AiCNEkw2 / app.py
lynz1910's picture
Update app.py
c5663df verified
import tensorflow as tf
from tensorflow.keras.models import load_model
import gradio as gr
import cv2
import numpy as np
from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input
import gdown
# Download model dari Google Drive
file_id = '10LuyD0erYpFO2D4dN_BYoBQU9sblpLNL'
gdown.download(f"https://drive.google.com/uc?export=download&id={file_id}", "Dalam_Nama_TuhanYesus.keras", quiet=False)
# Load model
model = load_model("Dalam_Nama_TuhanYesus.keras")
# Labels dan saran pengobatan untuk deteksi acne
acne_labels = {
0: 'Clear',
1: 'Comedo',
2: 'Acne'
}
acne_treatment = {
2: '- Topical anti-acne agents, such as benzoyl peroxide, azelaic acid, and tretinoin or adapalene gel and some antibiotics (clindamycin)\n- New bioactive proteins may also prove successful\n- Newer topical agents such as clascoterone\n- Low-dose combined oral contraceptive\n- Antiseptic or keratolytic washes containing salicylic acid\n- Light/laser therapy',
0: 'Keep up the good work! ',
1: '- Benzoyl peroxide\n- Azelaic acid\n- Salicylic acid +/- sulfur and resorcinol\n- Glycolic acid\n- Retinoids such as tretinoin, isotretinoin, adapalene (these require a doctors prescription)'
}
# Fungsi untuk mendeteksi acne
def detect_acne(image, threshold=0.4):
# Resize gambar menjadi 224x224 piksel agar sesuai dengan ukuran input model
image_resized = cv2.resize(image, (299, 299))
# Proses gambar dengan preprocess_input untuk menyesuaikan format input model
input_data = preprocess_input(np.expand_dims(image_resized, axis=0)) # Menambah dimensi untuk batch
# Mendapatkan prediksi dari model
predictions = model.predict(input_data)
# Menemukan indeks kelas dengan probabilitas tertinggi
max_index = np.argmax(predictions[0]) # Indeks dengan probabilitas tertinggi
max_prob = predictions[0][max_index] # Nilai probabilitas tertinggi
# Inisialisasi variabel untuk hasil deteksi dan saran pengobatan
detections = [] # Daftar untuk menyimpan label deteksi (misalnya 'Acne', 'Clear', 'Comedo')
treatment_suggestion = "" # Saran pengobatan yang sesuai
# Jika probabilitas tertinggi lebih besar dari threshold, deteksi berhasil
if max_prob > threshold:
detections.append(acne_labels[max_index]) # Menambahkan label deteksi ke dalam daftar
treatment_suggestion = acne_treatment[max_index] # Mendapatkan saran pengobatan berdasarkan deteksi
# Mengembalikan hasil: gambar yang sudah dianotasi, hasil deteksi, dan saran pengobatan
return f"Detected face: {detections}", treatment_suggestion
# CSS untuk mempercantik tampilan antarmuka
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Itim&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Instrument+Sans:wght@400;700&display=swap');
body {
background: linear-gradient(to bottom, #FFA500, #1E90FF);
color: #ffffff !important;
margin: 0;
padding: 0;
overflow: hidden;
}
.gradio-container {
max-height: 90vh;
overflow-y: auto;
background: transparent !important;
color: #ffffff !important;
border-radius: 12px;
text-align: center;
box-sizing: border-box;
padding: 10px;
}
.gradio-container .wrap h1 {
font-size: 100px !important;
font-family: 'Itim', cursive !important;
font-weight: bold !important;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5);
color: #000000 !important;
}
h2 {
font-size: 40px;
font-family: 'Instrument Sans', sans-serif;
font-weight: bold;
color: #000000;
text-align: center;
}
p {
font-size: 30px;
font-family: 'Instrument Sans', sans-serif;
font-weight: bold;
color: #000000;
text-align: center;
}
.gradio-container .wrap {
font-size: 40px !important;
line-height: 1.6;
padding: 20px
}
.output-textbox textarea {
background-color: #1e1e1e !important;
color: #ffffff !important;
border: 2px solid #000000;
font-weight: bold;
font-size: 16px;
padding: 10px;
border-radius: 8px;
}
.gradio-container::-webkit-scrollbar {
width: 12px;
}
.gradio-container::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.2);
border-radius: 6px;
}
.gradio-container::-webkit-scrollbar-thumb {
background: #D3D3D3;
border-radius: 6px;
border: #555555;
}
.gradio-container::-webkit-scrollbar-thumb:active {
background: #555555;
border: #555555;
}
"""
interface = gr.Interface(
fn=detect_acne,
inputs=gr.Image(type="numpy", label="Upload an image"),
outputs=[
gr.Textbox(label="Detection Result"),
gr.Textbox(label="Treatment Suggestion")
],
title="🌟 AiCNE 🌟",
description=(
"<div style='text-align: center;'>"
"<h2>Welcome to <b>AiCNE</b>, your AI-powered assistant for acne detection!</h2>"
"<h2>Upload a clear image of your face to analyze and classify acne types.</h2>"
"<h2><b>Get instant results</b> and take a step closer to understanding your skin!</h2>"
"<br>"
"<br>"
"<h2>What is AiCNE?</h2>"
"<p>AiCNE is an AI-Powered Acne Detection tool, a smart solution to understand your skin condition with AI Technology.</p>"
"<br>"
"<h2>Why use AiCNE?</h2>"
"<p>AiCNE detects acne within seconds with high accuracy, offering a user-friendly interface for your convenience.</p>"
"<br>"
"<br>"
"</div>"
),
css=custom_css,
)
interface.launch()