Spaces:
Sleeping
Sleeping
Update app.py
Browse filesreconfigure autmatic optimisations
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
| 4 |
import logging
|
| 5 |
from typing import Optional, Dict, Any
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
# Set up logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -41,13 +42,24 @@ def load_model(model_name: str):
|
|
| 41 |
logger.info(f"Loading {model_name}...")
|
| 42 |
try:
|
| 43 |
model_path = MODELS[model_name]
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 46 |
model_path,
|
| 47 |
token=HF_TOKEN,
|
| 48 |
-
|
| 49 |
-
torch_dtype="auto"
|
| 50 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
loaded_models[model_name] = model
|
| 52 |
loaded_tokenizers[model_name] = tokenizer
|
| 53 |
logger.info(f"Successfully loaded {model_name}")
|
|
@@ -89,10 +101,28 @@ async def predict(request: PredictionRequest):
|
|
| 89 |
# Prepend the shared prefix
|
| 90 |
full_input = "Interpret this dream: " + request.inputs
|
| 91 |
|
| 92 |
-
# Tokenize and generate
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
return PredictionResponse(generated_text=decoded)
|
| 98 |
|
|
|
|
| 4 |
import logging
|
| 5 |
from typing import Optional, Dict, Any
|
| 6 |
import os
|
| 7 |
+
import torch
|
| 8 |
|
| 9 |
# Set up logging
|
| 10 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 42 |
logger.info(f"Loading {model_name}...")
|
| 43 |
try:
|
| 44 |
model_path = MODELS[model_name]
|
| 45 |
+
|
| 46 |
+
# Load tokenizer with minimal settings
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 48 |
+
model_path,
|
| 49 |
+
token=HF_TOKEN,
|
| 50 |
+
use_fast=False # Use slower but more stable tokenizer
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Load model with minimal settings
|
| 54 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 55 |
model_path,
|
| 56 |
token=HF_TOKEN,
|
| 57 |
+
torch_dtype=torch.float32, # Use standard precision
|
|
|
|
| 58 |
)
|
| 59 |
+
|
| 60 |
+
# Move model to CPU explicitly
|
| 61 |
+
model = model.cpu()
|
| 62 |
+
|
| 63 |
loaded_models[model_name] = model
|
| 64 |
loaded_tokenizers[model_name] = tokenizer
|
| 65 |
logger.info(f"Successfully loaded {model_name}")
|
|
|
|
| 101 |
# Prepend the shared prefix
|
| 102 |
full_input = "Interpret this dream: " + request.inputs
|
| 103 |
|
| 104 |
+
# Tokenize and generate with explicit error handling
|
| 105 |
+
try:
|
| 106 |
+
input_ids = tokenizer(
|
| 107 |
+
full_input,
|
| 108 |
+
return_tensors="pt",
|
| 109 |
+
padding=True,
|
| 110 |
+
truncation=True,
|
| 111 |
+
max_length=512
|
| 112 |
+
).input_ids
|
| 113 |
+
|
| 114 |
+
outputs = model.generate(
|
| 115 |
+
input_ids,
|
| 116 |
+
max_length=200,
|
| 117 |
+
num_return_sequences=1,
|
| 118 |
+
no_repeat_ngram_size=2,
|
| 119 |
+
**request.parameters
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Error in model prediction pipeline: {str(e)}")
|
| 125 |
+
raise HTTPException(status_code=500, detail=f"Model prediction failed: {str(e)}")
|
| 126 |
|
| 127 |
return PredictionResponse(generated_text=decoded)
|
| 128 |
|