File size: 7,331 Bytes
54b3eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
"""Untitled

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/12GhPKbBzxei0ZhB0r-m5kvNOaCRyCxiM
"""

!pip install gradio openai gtts pydub numpy requests groq openai-whisper transformers
!apt-get install -y ffmpeg

import os
os.environ["GROQ_API_KEY"] = "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"

import os
import gradio as gr
import whisper
from gtts import gTTS
import io
from transformers import pipeline
from groq import Groq

# Initialize the Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# Load the Whisper model
whisper_model = whisper.load_model("base")  # You can choose other models like "small", "medium", "large"

# Initialize the grammar correction pipeline
corrector = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis")

def process_audio(file_path):
    try:
        # Load the audio file
        audio = whisper.load_audio(file_path)

        # Transcribe the audio using Whisper
        result = whisper_model.transcribe(audio)
        user_text = result["text"]

        # Display the user input text
        corrected_text = corrector(user_text)[0]['generated_text'].strip()

        # Generate a response using Groq
        chat_completion = client.chat.completions.create(
            messages=[{"role": "user", "content": corrected_text}],
            model="llama3-8b-8192",  # Replace with the correct model if necessary
        )

        # Access the response using dot notation
        response_message = chat_completion.choices[0].message.content.strip()

        # Convert the response text to speech
        tts = gTTS(response_message)
        response_audio_io = io.BytesIO()
        tts.write_to_fp(response_audio_io)  # Save the audio to the BytesIO object
        response_audio_io.seek(0)

        # Save audio to a file to ensure it's generated correctly
        with open("response.mp3", "wb") as audio_file:
            audio_file.write(response_audio_io.getvalue())

        # Return the original text, corrected text, and the path to the saved audio file
        return user_text, corrected_text, "response.mp3"

    except Exception as e:
        return f"An error occurred: {e}", None, None

# Create a Gradio interface with a submit button
iface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(type="filepath"),  # Use type="filepath"
    outputs=[
        gr.Textbox(label="User voice input into text"),  # Original user input text
        gr.Textbox(label="Corrected version of user input"),  # Corrected text
        gr.Audio(label="Response Audio")  # Response audio
    ],
    live=False,  # Ensure live mode is off to use a submit button
    title="Audio Processing with Grammar Correction",
    description="Upload an audio file, which will be transcribed, corrected for grammar, and then used to generate a response.",
    allow_flagging="never"
)

iface.launch()




# import os
# import gradio as gr
# import whisper
# from gtts import gTTS
# import io
# from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# from groq import Groq

# # Initialize the Groq client
# client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# # Load the Whisper model
# whisper_model = whisper.load_model("base")  # You can choose other models like "small", "medium", "large"

# # Initialize the grammar correction pipeline
# corrector = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis")

# def process_audio(file_path):
#     try:
#         # Load the audio file
#         audio = whisper.load_audio(file_path)

#         # Transcribe the audio using Whisper
#         result = whisper_model.transcribe(audio)
#         user_text = result["text"]

#         # Display the user input text
#         corrected_text = corrector(user_text)[0]['generated_text'].strip()

#         # Generate a response using Groq
#         chat_completion = client.chat.completions.create(
#             messages=[{"role": "user", "content": corrected_text}],
#             model="llama3-8b-8192",  # Replace with the correct model if necessary
#         )

#         # Access the response using dot notation
#         response_message = chat_completion.choices[0].message.content.strip()

#         # Convert the response text to speech
#         tts = gTTS(response_message)
#         response_audio_io = io.BytesIO()
#         tts.write_to_fp(response_audio_io)  # Save the audio to the BytesIO object
#         response_audio_io.seek(0)

#         # Save audio to a file to ensure it's generated correctly
#         with open("response.mp3", "wb") as audio_file:
#             audio_file.write(response_audio_io.getvalue())

#         # Return the original text, corrected text, and the path to the saved audio file
#         return user_text, corrected_text, "response.mp3"

#     except Exception as e:
#         return f"An error occurred: {e}", None, None

# iface = gr.Interface(
#     fn=process_audio,
#     inputs=gr.Audio(type="filepath"),  # Use type="filepath"
#     outputs=[
#         gr.Textbox(label="User voice input into text"),  # Original user input text
#         gr.Textbox(label="Corrected version of user input"),  # Corrected text
#         gr.Audio(label="Response Audio")  # Response audio
#     ],
#     live=True
# )

# iface.launch()




# # import os
# # import gradio as gr
# # import whisper
# # from gtts import gTTS
# # import io
# # from groq import Groq

# # # Initialize the Groq client
# # client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# # # Load the Whisper model
# # model = whisper.load_model("base")  # You can choose other models like "small", "medium", "large"

# # def process_audio(file_path):
# #     try:
# #         # Load the audio file
# #         audio = whisper.load_audio(file_path)

# #         # Transcribe the audio using Whisper
# #         result = model.transcribe(audio)
# #         text = result["text"]

# #         # Generate a response using Groq
# #         chat_completion = client.chat.completions.create(
# #             messages=[{"role": "user", "content": text}],
# #             model="llama3-8b-8192",  # Replace with the correct model if necessary
# #         )

# #         # Access the response using dot notation
# #         response_message = chat_completion.choices[0].message.content.strip()

# #         # Convert the response text to speech
# #         tts = gTTS(response_message)
# #         response_audio_io = io.BytesIO()
# #         tts.write_to_fp(response_audio_io)  # Save the audio to the BytesIO object
# #         response_audio_io.seek(0)

# #         # Save audio to a file to ensure it's generated correctly
# #         with open("response.mp3", "wb") as audio_file:
# #             audio_file.write(response_audio_io.getvalue())

# #         # Return the response text and the path to the saved audio file
# #         return response_message, "response.mp3"

# #     except Exception as e:
# #         return f"An error occurred: {e}", None

# # iface = gr.Interface(
# #     fn=process_audio,
# #     inputs=gr.Audio(type="filepath"),  # Use type="filepath"
# #     outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
# #     live=True
# # )

# # iface.launch()