m1k3wn commited on
Commit
310dbc9
·
verified ·
1 Parent(s): a48bfba

Update app.py

Browse files

adds local files issue debugging

Files changed (1) hide show
  1. app.py +18 -9
app.py CHANGED
@@ -70,12 +70,21 @@ class ModelManager:
70
  if model_name not in cls._instances:
71
  try:
72
  model_path = MODELS[model_name]
73
- tokenizer = T5Tokenizer.from_pretrained(
74
- model_path,
75
- token=HF_TOKEN,
76
- local_files_only=False # Cache after first load
77
- )
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  model = T5ForConditionalGeneration.from_pretrained(
80
  model_path,
81
  token=HF_TOKEN,
@@ -83,18 +92,18 @@ class ModelManager:
83
  low_cpu_mem_usage=True,
84
  torch_dtype=torch.float32
85
  )
 
86
 
87
- # Enable parallel processing
88
  model.eval()
89
- torch.set_num_threads(8) # Use all CPU cores
90
 
91
  cls._instances[model_name] = (model, tokenizer)
92
 
93
  except Exception as e:
94
  logger.error(f"Error loading {model_name}: {str(e)}")
95
  raise
96
-
97
- return cls._instances[model_name]
98
 
99
  class PredictionRequest(BaseModel):
100
  inputs: str
 
70
  if model_name not in cls._instances:
71
  try:
72
  model_path = MODELS[model_name]
73
+ logger.debug(f"Attempting to load tokenizer from {model_path}")
 
 
 
 
74
 
75
+ try:
76
+ tokenizer = T5Tokenizer.from_pretrained(
77
+ model_path,
78
+ token=HF_TOKEN,
79
+ local_files_only=False
80
+ )
81
+ logger.debug("Tokenizer loaded successfully")
82
+ except Exception as e:
83
+ logger.error(f"Detailed tokenizer error: {str(e)}")
84
+ logger.error(f"HF_TOKEN present: {bool(HF_TOKEN)}")
85
+ raise
86
+
87
+ logger.debug("Attempting to load model")
88
  model = T5ForConditionalGeneration.from_pretrained(
89
  model_path,
90
  token=HF_TOKEN,
 
92
  low_cpu_mem_usage=True,
93
  torch_dtype=torch.float32
94
  )
95
+ logger.debug("Model loaded successfully")
96
 
 
97
  model.eval()
98
+ torch.set_num_threads(8)
99
 
100
  cls._instances[model_name] = (model, tokenizer)
101
 
102
  except Exception as e:
103
  logger.error(f"Error loading {model_name}: {str(e)}")
104
  raise
105
+
106
+ return cls._instances[model_name]
107
 
108
  class PredictionRequest(BaseModel):
109
  inputs: str