Spaces:
Sleeping
Sleeping
Update app.py
Browse filesadds local files issue debugging
app.py
CHANGED
@@ -70,12 +70,21 @@ class ModelManager:
|
|
70 |
if model_name not in cls._instances:
|
71 |
try:
|
72 |
model_path = MODELS[model_name]
|
73 |
-
tokenizer
|
74 |
-
model_path,
|
75 |
-
token=HF_TOKEN,
|
76 |
-
local_files_only=False # Cache after first load
|
77 |
-
)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
model = T5ForConditionalGeneration.from_pretrained(
|
80 |
model_path,
|
81 |
token=HF_TOKEN,
|
@@ -83,18 +92,18 @@ class ModelManager:
|
|
83 |
low_cpu_mem_usage=True,
|
84 |
torch_dtype=torch.float32
|
85 |
)
|
|
|
86 |
|
87 |
-
# Enable parallel processing
|
88 |
model.eval()
|
89 |
-
torch.set_num_threads(8)
|
90 |
|
91 |
cls._instances[model_name] = (model, tokenizer)
|
92 |
|
93 |
except Exception as e:
|
94 |
logger.error(f"Error loading {model_name}: {str(e)}")
|
95 |
raise
|
96 |
-
|
97 |
-
|
98 |
|
99 |
class PredictionRequest(BaseModel):
|
100 |
inputs: str
|
|
|
70 |
if model_name not in cls._instances:
|
71 |
try:
|
72 |
model_path = MODELS[model_name]
|
73 |
+
logger.debug(f"Attempting to load tokenizer from {model_path}")
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
try:
|
76 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
77 |
+
model_path,
|
78 |
+
token=HF_TOKEN,
|
79 |
+
local_files_only=False
|
80 |
+
)
|
81 |
+
logger.debug("Tokenizer loaded successfully")
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Detailed tokenizer error: {str(e)}")
|
84 |
+
logger.error(f"HF_TOKEN present: {bool(HF_TOKEN)}")
|
85 |
+
raise
|
86 |
+
|
87 |
+
logger.debug("Attempting to load model")
|
88 |
model = T5ForConditionalGeneration.from_pretrained(
|
89 |
model_path,
|
90 |
token=HF_TOKEN,
|
|
|
92 |
low_cpu_mem_usage=True,
|
93 |
torch_dtype=torch.float32
|
94 |
)
|
95 |
+
logger.debug("Model loaded successfully")
|
96 |
|
|
|
97 |
model.eval()
|
98 |
+
torch.set_num_threads(8)
|
99 |
|
100 |
cls._instances[model_name] = (model, tokenizer)
|
101 |
|
102 |
except Exception as e:
|
103 |
logger.error(f"Error loading {model_name}: {str(e)}")
|
104 |
raise
|
105 |
+
|
106 |
+
return cls._instances[model_name]
|
107 |
|
108 |
class PredictionRequest(BaseModel):
|
109 |
inputs: str
|