Spaces:
Running
Running
File size: 5,733 Bytes
9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 b3eff40 9ae8d89 b3eff40 9ae8d89 09b313f 9ae8d89 6c10fa6 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 b3eff40 9ae8d89 b3eff40 9ae8d89 09b313f 9ae8d89 6c10fa6 9ae8d89 6c10fa6 09b313f b3eff40 09b313f b3eff40 09b313f 9ae8d89 09b313f 9ae8d89 09b313f b3eff40 9ae8d89 b3eff40 671e1a6 d86ca68 9ae8d89 6c10fa6 09b313f 9ae8d89 6c10fa6 8a76c2c 9ae8d89 09b313f b3eff40 09b313f 9ae8d89 6c10fa6 b3eff40 9ae8d89 b3eff40 9ae8d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import json
import os
import ast
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from src.display.utils import PromptTemplateName
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG = """{
"NCBI" : {
"" : "condition"
},
"CHIA" : {
"" : "condition"
"" : "drug"
"" : "procedure"
"" : "measurement"
},
"BIORED" : {
"" : "condition"
"" : "drug"
"" : "gene"
"" : "gene variant"
},
"BC5CDR" : {
"" : "condition"
"" : "drug"
}
}
"""
def add_new_eval(
model: str,
base_model: str,
revision: str,
model_type: str,
domain_specific: bool,
chat_template: bool,
precision: str,
weight_type: str,
):
"""
Saves request if valid else returns the error.
Validity is checked based on -
- model's existence on hub
- necessary info on the model's card
- label normalization is a valid python dict and contains the keys for all datasets
- threshold for gliner is a valid float
"""
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
if model.startswith("/"):
user_name = ""
model_path = model
private = True
else:
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
private = False
# precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
model_type = model_type.split(":")[-1].strip()
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
if model.startswith("/"):
model_info = API.model_info(repo_id=model, revision=revision)
model_size = get_model_size(model_info=model_info)
license = model_info.cardData["license"]
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
likes = model_info.likes
else:
model_size = None
license = None
likes = 0
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
# Verify the inference config now
# try:
# label_normalization_map = ast.literal_eval(label_normalization_map)
# except Exception as e:
# return styled_error("Please enter a valid json for the labe; normalization map")
# inference_config = {
# # "model_arch" : model_arch,
# "label_normalization_map": label_normalization_map,
# }
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model_name": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"is_domain_specific": domain_specific,
"use_chat_template": chat_template,
"status": {
"closed-ended": "PENDING",
"open-ended": "PENDING",
"med-safety": "PENDING",
"cross-examination": "PENDING",
},
"submitted_time": current_time,
"model_type": model_type,
"likes": likes,
"num_params": model_size,
"license": license,
"private": private,
"slurm_id": None
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted. Add the revision if the model has been updated.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
if model_path.startswith("/"):
os.makedirs(f"{OUT_DIR}/{model_path}", exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_{revision}_{precision}_{weight_type}_eval_request.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|