Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
4 |
import logging
|
5 |
import os
|
6 |
|
@@ -28,26 +28,52 @@ async def predict(request: PredictionRequest):
|
|
28 |
logger.info(f"Loading model: {request.model}")
|
29 |
model_path = MODELS[request.model]
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
full_input = "Interpret this dream: " + request.inputs
|
35 |
logger.info(f"Processing input: {full_input}")
|
36 |
|
|
|
37 |
inputs = tokenizer(
|
38 |
full_input,
|
39 |
return_tensors="pt",
|
40 |
truncation=True,
|
41 |
-
max_length=512
|
|
|
42 |
)
|
|
|
43 |
|
|
|
44 |
outputs = model.generate(**inputs, max_length=200)
|
|
|
|
|
45 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
46 |
|
47 |
return PredictionResponse(generated_text=result)
|
48 |
|
49 |
except Exception as e:
|
50 |
logger.error(f"Error: {str(e)}")
|
|
|
|
|
|
|
|
|
51 |
raise HTTPException(status_code=500, detail=str(e))
|
52 |
|
53 |
@app.get("/health")
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration # Changed to specific classes
|
4 |
import logging
|
5 |
import os
|
6 |
|
|
|
28 |
logger.info(f"Loading model: {request.model}")
|
29 |
model_path = MODELS[request.model]
|
30 |
|
31 |
+
# Add debug logging
|
32 |
+
logger.info("Attempting to load tokenizer...")
|
33 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
34 |
+
model_path,
|
35 |
+
token=HF_TOKEN,
|
36 |
+
local_files_only=False, # Force download if needed
|
37 |
+
return_special_tokens_mask=True
|
38 |
+
)
|
39 |
+
logger.info("Tokenizer loaded successfully")
|
40 |
+
|
41 |
+
logger.info("Attempting to load model...")
|
42 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
43 |
+
model_path,
|
44 |
+
token=HF_TOKEN,
|
45 |
+
local_files_only=False # Force download if needed
|
46 |
+
)
|
47 |
+
logger.info("Model loaded successfully")
|
48 |
|
49 |
full_input = "Interpret this dream: " + request.inputs
|
50 |
logger.info(f"Processing input: {full_input}")
|
51 |
|
52 |
+
logger.info("Tokenizing input...")
|
53 |
inputs = tokenizer(
|
54 |
full_input,
|
55 |
return_tensors="pt",
|
56 |
truncation=True,
|
57 |
+
max_length=512,
|
58 |
+
padding=True
|
59 |
)
|
60 |
+
logger.info("Input tokenized successfully")
|
61 |
|
62 |
+
logger.info("Generating output...")
|
63 |
outputs = model.generate(**inputs, max_length=200)
|
64 |
+
logger.info("Output generated successfully")
|
65 |
+
|
66 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
67 |
+
logger.info(f"Final result: {result}")
|
68 |
|
69 |
return PredictionResponse(generated_text=result)
|
70 |
|
71 |
except Exception as e:
|
72 |
logger.error(f"Error: {str(e)}")
|
73 |
+
logger.error(f"Error type: {type(e)}")
|
74 |
+
# Log the full traceback
|
75 |
+
import traceback
|
76 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
77 |
raise HTTPException(status_code=500, detail=str(e))
|
78 |
|
79 |
@app.get("/health")
|