Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
4 |
import logging
|
5 |
import os
|
6 |
-
import json
|
7 |
|
8 |
logging.basicConfig(level=logging.DEBUG)
|
9 |
logger = logging.getLogger(__name__)
|
@@ -16,17 +15,6 @@ MODELS = {
|
|
16 |
"nidra-v2": "m1k3wn/nidra-v2"
|
17 |
}
|
18 |
|
19 |
-
# Define the tokenizer configuration explicitly
|
20 |
-
TOKENIZER_CONFIG = {
|
21 |
-
"model_max_length": 512,
|
22 |
-
"clean_up_tokenization_spaces": False,
|
23 |
-
"tokenizer_class": "T5Tokenizer",
|
24 |
-
"pad_token": "<pad>",
|
25 |
-
"eos_token": "</s>",
|
26 |
-
"unk_token": "<unk>",
|
27 |
-
"extra_ids": 100
|
28 |
-
}
|
29 |
-
|
30 |
class PredictionRequest(BaseModel):
|
31 |
inputs: str
|
32 |
model: str = "nidra-v1"
|
@@ -40,56 +28,43 @@ async def predict(request: PredictionRequest):
|
|
40 |
logger.info(f"Loading model: {request.model}")
|
41 |
model_path = MODELS[request.model]
|
42 |
|
43 |
-
#
|
44 |
-
tokenizer =
|
45 |
model_path,
|
46 |
token=HF_TOKEN,
|
47 |
-
model_max_length=TOKENIZER_CONFIG["model_max_length"],
|
48 |
-
clean_up_tokenization_spaces=TOKENIZER_CONFIG["clean_up_tokenization_spaces"],
|
49 |
-
pad_token=TOKENIZER_CONFIG["pad_token"],
|
50 |
-
eos_token=TOKENIZER_CONFIG["eos_token"],
|
51 |
-
unk_token=TOKENIZER_CONFIG["unk_token"],
|
52 |
-
extra_ids=TOKENIZER_CONFIG["extra_ids"],
|
53 |
-
use_fast=True # Try forcing the fast tokenizer
|
54 |
)
|
55 |
|
56 |
-
model =
|
57 |
model_path,
|
58 |
token=HF_TOKEN,
|
59 |
-
|
60 |
)
|
61 |
|
62 |
full_input = "Interpret this dream: " + request.inputs
|
63 |
logger.info(f"Processing: {full_input}")
|
64 |
|
65 |
-
# Add explicit encoding parameters
|
66 |
inputs = tokenizer(
|
67 |
full_input,
|
68 |
return_tensors="pt",
|
69 |
truncation=True,
|
70 |
max_length=512,
|
71 |
-
padding=True
|
72 |
-
add_special_tokens=True
|
73 |
)
|
74 |
|
75 |
outputs = model.generate(
|
76 |
**inputs,
|
77 |
max_length=200,
|
78 |
num_beams=4,
|
79 |
-
no_repeat_ngram_size=2
|
80 |
-
length_penalty=1.0
|
81 |
)
|
82 |
|
83 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
84 |
-
logger.info(f"Generated result: {result}")
|
85 |
-
|
86 |
return PredictionResponse(generated_text=result)
|
87 |
|
88 |
except Exception as e:
|
89 |
logger.error(f"Error: {str(e)}")
|
90 |
raise HTTPException(status_code=500, detail=str(e))
|
91 |
|
92 |
-
# Add health check endpoint
|
93 |
@app.get("/health")
|
94 |
async def health():
|
95 |
return {"status": "healthy"}
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import logging
|
5 |
import os
|
|
|
6 |
|
7 |
logging.basicConfig(level=logging.DEBUG)
|
8 |
logger = logging.getLogger(__name__)
|
|
|
15 |
"nidra-v2": "m1k3wn/nidra-v2"
|
16 |
}
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class PredictionRequest(BaseModel):
|
19 |
inputs: str
|
20 |
model: str = "nidra-v1"
|
|
|
28 |
logger.info(f"Loading model: {request.model}")
|
29 |
model_path = MODELS[request.model]
|
30 |
|
31 |
+
# Load tokenizer and model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
33 |
model_path,
|
34 |
token=HF_TOKEN,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
38 |
model_path,
|
39 |
token=HF_TOKEN,
|
40 |
+
device_map="auto"
|
41 |
)
|
42 |
|
43 |
full_input = "Interpret this dream: " + request.inputs
|
44 |
logger.info(f"Processing: {full_input}")
|
45 |
|
|
|
46 |
inputs = tokenizer(
|
47 |
full_input,
|
48 |
return_tensors="pt",
|
49 |
truncation=True,
|
50 |
max_length=512,
|
51 |
+
padding=True
|
|
|
52 |
)
|
53 |
|
54 |
outputs = model.generate(
|
55 |
**inputs,
|
56 |
max_length=200,
|
57 |
num_beams=4,
|
58 |
+
no_repeat_ngram_size=2
|
|
|
59 |
)
|
60 |
|
61 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
62 |
return PredictionResponse(generated_text=result)
|
63 |
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error: {str(e)}")
|
66 |
raise HTTPException(status_code=500, detail=str(e))
|
67 |
|
|
|
68 |
@app.get("/health")
|
69 |
async def health():
|
70 |
return {"status": "healthy"}
|