1016 |
+
headers=ClosedEndedMultilingual_COLS,
|
1017 |
+
datatype=TYPES,
|
1018 |
+
visible=False,
|
|
|
|
|
|
|
1019 |
)
|
1020 |
+
|
1021 |
+
search_bar.submit(
|
1022 |
+
update_table,
|
1023 |
+
[
|
1024 |
+
hidden_leaderboard_table_for_search,
|
1025 |
+
shown_columns,
|
1026 |
+
search_bar,
|
1027 |
+
filter_columns_type,
|
1028 |
+
filter_domain_specific,
|
1029 |
+
filter_columns_size
|
1030 |
+
# filter_columns_architecture
|
1031 |
+
],
|
1032 |
+
leaderboard_table,
|
1033 |
)
|
1034 |
+
for selector in [
|
1035 |
+
shown_columns,
|
1036 |
+
filter_columns_type,
|
1037 |
+
filter_domain_specific,
|
1038 |
+
# filter_columns_architecture,
|
1039 |
+
filter_columns_size,
|
1040 |
+
# deleted_models_visibility,
|
1041 |
+
]:
|
1042 |
+
selector.change(
|
1043 |
+
update_table,
|
1044 |
+
[
|
1045 |
+
hidden_leaderboard_table_for_search,
|
1046 |
+
shown_columns,
|
1047 |
+
search_bar,
|
1048 |
+
filter_columns_type,
|
1049 |
+
filter_domain_specific,
|
1050 |
+
filter_columns_size
|
1051 |
+
# filter_columns_architecture,
|
1052 |
+
],
|
1053 |
+
leaderboard_table,
|
1054 |
+
queue=True,
|
1055 |
+
)
|
1056 |
+
with gr.Row():
|
1057 |
+
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1058 |
citation_button = gr.Textbox(
|
1059 |
value=CITATION_BUTTON_TEXT,
|
1060 |
label=CITATION_BUTTON_LABEL,
|
|
|
1066 |
scheduler = BackgroundScheduler()
|
1067 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
1068 |
scheduler.start()
|
1069 |
+
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
app_original.py
ADDED
@@ -0,0 +1,1276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
|
8 |
+
from src.about import (
|
9 |
+
CITATION_BUTTON_LABEL,
|
10 |
+
CITATION_BUTTON_TEXT,
|
11 |
+
EVALUATION_QUEUE_TEXT,
|
12 |
+
INTRODUCTION_TEXT,
|
13 |
+
LLM_BENCHMARKS_TEXT_1,
|
14 |
+
LLM_BENCHMARKS_TEXT_2,
|
15 |
+
CROSS_EVALUATION_METRICS,
|
16 |
+
NOTE_GENERATION_METRICS,
|
17 |
+
# EVALUATION_EXAMPLE_IMG,
|
18 |
+
# LLM_BENCHMARKS_TEXT_2,
|
19 |
+
# ENTITY_DISTRIBUTION_IMG,
|
20 |
+
# LLM_BENCHMARKS_TEXT_3,
|
21 |
+
TITLE,
|
22 |
+
LOGO,
|
23 |
+
FIVE_PILLAR_DIAGRAM
|
24 |
+
)
|
25 |
+
from src.display.css_html_js import custom_css
|
26 |
+
# changes to be made here
|
27 |
+
from src.display.utils import (
|
28 |
+
DATASET_BENCHMARK_COLS,
|
29 |
+
OPEN_ENDED_BENCHMARK_COLS,
|
30 |
+
MED_SAFETY_BENCHMARK_COLS,
|
31 |
+
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
32 |
+
ACI_BENCHMARK_COLS,
|
33 |
+
SOAP_BENCHMARK_COLS,
|
34 |
+
#CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
35 |
+
DATASET_COLS,
|
36 |
+
OPEN_ENDED_COLS,
|
37 |
+
MED_SAFETY_COLS,
|
38 |
+
MEDICAL_SUMMARIZATION_COLS,
|
39 |
+
ACI_COLS,
|
40 |
+
SOAP_COLS,
|
41 |
+
#CLOSED_ENDED_ARABIC_COLS,
|
42 |
+
EVAL_COLS,
|
43 |
+
EVAL_TYPES,
|
44 |
+
NUMERIC_INTERVALS,
|
45 |
+
TYPES,
|
46 |
+
AutoEvalColumn,
|
47 |
+
ModelType,
|
48 |
+
ModelArch,
|
49 |
+
PromptTemplateName,
|
50 |
+
Precision,
|
51 |
+
WeightType,
|
52 |
+
fields,
|
53 |
+
render_generation_templates,
|
54 |
+
OpenEndedArabic_COLS,
|
55 |
+
OpenEndedArabic_BENCHMARK_COLS,
|
56 |
+
OpenEndedFrench_COLS,
|
57 |
+
OpenEndedFrench_BENCHMARK_COLS,
|
58 |
+
OpenEndedPortuguese_COLS,
|
59 |
+
OpenEndedPortuguese_BENCHMARK_COLS,
|
60 |
+
OpenEndedRomanian_COLS,
|
61 |
+
OpenEndedRomanian_BENCHMARK_COLS,
|
62 |
+
OpenEndedGreek_COLS,
|
63 |
+
OpenEndedGreek_BENCHMARK_COLS,
|
64 |
+
OpenEndedSpanish_COLS,
|
65 |
+
OpenEndedSpanish_BENCHMARK_COLS,
|
66 |
+
ClosedEndedMultilingual_COLS,
|
67 |
+
ClosedEndedMultilingual_BENCHMARK_COLS,
|
68 |
+
|
69 |
+
#closed_ended_multilingual,
|
70 |
+
# Open_EndedArabic,
|
71 |
+
# Open_EndedSpanish,
|
72 |
+
# Open_EndedFrench,
|
73 |
+
# Open_EndedPortuguese,
|
74 |
+
# Open_EndedRomanian,
|
75 |
+
# Open_EndedGreek,
|
76 |
+
# Open_EndedSpanish,
|
77 |
+
# Open_EndedArabic,
|
78 |
+
# Open_EndedFrench,
|
79 |
+
|
80 |
+
)
|
81 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
82 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
83 |
+
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
|
84 |
+
|
85 |
+
def restart_space():
|
86 |
+
API.restart_space(repo_id=REPO_ID)
|
87 |
+
|
88 |
+
|
89 |
+
try:
|
90 |
+
print(EVAL_REQUESTS_PATH)
|
91 |
+
snapshot_download(
|
92 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
93 |
+
)
|
94 |
+
except Exception:
|
95 |
+
restart_space()
|
96 |
+
try:
|
97 |
+
print(EVAL_RESULTS_PATH)
|
98 |
+
snapshot_download(
|
99 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
100 |
+
)
|
101 |
+
except Exception:
|
102 |
+
restart_space()
|
103 |
+
|
104 |
+
# Span based results
|
105 |
+
# changes to be made here
|
106 |
+
|
107 |
+
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
108 |
+
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
109 |
+
|
110 |
+
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
111 |
+
open_ended_leaderboard_df = open_ended_original_df.copy()
|
112 |
+
|
113 |
+
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
|
114 |
+
med_safety_leaderboard_df = med_safety_original_df.copy()
|
115 |
+
|
116 |
+
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
|
117 |
+
medical_summarization_leaderboard_df = medical_summarization_original_df.copy()
|
118 |
+
|
119 |
+
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
|
120 |
+
aci_leaderboard_df = aci_original_df.copy()
|
121 |
+
|
122 |
+
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
123 |
+
soap_leaderboard_df = soap_original_df.copy()
|
124 |
+
|
125 |
+
|
126 |
+
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
127 |
+
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
128 |
+
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
129 |
+
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
|
130 |
+
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
|
131 |
+
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
132 |
+
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
133 |
+
|
134 |
+
|
135 |
+
open_ended_arabic_leaderboard_df = open_ended_arabic_df.copy()
|
136 |
+
open_ended_french_leaderboard_df = open_ended_french_df.copy()
|
137 |
+
open_ended_portuguese_leaderboard_df = open_ended_portuguese_df.copy()
|
138 |
+
open_ended_romanian_leaderboard_df = open_ended_romanian_df.copy()
|
139 |
+
open_ended_greek_leaderboard_df = open_ended_greek_df.copy()
|
140 |
+
open_ended_spanish_leaderboard_df = open_ended_spanish_df.copy()
|
141 |
+
closed_ended_multilingual_leaderboard_df = closed_ended_multilingual_df.copy()
|
142 |
+
|
143 |
+
|
144 |
+
# if PRIVATE_REPO:
|
145 |
+
# _, closed_ended_arabic_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, CLOSED_ENDED_ARABIC_COLS, CLOSED_ENDED_ARABIC_BENCHMARK_COLS, "score", "closed_ended_arabic")
|
146 |
+
# closed_ended_arabic_leaderboard_df = closed_ended_arabic_original_df.copy()
|
147 |
+
|
148 |
+
# breakpoint()
|
149 |
+
# # Token based results
|
150 |
+
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
151 |
+
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
152 |
+
|
153 |
+
# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
|
154 |
+
# token_based_types_leaderboard_df = token_based_types_original_df.copy()
|
155 |
+
|
156 |
+
|
157 |
+
(
|
158 |
+
finished_eval_queue_df,
|
159 |
+
running_eval_queue_df,
|
160 |
+
pending_eval_queue_df,
|
161 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
162 |
+
|
163 |
+
# breakpoint()
|
164 |
+
def update_df(shown_columns, subset="datasets"):
|
165 |
+
# changes to be made here
|
166 |
+
if subset == "datasets":
|
167 |
+
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
|
168 |
+
hidden_leader_board_df = harness_datasets_original_df
|
169 |
+
elif subset == "open_ended":
|
170 |
+
leaderboard_table_df = open_ended_leaderboard_df.copy()
|
171 |
+
hidden_leader_board_df = open_ended_original_df
|
172 |
+
elif subset == "med_safety":
|
173 |
+
leaderboard_table_df = med_safety_leaderboard_df.copy()
|
174 |
+
hidden_leader_board_df = med_safety_original_df
|
175 |
+
elif subset == "medical_summarization":
|
176 |
+
leaderboard_table_df = medical_summarization_leaderboard_df.copy()
|
177 |
+
hidden_leader_board_df = medical_summarization_original_df
|
178 |
+
elif subset == "aci":
|
179 |
+
leaderboard_table_df = aci_leaderboard_df.copy()
|
180 |
+
hidden_leader_board_df = aci_original_df
|
181 |
+
elif subset == "soap":
|
182 |
+
leaderboard_table_df = soap_leaderboard_df.copy()
|
183 |
+
hidden_leader_board_df = soap_original_df
|
184 |
+
elif subset == "open_ended_arabic":
|
185 |
+
leaderboard_table_df = open_ended_arabic_df.copy()
|
186 |
+
hidden_leader_board_df = open_ended_arabic_df
|
187 |
+
elif subset == "open_ended_french":
|
188 |
+
leaderboard_table_df = open_ended_french_df.copy()
|
189 |
+
hidden_leader_board_df = open_ended_french_df
|
190 |
+
elif subset == "open_ended_portuguese":
|
191 |
+
leaderboard_table_df = open_ended_portuguese_df.copy()
|
192 |
+
hidden_leader_board_df = open_ended_portuguese_df
|
193 |
+
elif subset == "open_ended_romanian":
|
194 |
+
leaderboard_table_df = open_ended_romanian_df.copy()
|
195 |
+
hidden_leader_board_df = open_ended_romanian_df
|
196 |
+
elif subset == "open_ended_greek":
|
197 |
+
leaderboard_table_df = open_ended_greek_df.copy()
|
198 |
+
hidden_leader_board_df = open_ended_greek_df
|
199 |
+
elif subset == "open_ended_spanish":
|
200 |
+
leaderboard_table_df = open_ended_spanish_df.copy()
|
201 |
+
hidden_leader_board_df = open_ended_spanish_df
|
202 |
+
elif subset == "closed_ended_multilingual":
|
203 |
+
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
204 |
+
hidden_leader_board_df = closed_ended_multilingual_df
|
205 |
+
|
206 |
+
# else:
|
207 |
+
# match evaluation_metric:
|
208 |
+
# case "Span Based":
|
209 |
+
# leaderboard_table_df = span_based_types_leaderboard_df.copy()
|
210 |
+
# hidden_leader_board_df = span_based_types_original_df
|
211 |
+
# case "Token Based":
|
212 |
+
# leaderboard_table_df = token_based_types_leaderboard_df.copy()
|
213 |
+
# hidden_leader_board_df = token_based_types_original_df
|
214 |
+
# case _:
|
215 |
+
# pass
|
216 |
+
|
217 |
+
|
218 |
+
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
219 |
+
# breakpoint()
|
220 |
+
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
221 |
+
|
222 |
+
|
223 |
+
# Searching and filtering
|
224 |
+
def update_table(
|
225 |
+
hidden_df: pd.DataFrame,
|
226 |
+
columns: list,
|
227 |
+
query: str = "",
|
228 |
+
type_query: list = None,
|
229 |
+
domain_specific_query: list = None,
|
230 |
+
size_query: list = None,
|
231 |
+
precision_query: str = None,
|
232 |
+
show_deleted: bool = False,
|
233 |
+
):
|
234 |
+
# breakpoint()
|
235 |
+
filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
|
236 |
+
# breakpoint()
|
237 |
+
filtered_df = filter_queries(query, filtered_df)
|
238 |
+
# breakpoint()
|
239 |
+
df = select_columns(filtered_df, columns, list(hidden_df.columns))
|
240 |
+
# breakpoint()
|
241 |
+
return df
|
242 |
+
|
243 |
+
|
244 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
245 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
246 |
+
|
247 |
+
|
248 |
+
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
|
249 |
+
always_here_cols = [
|
250 |
+
AutoEvalColumn.model_type_symbol.name,
|
251 |
+
AutoEvalColumn.model.name,
|
252 |
+
]
|
253 |
+
# We use COLS to maintain sorting
|
254 |
+
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
|
255 |
+
return filtered_df
|
256 |
+
|
257 |
+
|
258 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
259 |
+
final_df = []
|
260 |
+
if query != "":
|
261 |
+
queries = [q.strip() for q in query.split(";")]
|
262 |
+
for _q in queries:
|
263 |
+
_q = _q.strip()
|
264 |
+
if _q != "":
|
265 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
266 |
+
if len(temp_filtered_df) > 0:
|
267 |
+
final_df.append(temp_filtered_df)
|
268 |
+
if len(final_df) > 0:
|
269 |
+
filtered_df = pd.concat(final_df)
|
270 |
+
filtered_df = filtered_df.drop_duplicates(
|
271 |
+
subset=[
|
272 |
+
AutoEvalColumn.model.name,
|
273 |
+
# AutoEvalColumn.precision.name,
|
274 |
+
# AutoEvalColumn.revision.name,
|
275 |
+
]
|
276 |
+
)
|
277 |
+
|
278 |
+
return filtered_df
|
279 |
+
|
280 |
+
|
281 |
+
def filter_models(
|
282 |
+
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
|
283 |
+
) -> pd.DataFrame:
|
284 |
+
# Show all models
|
285 |
+
# if show_deleted:
|
286 |
+
# filtered_df = df
|
287 |
+
# else: # Show only still on the hub models
|
288 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
289 |
+
|
290 |
+
filtered_df = df
|
291 |
+
|
292 |
+
if type_query is not None:
|
293 |
+
type_name = [t.split(" ")[1] for t in type_query]
|
294 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]
|
295 |
+
|
296 |
+
if domain_specific_query is not None:
|
297 |
+
domain_specifics = []
|
298 |
+
if "🏥 Clinical models" in domain_specific_query:
|
299 |
+
domain_specifics.append(True)
|
300 |
+
if "Generic models" in domain_specific_query:
|
301 |
+
domain_specifics.append(False)
|
302 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
|
303 |
+
|
304 |
+
# if architecture_query is not None:
|
305 |
+
# arch_types = [t for t in architecture_query]
|
306 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
|
307 |
+
# # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
|
308 |
+
|
309 |
+
if precision_query is not None:
|
310 |
+
if AutoEvalColumn.precision.name in df.columns:
|
311 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
312 |
+
|
313 |
+
if size_query is not None:
|
314 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
315 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
316 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
317 |
+
filtered_df = filtered_df.loc[mask]
|
318 |
+
|
319 |
+
return filtered_df
|
320 |
+
|
321 |
+
|
322 |
+
demo = gr.Blocks(css=custom_css)
|
323 |
+
with demo:
|
324 |
+
print("hello")
|
325 |
+
gr.HTML(LOGO)
|
326 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
332 |
+
with gr.TabItem("🌍 Open Ended MultilingualEvaluation", elem_id="llm-benchmark-tab-table", id=11):
|
333 |
+
with gr.Tabs(elem_classes="tab-buttons6") as tabs:
|
334 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-table10", id=0):
|
335 |
+
with gr.Row():
|
336 |
+
with gr.Column():
|
337 |
+
with gr.Row():
|
338 |
+
search_bar = gr.Textbox(
|
339 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
340 |
+
show_label=False,
|
341 |
+
elem_id="search-bar",
|
342 |
+
)
|
343 |
+
with gr.Row():
|
344 |
+
shown_columns = gr.CheckboxGroup(
|
345 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
346 |
+
value=[
|
347 |
+
c.name
|
348 |
+
for c in fields(AutoEvalColumn)
|
349 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
350 |
+
],
|
351 |
+
label="Select columns to show",
|
352 |
+
elem_id="column-select",
|
353 |
+
interactive=True,
|
354 |
+
|
355 |
+
)
|
356 |
+
|
357 |
+
with gr.Column(min_width=320):
|
358 |
+
filter_columns_type = gr.CheckboxGroup(
|
359 |
+
label="Model Types",
|
360 |
+
choices=[t.to_str() for t in ModelType],
|
361 |
+
value=[t.to_str() for t in ModelType],
|
362 |
+
interactive=True,
|
363 |
+
elem_id="filter-columns-type",
|
364 |
+
)
|
365 |
+
filter_domain_specific = gr.CheckboxGroup(
|
366 |
+
label="Domain Specificity",
|
367 |
+
choices=["🏥 Clinical models", "Generic models"],
|
368 |
+
value=["🏥 Clinical models", "Generic models"],
|
369 |
+
interactive=True,
|
370 |
+
elem_id="filter-columns-type",
|
371 |
+
)
|
372 |
+
filter_domain_specific = gr.CheckboxGroup(
|
373 |
+
label="Domain Specificity",
|
374 |
+
choices=["🏥 Clinical models", "Generic models"],
|
375 |
+
value=["🏥 Clinical models", "Generic models"],
|
376 |
+
interactive=True,
|
377 |
+
elem_id="filter-columns-type",
|
378 |
+
)
|
379 |
+
filter_columns_size = gr.CheckboxGroup(
|
380 |
+
label="Model sizes (in billions of parameters)",
|
381 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
382 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
383 |
+
interactive=True,
|
384 |
+
elem_id="filter-columns-size",
|
385 |
+
)
|
386 |
+
|
387 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
|
388 |
+
|
389 |
+
|
390 |
+
leaderboard_table = gr.components.Dataframe(
|
391 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
392 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
393 |
+
datatype=TYPES,
|
394 |
+
elem_id="leaderboard-table",
|
395 |
+
interactive=False,
|
396 |
+
visible=True,
|
397 |
+
)
|
398 |
+
|
399 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
400 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
401 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
402 |
+
headers=OPEN_ENDED_COLS,
|
403 |
+
datatype=TYPES,
|
404 |
+
visible=False,
|
405 |
+
)
|
406 |
+
|
407 |
+
|
408 |
+
search_bar.submit(
|
409 |
+
update_table,
|
410 |
+
[
|
411 |
+
hidden_leaderboard_table_for_search,
|
412 |
+
shown_columns,
|
413 |
+
search_bar,
|
414 |
+
filter_columns_type,
|
415 |
+
filter_domain_specific,
|
416 |
+
filter_columns_size
|
417 |
+
# filter_columns_architecture
|
418 |
+
],
|
419 |
+
leaderboard_table,
|
420 |
+
)
|
421 |
+
for selector in [
|
422 |
+
shown_columns,
|
423 |
+
filter_columns_type,
|
424 |
+
filter_domain_specific,
|
425 |
+
# filter_columns_architecture,
|
426 |
+
filter_columns_size,
|
427 |
+
# deleted_models_visibility,
|
428 |
+
]:
|
429 |
+
selector.change(
|
430 |
+
update_table,
|
431 |
+
[
|
432 |
+
hidden_leaderboard_table_for_search,
|
433 |
+
shown_columns,
|
434 |
+
search_bar,
|
435 |
+
filter_columns_type,
|
436 |
+
filter_domain_specific,
|
437 |
+
filter_columns_size
|
438 |
+
# filter_columns_architecture,
|
439 |
+
],
|
440 |
+
leaderboard_table,
|
441 |
+
queue=True,
|
442 |
+
)
|
443 |
+
|
444 |
+
|
445 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
446 |
+
with gr.Accordion("Response generation", open=False):
|
447 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
448 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
449 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
450 |
+
|
451 |
+
|
452 |
+
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
453 |
+
with gr.Row():
|
454 |
+
with gr.Column():
|
455 |
+
with gr.Row():
|
456 |
+
search_bar = gr.Textbox(
|
457 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
458 |
+
show_label=False,
|
459 |
+
elem_id="search-bar",
|
460 |
+
)
|
461 |
+
with gr.Row():
|
462 |
+
shown_columns = gr.CheckboxGroup(
|
463 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
464 |
+
value=[
|
465 |
+
c.name
|
466 |
+
for c in fields(AutoEvalColumn)
|
467 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
468 |
+
],
|
469 |
+
label="Select columns to show",
|
470 |
+
elem_id="column-select",
|
471 |
+
interactive=True,
|
472 |
+
)
|
473 |
+
# with gr.Row():
|
474 |
+
# deleted_models_visibility = gr.Checkbox(
|
475 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
476 |
+
# )
|
477 |
+
with gr.Column(min_width=320):
|
478 |
+
# with gr.Box(elem_id="box-filter"):
|
479 |
+
filter_columns_type = gr.CheckboxGroup(
|
480 |
+
label="Model Types",
|
481 |
+
choices=[t.to_str() for t in ModelType],
|
482 |
+
value=[t.to_str() for t in ModelType],
|
483 |
+
interactive=True,
|
484 |
+
elem_id="filter-columns-type",
|
485 |
+
)
|
486 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
487 |
+
# label="Architecture Types",
|
488 |
+
# choices=[i.value.name for i in ModelArch],
|
489 |
+
# value=[i.value.name for i in ModelArch],
|
490 |
+
# interactive=True,
|
491 |
+
# elem_id="filter-columns-architecture",
|
492 |
+
# )
|
493 |
+
filter_domain_specific = gr.CheckboxGroup(
|
494 |
+
label="Domain Specificity",
|
495 |
+
choices=["🏥 Clinical models", "Generic models"],
|
496 |
+
value=["🏥 Clinical models", "Generic models"],
|
497 |
+
interactive=True,
|
498 |
+
elem_id="filter-columns-type",
|
499 |
+
)
|
500 |
+
filter_columns_size = gr.CheckboxGroup(
|
501 |
+
label="Model sizes (in billions of parameters)",
|
502 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
503 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
504 |
+
interactive=True,
|
505 |
+
elem_id="filter-columns-size",
|
506 |
+
)
|
507 |
+
|
508 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
|
509 |
+
|
510 |
+
leaderboard_table = gr.components.Dataframe(
|
511 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
512 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
513 |
+
datatype=TYPES,
|
514 |
+
elem_id="leaderboard-table",
|
515 |
+
interactive=False,
|
516 |
+
visible=True,
|
517 |
+
)
|
518 |
+
|
519 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
520 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
521 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
522 |
+
headers=OPEN_ENDED_COLS,
|
523 |
+
datatype=TYPES,
|
524 |
+
visible=False,
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
search_bar.submit(
|
529 |
+
update_table,
|
530 |
+
[
|
531 |
+
hidden_leaderboard_table_for_search,
|
532 |
+
shown_columns,
|
533 |
+
search_bar,
|
534 |
+
filter_columns_type,
|
535 |
+
filter_domain_specific,
|
536 |
+
filter_columns_size
|
537 |
+
# filter_columns_architecture
|
538 |
+
],
|
539 |
+
leaderboard_table,
|
540 |
+
)
|
541 |
+
for selector in [
|
542 |
+
shown_columns,
|
543 |
+
filter_columns_type,
|
544 |
+
filter_domain_specific,
|
545 |
+
# filter_columns_architecture,
|
546 |
+
filter_columns_size,
|
547 |
+
# deleted_models_visibility,
|
548 |
+
]:
|
549 |
+
selector.change(
|
550 |
+
update_table,
|
551 |
+
[
|
552 |
+
hidden_leaderboard_table_for_search,
|
553 |
+
shown_columns,
|
554 |
+
search_bar,
|
555 |
+
filter_columns_type,
|
556 |
+
filter_domain_specific,
|
557 |
+
filter_columns_size
|
558 |
+
# filter_columns_architecture,
|
559 |
+
],
|
560 |
+
leaderboard_table,
|
561 |
+
queue=True,
|
562 |
+
)
|
563 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
564 |
+
with gr.Accordion("Response generation", open=False):
|
565 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
566 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
567 |
+
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
568 |
+
|
569 |
+
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
570 |
+
with gr.Row():
|
571 |
+
with gr.Column():
|
572 |
+
|
573 |
+
with gr.Row():
|
574 |
+
search_bar = gr.Textbox(
|
575 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
576 |
+
show_label=False,
|
577 |
+
elem_id="search-bar",
|
578 |
+
)
|
579 |
+
|
580 |
+
|
581 |
+
with gr.Row():
|
582 |
+
shown_columns = gr.CheckboxGroup(
|
583 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
|
584 |
+
value=[
|
585 |
+
c.name
|
586 |
+
for c in fields(AutoEvalColumn)
|
587 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
588 |
+
],
|
589 |
+
label="Select columns to show",
|
590 |
+
elem_id="column-select",
|
591 |
+
interactive=True,
|
592 |
+
)
|
593 |
+
|
594 |
+
|
595 |
+
# with gr.Row():
|
596 |
+
# deleted_models_visibility = gr.Checkbox(
|
597 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
598 |
+
# )
|
599 |
+
with gr.Column(min_width=320):
|
600 |
+
|
601 |
+
# with gr.Box(elem_id="box-filter"):
|
602 |
+
filter_columns_type = gr.CheckboxGroup(
|
603 |
+
label="Model Types",
|
604 |
+
choices=[t.to_str() for t in ModelType],
|
605 |
+
value=[t.to_str() for t in ModelType],
|
606 |
+
interactive=True,
|
607 |
+
elem_id="filter-columns-type",
|
608 |
+
)
|
609 |
+
|
610 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
611 |
+
# label="Architecture Types",
|
612 |
+
# choices=[i.value.name for i in ModelArch],
|
613 |
+
# value=[i.value.name for i in ModelArch],
|
614 |
+
# interactive=True,
|
615 |
+
# elem_id="filter-columns-architecture",
|
616 |
+
# )
|
617 |
+
|
618 |
+
filter_domain_specific = gr.CheckboxGroup(
|
619 |
+
label="Domain Specificity",
|
620 |
+
choices=["🏥 Clinical models", "Generic models"],
|
621 |
+
value=["🏥 Clinical models", "Generic models"],
|
622 |
+
interactive=True,
|
623 |
+
elem_id="filter-columns-type",
|
624 |
+
)
|
625 |
+
filter_columns_size = gr.CheckboxGroup(
|
626 |
+
label="Model sizes (in billions of parameters)",
|
627 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
628 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
629 |
+
interactive=True,
|
630 |
+
elem_id="filter-columns-size",
|
631 |
+
)
|
632 |
+
|
633 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
634 |
+
|
635 |
+
leaderboard_table = gr.components.Dataframe(
|
636 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
637 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
638 |
+
datatype=TYPES,
|
639 |
+
elem_id="leaderboard-table",
|
640 |
+
interactive=False,
|
641 |
+
visible=True,
|
642 |
+
)
|
643 |
+
|
644 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
645 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
646 |
+
value=datasets_original_df[MED_SAFETY_COLS],
|
647 |
+
headers=MED_SAFETY_COLS,
|
648 |
+
datatype=TYPES,
|
649 |
+
visible=False,
|
650 |
+
)
|
651 |
+
|
652 |
+
|
653 |
+
search_bar.submit(
|
654 |
+
update_table,
|
655 |
+
[
|
656 |
+
hidden_leaderboard_table_for_search,
|
657 |
+
shown_columns,
|
658 |
+
search_bar,
|
659 |
+
filter_columns_type,
|
660 |
+
filter_domain_specific,
|
661 |
+
filter_columns_size
|
662 |
+
# filter_columns_architecture
|
663 |
+
],
|
664 |
+
leaderboard_table,
|
665 |
+
)
|
666 |
+
for selector in [
|
667 |
+
shown_columns,
|
668 |
+
filter_columns_type,
|
669 |
+
filter_domain_specific,
|
670 |
+
filter_columns_size,
|
671 |
+
# deleted_models_visibility,
|
672 |
+
]:
|
673 |
+
selector.change(
|
674 |
+
update_table,
|
675 |
+
[
|
676 |
+
hidden_leaderboard_table_for_search,
|
677 |
+
shown_columns,
|
678 |
+
search_bar,
|
679 |
+
filter_columns_type,
|
680 |
+
filter_domain_specific,
|
681 |
+
filter_columns_size
|
682 |
+
],
|
683 |
+
leaderboard_table,
|
684 |
+
queue=True,
|
685 |
+
)
|
686 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
687 |
+
with gr.Accordion("Response generation", open=False):
|
688 |
+
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
689 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
690 |
+
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
691 |
+
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
692 |
+
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
693 |
+
with gr.Row():
|
694 |
+
with gr.Column():
|
695 |
+
with gr.Row():
|
696 |
+
search_bar = gr.Textbox(
|
697 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
698 |
+
show_label=False,
|
699 |
+
elem_id="search-bar",
|
700 |
+
)
|
701 |
+
with gr.Row():
|
702 |
+
shown_columns = gr.CheckboxGroup(
|
703 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
|
704 |
+
value=[
|
705 |
+
c.name
|
706 |
+
for c in fields(AutoEvalColumn)
|
707 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
708 |
+
],
|
709 |
+
label="Select columns to show",
|
710 |
+
elem_id="column-select",
|
711 |
+
interactive=True,
|
712 |
+
)
|
713 |
+
# with gr.Row():
|
714 |
+
# deleted_models_visibility = gr.Checkbox(
|
715 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
716 |
+
# )
|
717 |
+
with gr.Column(min_width=320):
|
718 |
+
# with gr.Box(elem_id="box-filter"):
|
719 |
+
filter_columns_type = gr.CheckboxGroup(
|
720 |
+
label="Model Types",
|
721 |
+
choices=[t.to_str() for t in ModelType],
|
722 |
+
value=[t.to_str() for t in ModelType],
|
723 |
+
interactive=True,
|
724 |
+
elem_id="filter-columns-type",
|
725 |
+
)
|
726 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
727 |
+
# label="Architecture Types",
|
728 |
+
# choices=[i.value.name for i in ModelArch],
|
729 |
+
# value=[i.value.name for i in ModelArch],
|
730 |
+
# interactive=True,
|
731 |
+
# elem_id="filter-columns-architecture",
|
732 |
+
# )
|
733 |
+
filter_domain_specific = gr.CheckboxGroup(
|
734 |
+
label="Domain Specificity",
|
735 |
+
choices=["🏥 Clinical models", "Generic models"],
|
736 |
+
value=["🏥 Clinical models", "Generic models"],
|
737 |
+
interactive=True,
|
738 |
+
elem_id="filter-columns-type",
|
739 |
+
)
|
740 |
+
filter_columns_size = gr.CheckboxGroup(
|
741 |
+
label="Model sizes (in billions of parameters)",
|
742 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
743 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
744 |
+
interactive=True,
|
745 |
+
elem_id="filter-columns-size",
|
746 |
+
)
|
747 |
+
|
748 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
749 |
+
|
750 |
+
leaderboard_table = gr.components.Dataframe(
|
751 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
752 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
753 |
+
datatype=TYPES,
|
754 |
+
elem_id="leaderboard-table",
|
755 |
+
interactive=False,
|
756 |
+
visible=True,
|
757 |
+
)
|
758 |
+
|
759 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
760 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
761 |
+
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
762 |
+
headers=MEDICAL_SUMMARIZATION_COLS,
|
763 |
+
datatype=TYPES,
|
764 |
+
visible=False,
|
765 |
+
)
|
766 |
+
|
767 |
+
|
768 |
+
search_bar.submit(
|
769 |
+
update_table,
|
770 |
+
[
|
771 |
+
hidden_leaderboard_table_for_search,
|
772 |
+
shown_columns,
|
773 |
+
search_bar,
|
774 |
+
filter_columns_type,
|
775 |
+
filter_domain_specific,
|
776 |
+
filter_columns_size
|
777 |
+
# filter_columns_architecture
|
778 |
+
],
|
779 |
+
leaderboard_table,
|
780 |
+
)
|
781 |
+
for selector in [
|
782 |
+
shown_columns,
|
783 |
+
filter_columns_type,
|
784 |
+
filter_domain_specific,
|
785 |
+
filter_columns_size,
|
786 |
+
# deleted_models_visibility,
|
787 |
+
]:
|
788 |
+
selector.change(
|
789 |
+
update_table,
|
790 |
+
[
|
791 |
+
hidden_leaderboard_table_for_search,
|
792 |
+
shown_columns,
|
793 |
+
search_bar,
|
794 |
+
filter_columns_type,
|
795 |
+
filter_domain_specific,
|
796 |
+
filter_columns_size
|
797 |
+
],
|
798 |
+
leaderboard_table,
|
799 |
+
queue=True,
|
800 |
+
)
|
801 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
802 |
+
with gr.Accordion("Response generation", open=False):
|
803 |
+
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
804 |
+
with gr.Accordion("Question generation", open=False):
|
805 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
806 |
+
with gr.Accordion("Cross Examination", open=False):
|
807 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
808 |
+
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
809 |
+
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
810 |
+
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
811 |
+
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-table2", id=0):
|
812 |
+
with gr.Row():
|
813 |
+
with gr.Column():
|
814 |
+
with gr.Row():
|
815 |
+
search_bar = gr.Textbox(
|
816 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
817 |
+
show_label=False,
|
818 |
+
elem_id="search-bar",
|
819 |
+
)
|
820 |
+
with gr.Row():
|
821 |
+
shown_columns = gr.CheckboxGroup(
|
822 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
|
823 |
+
value=[
|
824 |
+
c.name
|
825 |
+
for c in fields(AutoEvalColumn)
|
826 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
827 |
+
],
|
828 |
+
label="Select columns to show",
|
829 |
+
elem_id="column-select",
|
830 |
+
interactive=True,
|
831 |
+
)
|
832 |
+
# with gr.Row():
|
833 |
+
# deleted_models_visibility = gr.Checkbox(
|
834 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
835 |
+
# )
|
836 |
+
with gr.Column(min_width=320):
|
837 |
+
# with gr.Box(elem_id="box-filter"):
|
838 |
+
filter_columns_type = gr.CheckboxGroup(
|
839 |
+
label="Model Types",
|
840 |
+
choices=[t.to_str() for t in ModelType],
|
841 |
+
value=[t.to_str() for t in ModelType],
|
842 |
+
interactive=True,
|
843 |
+
elem_id="filter-columns-type",
|
844 |
+
)
|
845 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
846 |
+
# label="Architecture Types",
|
847 |
+
# choices=[i.value.name for i in ModelArch],
|
848 |
+
# value=[i.value.name for i in ModelArch],
|
849 |
+
# interactive=True,
|
850 |
+
# elem_id="filter-columns-architecture",
|
851 |
+
# )
|
852 |
+
filter_domain_specific = gr.CheckboxGroup(
|
853 |
+
label="Domain Specificity",
|
854 |
+
choices=["🏥 Clinical models", "Generic models"],
|
855 |
+
value=["🏥 Clinical models", "Generic models"],
|
856 |
+
interactive=True,
|
857 |
+
elem_id="filter-columns-type",
|
858 |
+
)
|
859 |
+
filter_columns_size = gr.CheckboxGroup(
|
860 |
+
label="Model sizes (in billions of parameters)",
|
861 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
862 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
863 |
+
interactive=True,
|
864 |
+
elem_id="filter-columns-size",
|
865 |
+
)
|
866 |
+
|
867 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
868 |
+
|
869 |
+
leaderboard_table = gr.components.Dataframe(
|
870 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
871 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
872 |
+
datatype=TYPES,
|
873 |
+
elem_id="leaderboard-table",
|
874 |
+
interactive=False,
|
875 |
+
visible=True,
|
876 |
+
)
|
877 |
+
|
878 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
879 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
880 |
+
value=datasets_original_df[ACI_COLS],
|
881 |
+
headers=ACI_COLS,
|
882 |
+
datatype=TYPES,
|
883 |
+
visible=False,
|
884 |
+
)
|
885 |
+
|
886 |
+
|
887 |
+
search_bar.submit(
|
888 |
+
update_table,
|
889 |
+
[
|
890 |
+
hidden_leaderboard_table_for_search,
|
891 |
+
shown_columns,
|
892 |
+
search_bar,
|
893 |
+
filter_columns_type,
|
894 |
+
filter_domain_specific,
|
895 |
+
filter_columns_size
|
896 |
+
# filter_columns_architecture
|
897 |
+
],
|
898 |
+
leaderboard_table,
|
899 |
+
)
|
900 |
+
for selector in [
|
901 |
+
shown_columns,
|
902 |
+
filter_columns_type,
|
903 |
+
filter_domain_specific,
|
904 |
+
filter_columns_size,
|
905 |
+
# deleted_models_visibility,
|
906 |
+
]:
|
907 |
+
selector.change(
|
908 |
+
update_table,
|
909 |
+
[
|
910 |
+
hidden_leaderboard_table_for_search,
|
911 |
+
shown_columns,
|
912 |
+
search_bar,
|
913 |
+
filter_columns_type,
|
914 |
+
filter_domain_specific,
|
915 |
+
filter_columns_size
|
916 |
+
],
|
917 |
+
leaderboard_table,
|
918 |
+
queue=True,
|
919 |
+
)
|
920 |
+
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-table2", id=1):
|
921 |
+
with gr.Row():
|
922 |
+
with gr.Column():
|
923 |
+
with gr.Row():
|
924 |
+
search_bar = gr.Textbox(
|
925 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
926 |
+
show_label=False,
|
927 |
+
elem_id="search-bar",
|
928 |
+
)
|
929 |
+
with gr.Row():
|
930 |
+
shown_columns = gr.CheckboxGroup(
|
931 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
|
932 |
+
value=[
|
933 |
+
c.name
|
934 |
+
for c in fields(AutoEvalColumn)
|
935 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
936 |
+
],
|
937 |
+
label="Select columns to show",
|
938 |
+
elem_id="column-select",
|
939 |
+
interactive=True,
|
940 |
+
)
|
941 |
+
# with gr.Row():
|
942 |
+
# deleted_models_visibility = gr.Checkbox(
|
943 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
944 |
+
# )
|
945 |
+
with gr.Column(min_width=320):
|
946 |
+
# with gr.Box(elem_id="box-filter"):
|
947 |
+
filter_columns_type = gr.CheckboxGroup(
|
948 |
+
label="Model Types",
|
949 |
+
choices=[t.to_str() for t in ModelType],
|
950 |
+
value=[t.to_str() for t in ModelType],
|
951 |
+
interactive=True,
|
952 |
+
elem_id="filter-columns-type",
|
953 |
+
)
|
954 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
955 |
+
# label="Architecture Types",
|
956 |
+
# choices=[i.value.name for i in ModelArch],
|
957 |
+
# value=[i.value.name for i in ModelArch],
|
958 |
+
# interactive=True,
|
959 |
+
# elem_id="filter-columns-architecture",
|
960 |
+
# )
|
961 |
+
filter_domain_specific = gr.CheckboxGroup(
|
962 |
+
label="Domain Specificity",
|
963 |
+
choices=["🏥 Clinical models", "Generic models"],
|
964 |
+
value=["🏥 Clinical models", "Generic models"],
|
965 |
+
interactive=True,
|
966 |
+
elem_id="filter-columns-type",
|
967 |
+
)
|
968 |
+
filter_columns_size = gr.CheckboxGroup(
|
969 |
+
label="Model sizes (in billions of parameters)",
|
970 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
971 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
972 |
+
interactive=True,
|
973 |
+
elem_id="filter-columns-size",
|
974 |
+
)
|
975 |
+
|
976 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
977 |
+
|
978 |
+
leaderboard_table = gr.components.Dataframe(
|
979 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
980 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
981 |
+
datatype=TYPES,
|
982 |
+
elem_id="leaderboard-table",
|
983 |
+
interactive=False,
|
984 |
+
visible=True,
|
985 |
+
)
|
986 |
+
|
987 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
988 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
989 |
+
value=datasets_original_df[SOAP_COLS],
|
990 |
+
headers=SOAP_COLS,
|
991 |
+
datatype=TYPES,
|
992 |
+
visible=False,
|
993 |
+
)
|
994 |
+
|
995 |
+
|
996 |
+
search_bar.submit(
|
997 |
+
update_table,
|
998 |
+
[
|
999 |
+
hidden_leaderboard_table_for_search,
|
1000 |
+
shown_columns,
|
1001 |
+
search_bar,
|
1002 |
+
filter_columns_type,
|
1003 |
+
filter_domain_specific,
|
1004 |
+
filter_columns_size
|
1005 |
+
# filter_columns_architecture
|
1006 |
+
],
|
1007 |
+
leaderboard_table,
|
1008 |
+
)
|
1009 |
+
for selector in [
|
1010 |
+
shown_columns,
|
1011 |
+
filter_columns_type,
|
1012 |
+
filter_domain_specific,
|
1013 |
+
filter_columns_size,
|
1014 |
+
# deleted_models_visibility,
|
1015 |
+
]:
|
1016 |
+
selector.change(
|
1017 |
+
update_table,
|
1018 |
+
[
|
1019 |
+
hidden_leaderboard_table_for_search,
|
1020 |
+
shown_columns,
|
1021 |
+
search_bar,
|
1022 |
+
filter_columns_type,
|
1023 |
+
filter_domain_specific,
|
1024 |
+
filter_columns_size
|
1025 |
+
],
|
1026 |
+
leaderboard_table,
|
1027 |
+
queue=True,
|
1028 |
+
)
|
1029 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
1030 |
+
with gr.Accordion("ACI-Bench Response generation", open=False):
|
1031 |
+
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
1032 |
+
with gr.Accordion("SOAP Notes Response generation", open=False):
|
1033 |
+
system_prompt, user_prompt = render_generation_templates(task="soap", generation_type="response_generation")
|
1034 |
+
with gr.Accordion("Question generation", open=False):
|
1035 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
1036 |
+
with gr.Accordion("Cross Examination", open=False):
|
1037 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
1038 |
+
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=6):
|
1039 |
+
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
1040 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-table9", id=0):
|
1041 |
+
with gr.Row():
|
1042 |
+
with gr.Column():
|
1043 |
+
with gr.Row():
|
1044 |
+
search_bar = gr.Textbox(
|
1045 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
1046 |
+
show_label=False,
|
1047 |
+
elem_id="search-bar",
|
1048 |
+
)
|
1049 |
+
with gr.Row():
|
1050 |
+
shown_columns = gr.CheckboxGroup(
|
1051 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
1052 |
+
value=[
|
1053 |
+
c.name
|
1054 |
+
for c in fields(AutoEvalColumn)
|
1055 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
1056 |
+
],
|
1057 |
+
label="Select columns to show",
|
1058 |
+
elem_id="column-select",
|
1059 |
+
interactive=True,
|
1060 |
+
)
|
1061 |
+
# with gr.Row():
|
1062 |
+
# deleted_models_visibility = gr.Checkbox(
|
1063 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
1064 |
+
# )
|
1065 |
+
with gr.Column(min_width=320):
|
1066 |
+
# with gr.Box(elem_id="box-filter"):
|
1067 |
+
filter_columns_type = gr.CheckboxGroup(
|
1068 |
+
label="Model Types",
|
1069 |
+
choices=[t.to_str() for t in ModelType],
|
1070 |
+
value=[t.to_str() for t in ModelType],
|
1071 |
+
interactive=True,
|
1072 |
+
elem_id="filter-columns-type",
|
1073 |
+
)
|
1074 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
1075 |
+
# label="Architecture Types",
|
1076 |
+
# choices=[i.value.name for i in ModelArch],
|
1077 |
+
# value=[i.value.name for i in ModelArch],
|
1078 |
+
# interactive=True,
|
1079 |
+
# elem_id="filter-columns-architecture",
|
1080 |
+
# )
|
1081 |
+
filter_domain_specific = gr.CheckboxGroup(
|
1082 |
+
label="Domain Specificity",
|
1083 |
+
choices=["🏥 Clinical models", "Generic models"],
|
1084 |
+
value=["🏥 Clinical models", "Generic models"],
|
1085 |
+
interactive=True,
|
1086 |
+
elem_id="filter-columns-type",
|
1087 |
+
)
|
1088 |
+
filter_columns_size = gr.CheckboxGroup(
|
1089 |
+
label="Model sizes (in billions of parameters)",
|
1090 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
1091 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1092 |
+
interactive=True,
|
1093 |
+
elem_id="filter-columns-size",
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
1097 |
+
leaderboard_table = gr.components.Dataframe(
|
1098 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1099 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1100 |
+
datatype=TYPES,
|
1101 |
+
elem_id="leaderboard-table",
|
1102 |
+
interactive=False,
|
1103 |
+
visible=True,
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
1107 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1108 |
+
value=datasets_original_df[DATASET_COLS],
|
1109 |
+
headers=DATASET_COLS,
|
1110 |
+
datatype=TYPES,
|
1111 |
+
visible=False,
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
search_bar.submit(
|
1115 |
+
update_table,
|
1116 |
+
[
|
1117 |
+
hidden_leaderboard_table_for_search,
|
1118 |
+
shown_columns,
|
1119 |
+
search_bar,
|
1120 |
+
filter_columns_type,
|
1121 |
+
filter_domain_specific,
|
1122 |
+
filter_columns_size
|
1123 |
+
# filter_columns_architecture
|
1124 |
+
],
|
1125 |
+
leaderboard_table,
|
1126 |
+
)
|
1127 |
+
for selector in [
|
1128 |
+
shown_columns,
|
1129 |
+
filter_columns_type,
|
1130 |
+
filter_domain_specific,
|
1131 |
+
# filter_columns_architecture,
|
1132 |
+
filter_columns_size,
|
1133 |
+
# deleted_models_visibility,
|
1134 |
+
]:
|
1135 |
+
selector.change(
|
1136 |
+
update_table,
|
1137 |
+
[
|
1138 |
+
hidden_leaderboard_table_for_search,
|
1139 |
+
shown_columns,
|
1140 |
+
search_bar,
|
1141 |
+
filter_columns_type,
|
1142 |
+
filter_domain_specific,
|
1143 |
+
filter_columns_size
|
1144 |
+
# filter_columns_architecture,
|
1145 |
+
],
|
1146 |
+
leaderboard_table,
|
1147 |
+
queue=True,
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
with gr.TabItem("🌍 Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
1151 |
+
with gr.Row():
|
1152 |
+
with gr.Column():
|
1153 |
+
with gr.Row():
|
1154 |
+
search_bar = gr.Textbox(
|
1155 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
1156 |
+
show_label=False,
|
1157 |
+
elem_id="search-bar",
|
1158 |
+
)
|
1159 |
+
with gr.Row():
|
1160 |
+
shown_columns = gr.CheckboxGroup(
|
1161 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
1162 |
+
value=[
|
1163 |
+
c.name
|
1164 |
+
for c in fields(AutoEvalColumn)
|
1165 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
1166 |
+
],
|
1167 |
+
label="Select columns to show",
|
1168 |
+
elem_id="column-select",
|
1169 |
+
interactive=True,
|
1170 |
+
)
|
1171 |
+
# with gr.Row():
|
1172 |
+
# deleted_models_visibility = gr.Checkbox(
|
1173 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
1174 |
+
# )
|
1175 |
+
with gr.Column(min_width=320):
|
1176 |
+
# with gr.Box(elem_id="box-filter"):
|
1177 |
+
filter_columns_type = gr.CheckboxGroup(
|
1178 |
+
label="Model Types",
|
1179 |
+
choices=[t.to_str() for t in ModelType],
|
1180 |
+
value=[t.to_str() for t in ModelType],
|
1181 |
+
interactive=True,
|
1182 |
+
elem_id="filter-columns-type",
|
1183 |
+
)
|
1184 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
1185 |
+
# label="Architecture Types",
|
1186 |
+
# choices=[i.value.name for i in ModelArch],
|
1187 |
+
# value=[i.value.name for i in ModelArch],
|
1188 |
+
# interactive=True,
|
1189 |
+
# elem_id="filter-columns-architecture",
|
1190 |
+
# )
|
1191 |
+
filter_domain_specific = gr.CheckboxGroup(
|
1192 |
+
label="Domain Specificity",
|
1193 |
+
choices=["🏥 Clinical models", "Generic models"],
|
1194 |
+
value=["🏥 Clinical models", "Generic models"],
|
1195 |
+
interactive=True,
|
1196 |
+
elem_id="filter-columns-type",
|
1197 |
+
)
|
1198 |
+
filter_columns_size = gr.CheckboxGroup(
|
1199 |
+
label="Model sizes (in billions of parameters)",
|
1200 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
1201 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1202 |
+
interactive=True,
|
1203 |
+
elem_id="filter-columns-size",
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
1207 |
+
leaderboard_table = gr.components.Dataframe(
|
1208 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1209 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1210 |
+
datatype=TYPES,
|
1211 |
+
elem_id="leaderboard-table",
|
1212 |
+
interactive=False,
|
1213 |
+
visible=True,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
1217 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1218 |
+
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
1219 |
+
headers=ClosedEndedMultilingual_COLS,
|
1220 |
+
datatype=TYPES,
|
1221 |
+
visible=False,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
search_bar.submit(
|
1225 |
+
update_table,
|
1226 |
+
[
|
1227 |
+
hidden_leaderboard_table_for_search,
|
1228 |
+
shown_columns,
|
1229 |
+
search_bar,
|
1230 |
+
filter_columns_type,
|
1231 |
+
filter_domain_specific,
|
1232 |
+
filter_columns_size
|
1233 |
+
# filter_columns_architecture
|
1234 |
+
],
|
1235 |
+
leaderboard_table,
|
1236 |
+
)
|
1237 |
+
for selector in [
|
1238 |
+
shown_columns,
|
1239 |
+
filter_columns_type,
|
1240 |
+
filter_domain_specific,
|
1241 |
+
# filter_columns_architecture,
|
1242 |
+
filter_columns_size,
|
1243 |
+
# deleted_models_visibility,
|
1244 |
+
]:
|
1245 |
+
selector.change(
|
1246 |
+
update_table,
|
1247 |
+
[
|
1248 |
+
hidden_leaderboard_table_for_search,
|
1249 |
+
shown_columns,
|
1250 |
+
search_bar,
|
1251 |
+
filter_columns_type,
|
1252 |
+
filter_domain_specific,
|
1253 |
+
filter_columns_size
|
1254 |
+
# filter_columns_architecture,
|
1255 |
+
],
|
1256 |
+
leaderboard_table,
|
1257 |
+
queue=True,
|
1258 |
+
)
|
1259 |
+
|
1260 |
+
|
1261 |
+
with gr.Row():
|
1262 |
+
with gr.Accordion("📙 Citation", open=False):
|
1263 |
+
citation_button = gr.Textbox(
|
1264 |
+
value=CITATION_BUTTON_TEXT,
|
1265 |
+
label=CITATION_BUTTON_LABEL,
|
1266 |
+
lines=20,
|
1267 |
+
elem_id="citation-button",
|
1268 |
+
show_copy_button=True,
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
|
1272 |
+
|
1273 |
+
scheduler = BackgroundScheduler()
|
1274 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
1275 |
+
scheduler.start()
|
1276 |
+
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
src/about.py
CHANGED
@@ -40,6 +40,77 @@ class OpenEndedColumns(Enum):
|
|
40 |
column3 = OpenEndedColumn("Score_intervals", "score", "Score 95% CI")
|
41 |
# changes to be made here
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
@dataclass
|
44 |
class MedSafetyColumn:
|
45 |
benchmark: str
|
@@ -102,11 +173,16 @@ class ClosedEndedArabicColumn:
|
|
102 |
metric: str
|
103 |
col_name: str
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
40 |
column3 = OpenEndedColumn("Score_intervals", "score", "Score 95% CI")
|
41 |
# changes to be made here
|
42 |
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class OpenEndedMultilingualColumn:
|
46 |
+
benchmark: str
|
47 |
+
metric: str
|
48 |
+
col_name: str
|
49 |
+
|
50 |
+
class OpenEndedArabicColumn(Enum):
|
51 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
52 |
+
arabic_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
53 |
+
arabic_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
54 |
+
arabic_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
55 |
+
arabic_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
56 |
+
|
57 |
+
|
58 |
+
class OpenEndedFrenchColumn(Enum):
|
59 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
60 |
+
french_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
61 |
+
french_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
62 |
+
french_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
63 |
+
french_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
64 |
+
|
65 |
+
|
66 |
+
class OpenEndedSpanishColumn(Enum):
|
67 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
68 |
+
spanish_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
69 |
+
spanish_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
70 |
+
spanish_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
71 |
+
spanish_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
72 |
+
|
73 |
+
|
74 |
+
class OpenEndedPortugueseColumn(Enum):
|
75 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
76 |
+
porto_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
77 |
+
porto_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
78 |
+
porto_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
79 |
+
porto_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
80 |
+
|
81 |
+
|
82 |
+
class OpenEndedRomanianColumn(Enum):
|
83 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
84 |
+
rom_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
85 |
+
rom_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
86 |
+
rom_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
87 |
+
rom_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
88 |
+
|
89 |
+
|
90 |
+
class OpenEndedGreekColumn(Enum):
|
91 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
92 |
+
greek_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
93 |
+
greek_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
94 |
+
greek_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
95 |
+
greek_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
@dataclass
|
100 |
+
class ClosedEndedMultilingualColumn:
|
101 |
+
benchmark: str
|
102 |
+
metric: str
|
103 |
+
col_name: str
|
104 |
+
|
105 |
+
|
106 |
+
class ClosedEndedMultilingualColumns(Enum):
|
107 |
+
mtask0 = ClosedEndedMultilingualColumn("Global-MMLU-Arabic", "accuracy", "🇦🇪Arabic")
|
108 |
+
mtask1 = ClosedEndedMultilingualColumn("Global-MMLU-French", "accuracy", "🇫🇷French")
|
109 |
+
mtask2 = ClosedEndedMultilingualColumn("Global-MMLU-Spanish", "accuracy", "🇪🇸Spanish")
|
110 |
+
mtask3 = ClosedEndedMultilingualColumn("Global-MMLU-Portuguese", "accuracy", "🇵🇹Portuguese")
|
111 |
+
mtask4 = ClosedEndedMultilingualColumn("Global-MMLU-Romanian", "accuracy", "🇷🇴Romanian")
|
112 |
+
mtask5 = ClosedEndedMultilingualColumn("Global-MMLU-Greek", "accuracy", "🇬🇷Greek")
|
113 |
+
|
114 |
@dataclass
|
115 |
class MedSafetyColumn:
|
116 |
benchmark: str
|
|
|
173 |
metric: str
|
174 |
col_name: str
|
175 |
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
# class ClosedEndedArabicColumns(Enum):
|
182 |
+
# arabictask0 = ClosedEndedArabicColumn("MMLU-Arabic", "accuracy", "MMLU-Arabic")
|
183 |
+
# arabictask2 = ClosedEndedArabicColumn("MedMCQA-Arabic", "accuracy", "MedMCQA-Arabic")
|
184 |
+
# arabictask3 = ClosedEndedArabicColumn("MedQA-Arabic", "accuracy", "MedQA-Arabic")
|
185 |
+
# arabictask5 = ClosedEndedArabicColumn("PubMedQA-Arabic", "accuracy", "PubMedQA-Arabic")
|
186 |
|
187 |
|
188 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
@@ -4,7 +4,7 @@ from enum import Enum
|
|
4 |
import pandas as pd
|
5 |
|
6 |
# changes to be made here
|
7 |
-
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns,
|
8 |
from src.envs import PRIVATE_REPO
|
9 |
import json
|
10 |
import gradio as gr
|
@@ -31,17 +31,21 @@ class ColumnContent:
|
|
31 |
medical_summarization_col: bool = False
|
32 |
aci_col: bool = False
|
33 |
soap_col: bool = False
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
-
## Leaderboard columns
|
38 |
-
auto_eval_column_dict = []
|
39 |
# Init
|
40 |
auto_eval_column_dict = []
|
41 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
42 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
43 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
44 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True,
|
45 |
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
|
46 |
for task in HarnessTasks:
|
47 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
@@ -59,9 +63,21 @@ for column in ACIColumns:
|
|
59 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, aci_col=True, invariant=False)])
|
60 |
for column in SOAPColumns:
|
61 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, soap_col=True, invariant=False)])
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
66 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
67 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
@@ -75,6 +91,13 @@ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Avai
|
|
75 |
# auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)])
|
76 |
auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)])
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# We use make dataclass to dynamically fill the scores from Tasks
|
79 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
80 |
|
@@ -94,8 +117,8 @@ class EvalQueueColumn: # Queue column
|
|
94 |
med_safety_status = ColumnContent("med_safety_status", "str", True)
|
95 |
medical_summarization_status = ColumnContent("medical_summarization_status", "str", True)
|
96 |
note_generation_status = ColumnContent("note_generation_status", "str", True)
|
97 |
-
if PRIVATE_REPO:
|
98 |
-
|
99 |
|
100 |
## All the model information that we might need
|
101 |
@dataclass
|
@@ -221,8 +244,22 @@ MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c
|
|
221 |
MEDICAL_SUMMARIZATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.medical_summarization_col or c.invariant)]
|
222 |
ACI_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.aci_col or c.invariant)]
|
223 |
SOAP_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.soap_col or c.invariant)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
# if PRIVATE_REPO:
|
225 |
-
CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)]
|
226 |
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)]
|
227 |
# DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
228 |
# OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
@@ -243,8 +280,26 @@ MED_SAFETY_BENCHMARK_COLS = [t.value.col_name for t in MedSafetyColumns]
|
|
243 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS = [t.value.col_name for t in MedicalSummarizationColumns]
|
244 |
ACI_BENCHMARK_COLS = [t.value.col_name for t in ACIColumns]
|
245 |
SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns]
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]
|
249 |
|
250 |
NUMERIC_INTERVALS = {
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
# changes to be made here
|
7 |
+
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
|
8 |
from src.envs import PRIVATE_REPO
|
9 |
import json
|
10 |
import gradio as gr
|
|
|
31 |
medical_summarization_col: bool = False
|
32 |
aci_col: bool = False
|
33 |
soap_col: bool = False
|
34 |
+
open_ended_arabic_col: bool = False
|
35 |
+
open_ended_french_col: bool = False
|
36 |
+
open_ended_spanish_col: bool = False
|
37 |
+
open_ended_portuguese_col: bool = False
|
38 |
+
open_ended_romanian_col: bool = False
|
39 |
+
open_ended_greek_col: bool = False
|
40 |
+
closed_ended_multilingual_col: bool = False
|
41 |
|
42 |
|
|
|
|
|
43 |
# Init
|
44 |
auto_eval_column_dict = []
|
45 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
46 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
47 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
48 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, closed_ended_multilingual_col=True, invariant=False)])
|
49 |
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
|
50 |
for task in HarnessTasks:
|
51 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
|
|
63 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, aci_col=True, invariant=False)])
|
64 |
for column in SOAPColumns:
|
65 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, soap_col=True, invariant=False)])
|
66 |
+
for column in OpenEndedArabicColumn:
|
67 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_arabic_col=True, invariant=False)])
|
68 |
+
for column in OpenEndedFrenchColumn:
|
69 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_french_col=True, invariant=False)])
|
70 |
+
for column in OpenEndedSpanishColumn:
|
71 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_spanish_col=True, invariant=False)])
|
72 |
+
for column in OpenEndedPortugueseColumn:
|
73 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_portuguese_col=True, invariant=False)])
|
74 |
+
for column in OpenEndedRomanianColumn:
|
75 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_romanian_col=True, invariant=False)])
|
76 |
+
for column in OpenEndedGreekColumn:
|
77 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_greek_col=True, invariant=False)])
|
78 |
+
for column in ClosedEndedMultilingualColumns:
|
79 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, closed_ended_multilingual_col=True, invariant=False)])
|
80 |
+
|
81 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
82 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
83 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
|
91 |
# auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)])
|
92 |
auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)])
|
93 |
|
94 |
+
# from dataclasses import make_dataclass, field
|
95 |
+
|
96 |
+
# Example of fixing mutable defaults
|
97 |
+
# auto_eval_column_dict = {
|
98 |
+
# "example_field": field(default_factory=dict), # Replace mutable default
|
99 |
+
# "another_field": field(default_factory=list), # Replace mutable default
|
100 |
+
# }
|
101 |
# We use make dataclass to dynamically fill the scores from Tasks
|
102 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
103 |
|
|
|
117 |
med_safety_status = ColumnContent("med_safety_status", "str", True)
|
118 |
medical_summarization_status = ColumnContent("medical_summarization_status", "str", True)
|
119 |
note_generation_status = ColumnContent("note_generation_status", "str", True)
|
120 |
+
# if PRIVATE_REPO:
|
121 |
+
# closed_ended_arabic_status = ColumnContent("closed_ended_arabic_status", "str", True)
|
122 |
|
123 |
## All the model information that we might need
|
124 |
@dataclass
|
|
|
244 |
MEDICAL_SUMMARIZATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.medical_summarization_col or c.invariant)]
|
245 |
ACI_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.aci_col or c.invariant)]
|
246 |
SOAP_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.soap_col or c.invariant)]
|
247 |
+
|
248 |
+
OpenEndedArabic_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_arabic_col or c.invariant)]
|
249 |
+
OpenEndedFrench_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_french_col or c.invariant)]
|
250 |
+
OpenEndedSpanish_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_spanish_col or c.invariant)]
|
251 |
+
OpenEndedPortuguese_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_portuguese_col or c.invariant)]
|
252 |
+
OpenEndedRomanian_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_romanian_col or c.invariant)]
|
253 |
+
OpenEndedGreek_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_greek_col or c.invariant)]
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
ClosedEndedMultilingual_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_multilingual_col or c.invariant)]
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
# if PRIVATE_REPO:
|
262 |
+
#CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)]
|
263 |
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)]
|
264 |
# DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
265 |
# OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
|
|
280 |
MEDICAL_SUMMARIZATION_BENCHMARK_COLS = [t.value.col_name for t in MedicalSummarizationColumns]
|
281 |
ACI_BENCHMARK_COLS = [t.value.col_name for t in ACIColumns]
|
282 |
SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns]
|
283 |
+
|
284 |
+
|
285 |
+
#changed this
|
286 |
+
OpenEndedArabic_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedArabicColumn]
|
287 |
+
OpenEndedFrench_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedFrenchColumn]
|
288 |
+
OpenEndedPortuguese_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedPortugueseColumn]
|
289 |
+
OpenEndedSpanish_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedSpanishColumn]
|
290 |
+
OpenEndedRomanian_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedRomanianColumn]
|
291 |
+
OpenEndedGreek_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedGreekColumn]
|
292 |
+
|
293 |
+
|
294 |
+
ClosedEndedMultilingual_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedMultilingualColumns]
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
# # if PRIVATE_REPO:
|
302 |
+
# CLOSED_ENDED_ARABIC_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedArabicColumns]
|
303 |
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]
|
304 |
|
305 |
NUMERIC_INTERVALS = {
|
src/leaderboard/instr.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
in about
|
2 |
+
from app, to read evals, to utils to about ( to define the tasks and the colums ( so for close-ended define the languages and for open-ended ( use the same code with 95%CI, Elo rating...)))
|
3 |
+
define a class for open-ended-multilingual ( 6 times for all) the and close-ended mulitlingual globalmmlu
|
4 |
+
6 columns for open-ended and one different for multili
|
5 |
+
|
6 |
+
in utils:
|
7 |
+
|
8 |
+
i should define the columns for languages again ( here we dont care about the hidden parts but we need to define in the beginning )
|
9 |
+
|
10 |
+
in read_evals
|
11 |
+
|
12 |
+
definition of the results of the data frames, and the definition of the int
|
13 |
+
|
14 |
+
for the front end:
|
15 |
+
|
16 |
+
in the app.py,i should add the gr.tabitem for open-ended, follow the healthbench and add the languages same logic as "ALL"
|
src/leaderboard/read_evals.py
CHANGED
@@ -9,7 +9,7 @@ import numpy as np
|
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
# changes to be made here
|
12 |
-
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns,
|
13 |
from src.submission.check_validity import is_model_on_hub
|
14 |
from src.envs import PRIVATE_REPO
|
15 |
|
@@ -30,7 +30,13 @@ class EvalResult:
|
|
30 |
medical_summarization_results: dict
|
31 |
aci_results: dict
|
32 |
soap_results: dict
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
is_domain_specific: bool
|
35 |
use_chat_template: bool
|
36 |
# clinical_type_results:dict
|
@@ -108,7 +114,7 @@ class EvalResult:
|
|
108 |
open_ended_results = {}
|
109 |
if "open-ended" in data["results"]:
|
110 |
for task in OpenEndedColumns:
|
111 |
-
task = task.value
|
112 |
# We average all scores of a given metric (not all metrics are present in all files)
|
113 |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
|
114 |
open_ended_results[task.benchmark] = accs
|
@@ -167,20 +173,90 @@ class EvalResult:
|
|
167 |
continue
|
168 |
mean_acc = np.mean(accs) # * 100.0
|
169 |
soap_results[task.benchmark] = mean_acc
|
170 |
-
|
171 |
-
if
|
172 |
-
for task in
|
173 |
task = task.value
|
174 |
# We average all scores of a given metric (not all metrics are present in all files)
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
# if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
185 |
# open_ended_results = {}
|
186 |
# med_safety_results = {}
|
@@ -212,7 +288,13 @@ class EvalResult:
|
|
212 |
medical_summarization_results=medical_summarization_results,
|
213 |
aci_results=aci_results,
|
214 |
soap_results=soap_results,
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
217 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
218 |
precision=precision,
|
@@ -315,12 +397,42 @@ class EvalResult:
|
|
315 |
for task in SOAPColumns:
|
316 |
data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
|
317 |
return data_dict
|
318 |
-
if
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
data_dict[AutoEvalColumn.average.name] = average
|
321 |
-
if len(self.
|
322 |
-
for task in
|
323 |
-
data_dict[task.value.col_name] = self.
|
324 |
return data_dict
|
325 |
|
326 |
def get_request_file_for_model(requests_path, model_name, precision):
|
|
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
# changes to be made here
|
12 |
+
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
|
13 |
from src.submission.check_validity import is_model_on_hub
|
14 |
from src.envs import PRIVATE_REPO
|
15 |
|
|
|
30 |
medical_summarization_results: dict
|
31 |
aci_results: dict
|
32 |
soap_results: dict
|
33 |
+
open_ended_arabic_results: dict
|
34 |
+
open_ended_french_results: dict
|
35 |
+
open_ended_spanish_results: dict
|
36 |
+
open_ended_portuguese_results: dict
|
37 |
+
open_ended_romanian_results: dict
|
38 |
+
open_ended_greek_results: dict
|
39 |
+
closed_ended_multilingual_results: dict
|
40 |
is_domain_specific: bool
|
41 |
use_chat_template: bool
|
42 |
# clinical_type_results:dict
|
|
|
114 |
open_ended_results = {}
|
115 |
if "open-ended" in data["results"]:
|
116 |
for task in OpenEndedColumns:
|
117 |
+
task = task.value
|
118 |
# We average all scores of a given metric (not all metrics are present in all files)
|
119 |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
|
120 |
open_ended_results[task.benchmark] = accs
|
|
|
173 |
continue
|
174 |
mean_acc = np.mean(accs) # * 100.0
|
175 |
soap_results[task.benchmark] = mean_acc
|
176 |
+
open_ended_arabic_results = {}
|
177 |
+
if "open-ended-arabic" in data["results"]:
|
178 |
+
for task in OpenEndedArabicColumn:
|
179 |
task = task.value
|
180 |
# We average all scores of a given metric (not all metrics are present in all files)
|
181 |
+
accs = data["results"]["open-ended-arabic"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-arabic"]["overall"] else None
|
182 |
+
open_ended_arabic_results[task.benchmark] = accs
|
183 |
+
if open_ended_arabic_results["ELO_intervals"] is not None and open_ended_arabic_results["Score_intervals"] is not None:
|
184 |
+
open_ended_arabic_results["ELO_intervals"] = "+" + str(open_ended_arabic_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["ELO_intervals"][0])))
|
185 |
+
open_ended_arabic_results["Score_intervals"] = "+" + str(open_ended_arabic_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["Score_intervals"][0])))
|
186 |
+
open_ended_french_results = {}
|
187 |
+
if "open-ended-french" in data["results"]:
|
188 |
+
for task in OpenEndedFrenchColumn:
|
189 |
+
task = task.value
|
190 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
191 |
+
accs = data["results"]["open-ended-french"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-french"]["overall"] else None
|
192 |
+
open_ended_french_results[task.benchmark] = accs
|
193 |
+
if open_ended_french_results["ELO_intervals"] is not None and open_ended_french_results["Score_intervals"] is not None:
|
194 |
+
open_ended_french_results["ELO_intervals"] = "+" + str(open_ended_french_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_french_results["ELO_intervals"][0]))
|
195 |
+
open_ended_french_results["Score_intervals"] = "+" + str(open_ended_french_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_french_results["Score_intervals"][0]))
|
196 |
+
open_ended_spanish_results = {}
|
197 |
+
if "open-ended-spanish" in data["results"]:
|
198 |
+
for task in OpenEndedSpanishColumn:
|
199 |
+
task = task.value
|
200 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
201 |
+
accs = data["results"]["open-ended-spanish"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-spanish"]["overall"] else None
|
202 |
+
open_ended_spanish_results[task.benchmark] = accs
|
203 |
+
if open_ended_spanish_results["ELO_intervals"] is not None and open_ended_spanish_results["Score_intervals"] is not None:
|
204 |
+
open_ended_spanish_results["ELO_intervals"] = "+" + str(open_ended_spanish_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["ELO_intervals"][0]))
|
205 |
+
open_ended_spanish_results["Score_intervals"] = "+" + str(open_ended_spanish_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["Score_intervals"][0]))
|
206 |
+
open_ended_portuguese_results = {}
|
207 |
+
if "open-ended-portuguese" in data["results"]:
|
208 |
+
for task in OpenEndedPortugueseColumn:
|
209 |
+
task = task.value
|
210 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
211 |
+
accs = data["results"]["open-ended-portuguese"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-portuguese"]["overall"] else None
|
212 |
+
open_ended_portuguese_results[task.benchmark] = accs
|
213 |
+
if open_ended_portuguese_results["ELO_intervals"] is not None and open_ended_portuguese_results["Score_intervals"] is not None:
|
214 |
+
open_ended_portuguese_results["ELO_intervals"] = "+" + str(open_ended_portuguese_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["ELO_intervals"][0]))
|
215 |
+
open_ended_portuguese_results["Score_intervals"] = "+" + str(open_ended_portuguese_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["Score_intervals"][0]))
|
216 |
+
open_ended_romanian_results = {}
|
217 |
+
if "open-ended-romanian" in data["results"]:
|
218 |
+
for task in OpenEndedRomanianColumn:
|
219 |
+
task = task.value
|
220 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
221 |
+
accs = data["results"]["open-ended-romanian"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-romanian"]["overall"] else None
|
222 |
+
open_ended_romanian_results[task.benchmark] = accs
|
223 |
+
if open_ended_romanian_results["ELO_intervals"] is not None and open_ended_romanian_results["Score_intervals"] is not None:
|
224 |
+
open_ended_romanian_results["ELO_intervals"] = "+" + str(open_ended_romanian_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["ELO_intervals"][0]))
|
225 |
+
open_ended_romanian_results["Score_intervals"] = "+" + str(open_ended_romanian_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["Score_intervals"][0]))
|
226 |
+
open_ended_greek_results = {}
|
227 |
+
if "open-ended-greek" in data["results"]:
|
228 |
+
for task in OpenEndedGreekColumn:
|
229 |
+
task = task.value
|
230 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
231 |
+
accs = data["results"]["open-ended-greek"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-greek"]["overall"] else None
|
232 |
+
open_ended_greek_results[task.benchmark] = accs
|
233 |
+
if open_ended_greek_results["ELO_intervals"] is not None and open_ended_greek_results["Score_intervals"] is not None:
|
234 |
+
open_ended_greek_results["ELO_intervals"] = "+" + str(open_ended_greek_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["ELO_intervals"][0])))
|
235 |
+
open_ended_greek_results["Score_intervals"] = "+" + str(open_ended_greek_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["Score_intervals"][0])))
|
236 |
+
closed_ended_multilingual_results = {}
|
237 |
+
if "closed-ended-multilingual" in data["results"]:
|
238 |
+
for task in ClosedEndedMultilingualColumns:
|
239 |
+
task = task.value
|
240 |
+
accs = data["results"]["closed-ended-multilingual"][task.benchmark]["accuracy"] if task.benchmark in data["results"]["closed-ended-multilingual"] else None
|
241 |
+
closed_ended_multilingual_results[task.benchmark] = accs
|
242 |
+
|
243 |
+
# #add the
|
244 |
+
# closed_ended_arabic_results = {}
|
245 |
+
# if PRIVATE_REPO and "closed-ended-arabic" in data["results"]:
|
246 |
+
# for task in ClosedEndedArabicColumns:
|
247 |
+
# task = task.value
|
248 |
+
# # We average all scores of a given metric (not all metrics are present in all files)
|
249 |
+
# try:
|
250 |
+
# accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended-arabic"].items() if task.benchmark == k])
|
251 |
+
# except:
|
252 |
+
# # breakpoint()
|
253 |
+
# accs = np.array([])
|
254 |
+
# if accs.size == 0 or any([acc is None for acc in accs]):
|
255 |
+
# continue
|
256 |
+
# mean_acc = np.mean(accs) # * 100.0
|
257 |
+
# closed_ended_arabic_results[task.benchmark] = mean_acc
|
258 |
+
|
259 |
+
|
260 |
# if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
261 |
# open_ended_results = {}
|
262 |
# med_safety_results = {}
|
|
|
288 |
medical_summarization_results=medical_summarization_results,
|
289 |
aci_results=aci_results,
|
290 |
soap_results=soap_results,
|
291 |
+
open_ended_arabic_results=open_ended_arabic_results,
|
292 |
+
open_ended_french_results=open_ended_french_results,
|
293 |
+
open_ended_spanish_results=open_ended_spanish_results,
|
294 |
+
open_ended_portuguese_results=open_ended_portuguese_results,
|
295 |
+
open_ended_romanian_results=open_ended_romanian_results,
|
296 |
+
open_ended_greek_results=open_ended_greek_results,
|
297 |
+
closed_ended_multilingual_results=closed_ended_multilingual_results,
|
298 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
299 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
300 |
precision=precision,
|
|
|
397 |
for task in SOAPColumns:
|
398 |
data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
|
399 |
return data_dict
|
400 |
+
if subset == "open_ended_arabic":
|
401 |
+
if len(self.open_ended_arabic_results) > 0:
|
402 |
+
for task in OpenEndedArabicColumn:
|
403 |
+
data_dict[task.value.col_name] = self.open_ended_arabic_results[task.value.benchmark]
|
404 |
+
return data_dict
|
405 |
+
if subset == "open_ended_french":
|
406 |
+
if len(self.open_ended_french_results) > 0:
|
407 |
+
for task in OpenEndedFrenchColumn:
|
408 |
+
data_dict[task.value.col_name] = self.open_ended_french_results[task.value.benchmark]
|
409 |
+
return data_dict
|
410 |
+
if subset == "open_ended_spanish":
|
411 |
+
if len(self.open_ended_spanish_results) > 0:
|
412 |
+
for task in OpenEndedSpanishColumn:
|
413 |
+
data_dict[task.value.col_name] = self.open_ended_spanish_results[task.value.benchmark]
|
414 |
+
return data_dict
|
415 |
+
if subset == "open_ended_portuguese":
|
416 |
+
if len(self.open_ended_portuguese_results) > 0:
|
417 |
+
for task in OpenEndedPortugueseColumn:
|
418 |
+
data_dict[task.value.col_name] = self.open_ended_portuguese_results[task.value.benchmark]
|
419 |
+
return data_dict
|
420 |
+
if subset == "open_ended_romanian":
|
421 |
+
if len(self.open_ended_romanian_results) > 0:
|
422 |
+
for task in OpenEndedRomanianColumn:
|
423 |
+
data_dict[task.value.col_name] = self.open_ended_romanian_results[task.value.benchmark]
|
424 |
+
return data_dict
|
425 |
+
if subset == "open_ended_greek":
|
426 |
+
if len(self.open_ended_greek_results) > 0:
|
427 |
+
for task in OpenEndedGreekColumn:
|
428 |
+
data_dict[task.value.col_name] = self.open_ended_greek_results[task.value.benchmark]
|
429 |
+
return data_dict
|
430 |
+
if subset == "closed_ended_multilingual":
|
431 |
+
average = sum([v for v in self.closed_ended_multilingual_results.values() if v is not None]) / len(ClosedEndedMultilingualColumns)
|
432 |
data_dict[AutoEvalColumn.average.name] = average
|
433 |
+
if len(self.closed_ended_multilingual_results) > 0:
|
434 |
+
for task in ClosedEndedMultilingualColumns:
|
435 |
+
data_dict[task.value.col_name] = self.closed_ended_multilingual_results[task.value.benchmark]
|
436 |
return data_dict
|
437 |
|
438 |
def get_request_file_for_model(requests_path, model_name, precision):
|
src/populate.py
CHANGED
@@ -5,7 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
# changes to be made here
|
8 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns,
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
from src.envs import PRIVATE_REPO
|
11 |
|
@@ -16,14 +16,15 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
16 |
# print(raw_data)
|
17 |
# raise Exception("stop")
|
18 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
19 |
-
|
|
|
20 |
df = pd.DataFrame.from_records(all_data_json)
|
21 |
# changes to be made here
|
22 |
if subset == "datasets":
|
23 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
24 |
elif subset == "med_safety":
|
25 |
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
|
26 |
-
elif subset
|
27 |
df = df.sort_values(by=["ELO"], ascending=False)
|
28 |
elif subset == "medical_summarization":
|
29 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
@@ -31,7 +32,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
31 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
32 |
elif subset == "soap":
|
33 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
34 |
-
elif subset == "
|
35 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
36 |
cols = list(set(df.columns).intersection(set(cols)))
|
37 |
df = df[cols].round(decimals=2)
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
# changes to be made here
|
8 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn, ClosedEndedMultilingualColumns
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
from src.envs import PRIVATE_REPO
|
11 |
|
|
|
16 |
# print(raw_data)
|
17 |
# raise Exception("stop")
|
18 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
19 |
+
# if subset.startswith("open_ended"):
|
20 |
+
# breakpoint()
|
21 |
df = pd.DataFrame.from_records(all_data_json)
|
22 |
# changes to be made here
|
23 |
if subset == "datasets":
|
24 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
25 |
elif subset == "med_safety":
|
26 |
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
|
27 |
+
elif subset.startswith("open_ended"):
|
28 |
df = df.sort_values(by=["ELO"], ascending=False)
|
29 |
elif subset == "medical_summarization":
|
30 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
|
|
32 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
33 |
elif subset == "soap":
|
34 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
35 |
+
elif subset == "closed_ended_multilingual":
|
36 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
37 |
cols = list(set(df.columns).intersection(set(cols)))
|
38 |
df = df[cols].round(decimals=2)
|