File size: 5,733 Bytes
9ae8d89
 
09b313f
9ae8d89
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
 
 
 
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
b3eff40
9ae8d89
 
b3eff40
 
 
 
9ae8d89
09b313f
 
 
 
 
 
 
 
 
9ae8d89
 
 
 
6c10fa6
 
 
 
 
 
 
 
 
 
 
9ae8d89
09b313f
9ae8d89
 
 
 
09b313f
 
9ae8d89
 
 
 
 
b3eff40
 
 
 
 
9ae8d89
b3eff40
9ae8d89
 
 
09b313f
9ae8d89
 
 
6c10fa6
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
 
6c10fa6
09b313f
b3eff40
 
 
 
09b313f
b3eff40
 
 
 
09b313f
9ae8d89
 
 
09b313f
9ae8d89
09b313f
b3eff40
9ae8d89
b3eff40
 
671e1a6
 
d86ca68
 
 
 
 
 
9ae8d89
 
6c10fa6
09b313f
9ae8d89
6c10fa6
8a76c2c
9ae8d89
 
 
09b313f
b3eff40
09b313f
9ae8d89
 
 
 
6c10fa6
 
b3eff40
9ae8d89
 
 
 
 
 
 
b3eff40
9ae8d89
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import json
import os
import ast
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)
from src.display.utils import PromptTemplateName

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG = """{
    "NCBI" : {
        "" : "condition"
    },
    "CHIA" : {
        "" : "condition"
        "" : "drug"
        "" : "procedure"
        "" : "measurement"
    },
    "BIORED" : {
        "" : "condition"
        "" : "drug"
        "" : "gene"
        "" : "gene variant"
    },
    "BC5CDR" : {
        "" : "condition"
        "" : "drug"
    }
}

"""

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    model_type: str,
    domain_specific: bool,
    chat_template: bool,
    precision: str,
    weight_type: str,
):
    """
    Saves request if valid else returns the error.
    Validity is checked based on -
        - model's existence on hub
        - necessary info on the model's card
        - label normalization is a valid python dict and contains the keys for all datasets
        - threshold for gliner is a valid float

    """
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
    if model.startswith("/"):
        user_name = ""
        model_path = model
        private = True
    else:
        user_name = ""
        model_path = model
        if "/" in model:
            user_name = model.split("/")[0]
            model_path = model.split("/")[1]
        private = False

    # precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")
    
    model_type = model_type.split(":")[-1].strip()

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')
    

    # Is the model info correctly filled?
    try:
        if model.startswith("/"):
            model_info = API.model_info(repo_id=model, revision=revision)
            model_size = get_model_size(model_info=model_info)
            license = model_info.cardData["license"]
            modelcard_OK, error_msg = check_model_card(model)
            if not modelcard_OK:
                return styled_error(error_msg)
            likes = model_info.likes
        else:
            model_size = None
            license = None
            likes = 0
    except Exception:
        return styled_error("Could not get your model information. Please fill it up properly.")

    
    # Verify the inference config now
    # try:
    #     label_normalization_map = ast.literal_eval(label_normalization_map)
    # except Exception as e:
    #     return styled_error("Please enter a valid json for the labe; normalization map")

    # inference_config = {
    #     # "model_arch" : model_arch,
    #     "label_normalization_map": label_normalization_map,
    # }

    # Seems good, creating the eval
    print("Adding new eval")


    eval_entry = {
        "model_name": model,
        "base_model": base_model,
        "revision": revision,
        "precision": precision,
        "weight_type": weight_type,
        "is_domain_specific": domain_specific,
        "use_chat_template": chat_template,
        "status": {
            "closed-ended": "PENDING",
            "open-ended": "PENDING",
            "med-safety": "PENDING",
            "cross-examination": "PENDING",
        },
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": likes,
        "num_params": model_size,
        "license": license,
        "private": private,
        "slurm_id": None
    }

    # Check for duplicate submission

    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted. Add the revision if the model has been updated.")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    if model_path.startswith("/"):
        os.makedirs(f"{OUT_DIR}/{model_path}", exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_{revision}_{precision}_{weight_type}_eval_request.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )